561 research outputs found

    Lin-Kernighan Heuristic Adaptations for the Generalized Traveling Salesman Problem

    Get PDF
    The Lin-Kernighan heuristic is known to be one of the most successful heuristics for the Traveling Salesman Problem (TSP). It has also proven its efficiency in application to some other problems. In this paper we discuss possible adaptations of TSP heuristics for the Generalized Traveling Salesman Problem (GTSP) and focus on the case of the Lin-Kernighan algorithm. At first, we provide an easy-to-understand description of the original Lin-Kernighan heuristic. Then we propose several adaptations, both trivial and complicated. Finally, we conduct a fair competition between all the variations of the Lin-Kernighan adaptation and some other GTSP heuristics. It appears that our adaptation of the Lin-Kernighan algorithm for the GTSP reproduces the success of the original heuristic. Different variations of our adaptation outperform all other heuristics in a wide range of trade-offs between solution quality and running time, making Lin-Kernighan the state-of-the-art GTSP local search.Comment: 25 page

    On the vehicle routing problem with time windows

    Get PDF

    Combinatorial Path Planning for a System of Multiple Unmanned Vehicles

    Get PDF
    In this dissertation, the problem of planning the motion of m Unmanned Vehicles (UVs) (or simply vehicles) through n points in a plane is considered. A motion plan for a vehicle is given by the sequence of points and the corresponding angles at which each point must be visited by the vehicle. We require that each vehicle return to the same initial location(depot) at the same heading after visiting the points. The objective of the motion planning problem is to choose at most q(≤ m) UVs and find their motion plans so that all the points are visited and the total cost of the tours of the chosen vehicles is a minimum amongst all the possible choices of vehicles and their tours. This problem is a generalization of the wellknown Traveling Salesman Problem (TSP) in many ways: (1) each UV takes the role of salesman (2) motion constraints of the UVs play an important role in determining the cost of travel between any two locations; in fact, the cost of the travel between any two locations depends on direction of travel along with the heading at the origin and destination, and (3) there is an additional combinatorial complexity stemming from the need to partition the points to be visited by each UV and the set of UVs that must be employed by the mission. In this dissertation, a sub-optimal, two-step approach to motion planning is presented to solve this problem:(1) the combinatorial problem of choosing the vehicles and their associated tours is based on Euclidean distances between points and (2) once the sequence of points to be visited is specified, the heading at each point is determined based on a Dynamic Programming scheme. The solution to the first step is based on a generalization of Held-Karp’s method. We modify the Lagrangian heuristics for finding a close sub-optimal solution. In the later chapters of the dissertation, we relax the assumption that all vehicles are homogenous. The motivation of heterogenous variant of Multi-depot, Multiple Traveling Salesmen Problem (MDMTSP) derives form applications involving Unmanned Aerial Vehicles (UAVs) or ground robots requiring multiple vehicles with different capabilities to visit a set of locations

    GPU accelerated Hungarian algorithm for traveling salesman problem

    Get PDF
    In this thesis, we present a model of the Traveling Salesman Problem (TSP) cast in a quadratic assignment problem framework with linearized objective function and constraints. This is referred to as Reformulation Linearization Technique at Level 2 (or RLT2). We apply dual ascent procedure for obtaining lower bounds that employs Linear Assignment Problem (LAP) solver recently developed by Date(2016). The solver is a parallelized Hungarian Algorithm that uses Compute Unified Device Architecture (CUDA) enabled NVIDIA Graphics Processing Units (GPU) as the parallel programming architecture. The aim of this thesis is to make use of a modified version of the Dual Ascent-LAP solver to solve the TSP. Though this procedure is computational expensive, the bounds obtained are tight and our experimental results confirm that the gap is within 2% for most problems. However, due to limitations in computational resources, we could only test problem sizes N < 30. Further work can be directed at theoretical and computational analysis to test the efficiency of our approach for larger problem instances

    Maximum-entropy principle approach to the multiple travelling salesman problem and related problems

    Get PDF
    This thesis presents an investigation into the applications of the maximum-entropy principle as a heuristic for the multiple travelling salesman problem. This is a computationally complex problem which requires special treatment by conventional optimization techniques. Specific focus is given to developing a generalized framework for this problem that can be applied to any number of variants on the basic formulation. Additional consideration is given to the applications of this generalized framework to other variants on the travelling salesman problems such as the close enough travelling salesman problem. The heuristic framework developed here is shown to provide flexibility in addressing the multiple salesman variation on the travelling salesman problem as well as a several other variants on the travelling salesman problem. Additionally, this framework is shown to be effective in determining solutions to this class of problems, and it is especially effective for the close-enough travelling salesman problems which is particularly challenging for most conventional combinatorial algorithms. Concrete steps are presented by which to further extend and improve this framework to become both more widely applicable to variants on the travelling salesman problem, and more computationally efficient in solving such problems
    • …
    corecore