
Selection of our books indexed in the Book Citation Index

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us?
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected.

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

122,000 135M

TOP 1%154

4,800

CORE Metadata, citation and similar papers at core.ac.uk

Provided by IntechOpen

https://core.ac.uk/display/322386852?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

5

A Modified Discrete Particle Swarm
Optimization Algorithm for the Generalized

Traveling Salesman Problem

Mehmet Fatih Tasgetiren1, Yun-Chia Liang2, Quan-Ke Pan3
and P. N. Suganthan4

1Department of Operations Management and Business Statistics,
 Sultan Qaboos University Muscat,

 2Department of Industrial Engineering and Management, Yuan Ze University,
 3College of Computer Science, Liaocheng University, Liaocheng,

4School of Electrical and Electronic Engineering, Nanyang Technological University,
1Sultanate of Oman

2Taiwan, R.O.C
3P.R. China

4Singapore

1. Introduction

A variant of the traveling salesman problem (TSP) is known as the generalized traveling
salesman problem (GTSP), where a tour does not necessarily visit all the nodes since the set

N of nodes is divided into m sets or clusters, mNN ,..,1 with NNN m =∪∪ ..1 and

φ=∩ kj NN if kj ≠ . The objective is to find a minimum tour length containing at least a

node from each cluster
j

N . Several applications of the GTSP can be found in postal routing

[1], computer file processing [2], order picking in warehouses [3], process planning for
rotational parts [4], and the routing of clients through welfare agencies [5]. Furthermore,
many other combinatorial optimization problems can be reduced to the GTSP problem [1].

TSP is NP-Hard and hence the GTSP is NP-hard because if the set N of nodes is partitioned

into N subsets with each containing one node, it results in a TSP.

Regarding the literature for the GTSP, it was first addressed in [2, 5, 6]. Exact algorithms can
be found in Laporte et al. [7, 8], Laporte & Nobert [9], Fischetti et al. [10, 11], and others in
[12, 13]. On the other hand, several worthy heuristic approaches are applied to the GTSP.
Noon [3] presented several heuristics for the GTSP among which the most promising one is
an adaptation of the well-known nearest-neighbor heuristic for the TSP. Similar adaptations
of the farthest-insertion, nearest-insertion, and cheapest-insertion heuristics are proposed in
Fischetti et al. [11]. GI3 (Generalized Initilialization, Insertion, and Improvement) is one of
the most sophisticated heuristics, which is developed by Renaud & Boctor [14]. GI3 is a
generalization of the I3 heuristic presented in Renaud et al. [15]. The application of the
metaheuristic algorithms specifically to the GTSP is very rare in the litearture. A random O

pe
n

A
cc

es
s

D
at

ab
as

e
w

w
w

.i-
te

ch
on

lin
e.

co
m

Source: Travelling Salesman Problem, Book edited by: Federico Greco, ISBN 978-953-7619-10-7, pp. 202, September 2008,
I-Tech, Vienna, Austria

www.intechopen.com

 Travelling Salesman Problem

98

key genetic algorithm (RKGA) is proposed by Snyder & Daskin [16], which ignited the
metaheuristic research on the GTSP. In the RKGA, random key representation is used and
solutions generated by the RKGA are improved by using two local search heuristics
namely, 2-opt and “swap” procedures. Note that their “swap” procedure provides a speed-
up method in the search process. It is basically concerned with removing a node j from a

tour, and inserting all possible nodes k’s from the corresponding cluster in an edge ()vu, in

a tour (i.e., between the node u and the node v) with a modified nearest-neighbor criterion.

They have been separately implemented by embedding them in the level-I improvement and
level-II improvement procedures.
For each individual in the population, they store the original (pre-improvement) cost and
the final cost after improvements have been made. When a new individual is created, they
compare its pre-improvement cost to the pre-improvement cost of the individual at position

Np× in the previous (sorted) population, where []1,0∈p is a parameter of the algorithm

and 05.0=p in Snyder & Daskin [16]. These two improvement procedures are implemented

as follows:
1. If the new solution is worse than the pre-improvement cost of this individual, the level-I

improvement is used by applying one 2-opt exchange and one “swap” procedure
(assuming a profitable one can be found) and store the resulting individual.

2. On the other hand, if the new solution is better, the level-II improvement is used by
applying 2-opt until no profitable 2-opt can be found, then applying “swap” procedures
until no profitable swaps can be found, and repeat until no improvements have been
made in a given pass.

The RKGA focuses on designing the local search to spend more time on improving solutions
that seem promising in comparison to previous solutions and to spend less time on the
others. In both level-I and level-II improvement, a ‘‘first-improving’’ strategy is employed
where the first move of a given type improving the objective value is implemented, rather
than searching for the best such move before choosing one. Thereafter, Tasgetiren et al. [17,
18, 19] presented a discrete particle swarm optimization algorithm a genetic algorithm (GA)
and an iterated greedy algorithm, respectively whereas Silberholz & Golden proposed
another genetic algorithm in [20] which is denoted as mrOXGA.
The GSTP may deal with either symmetric where the distance from node j to node k is the
same as the distance from k to j or asymmetric distances where the distance from node j to
node k is not the same as the distance from k to j. In this paper, meta-heuristics are presented
to solve the GTSP on a standard set of benchmark instances with symmetric distances.
 Particle swarm Optimization (PSO) is one of the most recent evolutionary meta-heuristic
methods, which receives growing interest from the researchers. It is based on the metaphor
of social interaction and communication such as bird flocking and fish schooling. PSO was
first introduced to optimize various continuous nonlinear functions by Eberhart & Kennedy
[21]. Distinctly different from other evolutionary-type methods such as GA and ES, PSO
algorithms maintain the members of the entire population through the search procedure. In
a PSO algorithm, each individual is called a particle, and each particle moves around in the
multi-dimensional search space with a velocity constantly updated by the particle’s own
experience, the experience of the particle’s neighbors, or the experience of the whole swarm.
That is, the search information is socially shared among particles to direct the population
towards the best position in the search space. The comprehensive surveys of the PSO
algorithms and applications can be found in Kennedy et al. [22] and Clerc [23].

www.intechopen.com

A Modified Discrete Particle Swarm Optimization Algorithm
for the Generalized Traveling Salesman Problem

99

In this paper, a DPSO algorithm is presented to solve the GTSP on a standard set of
benchmark instances with symmetric distances. Furthermore, the DPSO algorithm is
hybridized with local search improvement heuristics to intensify the search process; hence
to further improve the solution quality.
The remaining chapter is organized as follows. Section 2 introduces the DPSO algorithm
and its basic components. Section 3 presents the computational results on benchmark
problems. Finally, Section 4 summarizes the concluding remarks.

2. Discrete particle swarm optimization algorithm

In the standard PSO algorithm, all particles have their position, velocity, and fitness values.
Particles fly through the m-dimensional space by learning from the historical information
emerged from the swarm population. For this reason, particles are inclined to fly towards
better search area over the course of evolution. Let NP denote the swarm size represented as

[]k
NP

kkk xxxx ,...,, 21= . Then each particle in the swarm population has the following attributes:

A current position represented as []k
im

k
i

k
i

k
i xxxx ,..,, 21= ; a current velocity represented as

[]k
im

k
i

k
i

k
i vvvv ,..,, 21= ; a current personal best position represented as []k

im
k
i

k
i

k
i pppp ,...,, 21= ; and

a current global best position represented as []k
m

kkk gggg ,...,, 21= . Assuming that the

function f is to be minimized, the current velocity of the jth dimension of the ith particle is
updated as follows.

 () ()11
22

11
11

11 −−−−−− −+−+= k
ij

k
j

k
ij

k
ij

k
ij

kk
ij xgrcxprcvwv (1)

where kw is the inertia weight which is a parameter to control the impact of the previous

velocities on the current velocity; c1 and c2 are acceleration coefficients and r1 and r2 are
uniform random numbers between [0,1]. The current position of the jth dimension of the ith

particle at the generation k is updated using the previous position and current velocity of

the particle as follows:

 k
ij

k
ij

k
ij vxx += −1 (2)

The personal best position of each particle is updated using

() ()
() ()⎪⎩

⎪
⎨
⎧

<
≥

= −

−−

1

11

k
i

k
i

k
i

k
i

k
i

k
ik

i
pfxfifx

pfxfifp
p (3)

Finally, the global best position found so far in the swarm population is obtained for

NPi ≤≤1 as

() () ()

⎪⎩

⎪
⎨
⎧ <

=
−

−

elseg

gfpfifPf
g

k

kk
i

k
i

k
ipk

1

1minminarg
 (4)

Standard PSO equations cannot be used to generate binary/discrete values since positions
are real-valued. Pan et al. [24, 25, 26] have presented a DPSO optimization algorithm to
tackle the binary/discrete spaces, where particles are updated as follows:

www.intechopen.com

 Travelling Salesman Problem

100

 ()()()111
12 ,, −−−⊕⊕⊕= kk

i
k
i

k
i gpxFwCRcCRcx ρ (5)

The update equation (5) consists of three components: The first component is

()1−⊕= k
i

k
i xFwa ρ , which represents the velocity of the particle. In the component

()1−⊕= k
i

k
i xFwa ρ , ρF represents the mutation or perturbation operator with the mutation

strength of ρ and the mutation probability of w . In other words, a uniform random number

r is generated between 0 and 1. If r is less than w then the mutation operator is applied to

generate a perturbed particle by ()1−= k
i

k
i xFa ρ , otherwise current particle is mutated as

()1−= k
i

k
i xinserta . In addition, the mutation strength d is the degree of perturbation, i.e.,

single insert move or double insert move or some constructive heuristics generating distinct

solutions and so on. In this paper, we employ the destruction and construction (DC)

procedure of the IG algorithm in the mutation phase.

The second component is ()1
1 , −⊕= k

i
k
i

k
i paCRcb , which is the “cognition” part of the particle

representing the private thinking of the particle itself. In the component

()1
1 , −⊕= k

i
k
i

k
i pbCRcb , CR represents the crossover operator with the probability of 1c .

Note that k
ia and 1−k

ip will be the first and second parents for the crossover operator,

respectively. It results either in ()1, −= k
i

k
id

k
i paFb or in k

i
k
i ab = depending on the choice of a

uniform random number.

The third component is ()kk
i

k
i gbCRcx ,2 ⊕= , which is the “social” part of the particle

representing the collaboration among particles. In the component ()1
2 , −⊕= kk

i
k
i gbCRcx ,

CR represents the crossover operator with the probability of 2c . Note that k
ib and 1−kg

will be the first and second parents for the crossover operator, respectively. It results either

in ()1, −= kk
i

k
i gbCRx or in k

i
k
i bx = depending on the choice of a uniform random number.

The basic idea behind the DPSO algorithm is to provide information exchange amongst the

population members, personal best solutions and the global best solution.

However, combining the particle with both personal best and then global best solution

through crossover operator may cause a particle losing some genetic information. Instead,

we propose a modification to our DPSO algorithm in this paper utilizing either the “social”

or “cognitive” genetic information during the particle update process. It is achieved as

follows:

⎪⎩

⎪
⎨
⎧ <

= −

−

elsegaCR

crifpaCR
x

kk
i

k
i

k
ik

i
),(

),(
1

1
1

 (6)

In other words, after mutation operator, the particle is updated by recombining the

temporary mutated individual with either the personal best or global best solution

depending on a search directing probability of 1c . For the DPSO algorithm, the gbest (global

neighborhood) model of Kennedy et al. [22] was followed. The pseudo code of the DPSO

algorithm with the local search is given in Fig. 1.

www.intechopen.com

A Modified Discrete Particle Swarm Optimization Algorithm
for the Generalized Traveling Salesman Problem

101

Procedure DPSO

Initialize parameters

Initialize particles of population

Evaluate particles of population

Apply local search to population individuals %Optional

While (not termination) Do

 Find personal best

 Find global best

 Update particles of population

 Evaluate particles of population

 Apply local search to population individuals %Optional

Endwhile

Return Global best

Endprocedure

Fig. 1. Generic Outline of DPSO Algorithm with Local Search.

2.1 Solution representation
We employ a path representation for the GTSP in this paper. In the path representation,
each consecutive node is listed in order. An advantage of this representation is due to its
simplicity in objective function evaluation since the total cost of a path can easily be
calculated by summing the costs (distances) of each pair of adjacent nodes. However, a
distadvantge of this representation is due to the fact that there is no quarantee that a
randomly selected solution will be a valid GTSP tour because there is no quarantee that
each cluster is represented exactly once in the path without some repair procedures. In order
to handle the decision of which node should be chosen from a given cluster in the GTSP
solution, we include both cluster and tour information in solutions. In other words, a GTSP
solution consists of both an array of permutation of clusters (jn) and an array of nodes (jπ)

to be visited in m dimensions/clusters. In this way, each solution is guaranteed to be a GTSP
solution. The solution representation together with the necessary distance information for

calculating the objective function value ()xF of the solution x is illustrated in Table 1 where

1+jj
d ππ shows the distance from node jπ to node 1+jπ . The initial solution is constructed in

such a way that first a permutation of clusters is determined randomly, then since each
cluster contains one or more nodes, a tour is established by randomly choosing a single
node from each corresponding cluster. By including cluster information in solution
representation, which node must be visited in a tour can be determined easily with either a
random selection or a systematic way. For example, in the pair ()jjn π, , jn stands for the

cluster in the jth dimension whereas jπ represents the node to be visited from cluster jn .

 j 1 2 ... m-1 m 1

jn 1n 2n ... 1−mn mn 1n
x

jπ
1π 2π ... 1−mπ mπ 1π

 1+jj
d ππ

21ππd
32ππd ... mm

d ππ 1−

1ππm
d

()=xF =+∑
= + 11

1 ππππ m

m

j
jj

dd +
21ππd +

32ππd ... +
− mm

d ππ 1 1ππm
d

Table 1. Solution Representation

www.intechopen.com

 Travelling Salesman Problem

102

As illustrated in Table 1, the objective function value of a solution x is the total tour length

and given by

 () ∑ +=
−

=
+

1

1
11

m

j
mjj

ddxF ππππ (1)

For example, consider a GTSP instance of 11EIL51 from TSPLIB library [27], which has fifty

one nodes divided into eleven clusters. So the clusters are { }41,40,191 =N , { }36,35,20,32 =N ,

{ }43,243 =N , { }39,334 =N , { }5 11,12,27,32, 46,47,51 ,N = { }6 2,16,21, 29,34,50 ,N =

{ }7 8, 22,26, 28,31 ,N = { }8 13,14,18,25 ,N = { }9 4,15,17,37, 42, 44,45 ,N =

{ }48,23,7,6,110 =N , and { }49,38,30,10,9,511 =N . Table 2 illustrates a random GTSP solution

with the distance information
1+jj

d ππ and the objective function ()xF for the instance

11EIL51. In addition, the whole distance matrix and other detailed information about the
instance 11EIL51 can be found in http://www.ntu.edu.sg/home/EPNSugan.

 j 1 2 3 4 5 6 7 8 9 10 11 1

jn 10 5 7 2 6 11 4 9 1 8 3 10
x

jπ 1 51 22 20 50 10 33 44 41 25 24 1

 1+jj
d ππ

51,1d 22,51d 20,22d 50,20d 10,50d 33,10d 44,33d 41,44d 25,41d 24,25d 1,24d

()xF 201 14 21 15 21 17 12 17 20 21 14 29

Table 2. GTSP Solution for Instance 11EIL51

As to the construction of the initial random solution as mentioned before, first a random
permutation of clusters is established; then a corresponding node is randomly chosen from

each cluster to establish the tour. To be more specific, for example, in Table 2, 52 =n refers

to the cluster 5N , and the corresponding node 512 =π refers to the node 51 chosen

randomly from the cluster 5N .

2.2 NEH heuristic

Due to the availability of the insertion methods that we have already proposed in [17, 18,
19], it is possible to apply the NEH heuristic of Nawaz et al. [28] to the GTSP. Without
considering cluster information for simplicity, the NEH heuristic for the GTSP can be
summarized as follows:
1. Determine an initial tour of nodes. Let this tour be x .

2. The first two nodes (that is, 1π and 2π) are chosen and two possible partial tours of

these two nodes are evaluated. Note that since a tour must be Hamiltanion cycle, partial
tours will be evaluated with the first node being the last node, too. As an example,

partial tours, ()121 ,, πππ and ()212 ,, πππ are evaluated.

3. Repeat the following steps until all nodes are inserted. In the kth step, node kπ at

position k is taken and tentatively inserted into all the possible k positions of the

partial tour that are already partially completed. Select these k tentative partial tours

www.intechopen.com

A Modified Discrete Particle Swarm Optimization Algorithm
for the Generalized Traveling Salesman Problem

103

that results in the minimum objective function value or a cost function suitably
predefined.

To picture out how the NEH heuristic can be adopted for the GTSP, consider a solution

with five nodes as { }5,2,4,1,3=x . The following example illustrates the implementation of

the NEH heuristic for the GTSP:

1. Current solution is { }3,1,4,2,5 .x =

2. Evaluate the first two nodes as follows: { }3,1,3 and { }1,3,1 . Assume that the first partial

tour has a better objective function value than the second one. So the current partial

tour will be { }3,1 .

3. Insertions:

• Insert node 4 into three possible positions of the current partial tour as follows:

{ }4,1,3,4 , { }3,1,4,3 and { }3,4,1,3 . Assume that the best objective function value is with

the partial tour { }3,1,4,3 . So the current partial tour will be { }1,4,3 .

• Next, insert node 2 into four possible positions of the current partial tour as

follows: { }2,1,4,3,2 , { }3,1,4,2,3 , { }3,1,2,4,3 and { }3,2,1,4,3 . Assume that the best

objective function value is with the partial tour { }3,1,4,2,3 . So the current partial

tour will be { }1,4,2,3 .

• Finally, insert node 5 into five possible positions of the current partial tour as

follows: { }5,1,4,2,3,5 , { }3,1,4,2,5,3 , { }3,1,4,5,2,3 , { }3,1,5,4,2,3 and { }3,5,1,4,2,3 . Assume

that the best objective function value is with the partial tour { }3,1,5,4,2,3 . So the final

complete tour will be { }1,5,4,2,3=x .

2.3 Destruction and construction procedure

We employ the destruction and construction (DC) procedure of the iterated greedy (IG)

algorithm in [29] in the DPSO algorithm. In the destruction step, a given number d of

nodes, randomly chosen and without repetition, are removed from the solution. This results

in two partial solutions. The first one with the size d of nodes is called Rx and includes the

removed nodes in the order where they are removed. The second one with the size dm − of

nodes is the original one without the removed nodes, which is called Dx . It should be

pointed out that we consider each corresponding cluster when the destruction and
construction procedures are carried out in order to keep the feasibility of the GTSP tour.
Note that the perturbation scheme is embedded in the destruction phase where p nodes

from Rx are randomly chosen without repetition and they are replaced by some other nodes

from the corresponding clusters.
The construction phase requires a constructive heuristic procedure. We employ the NEH

heuristic described in the previous section. In order to reinsert the set Rx into the

destructed solution Dx in a greedy manner, the first node R
1π in Rx is inserted into all

possible 1+− dm positions in the destructed solution Dx generating 1+− dm partial

solutions. Among these 1+− dm partial solutions including node R
1π , the best partial

solution with the minimum tour length is chosen and kept for the next iteration. Then the

www.intechopen.com

 Travelling Salesman Problem

104

second node R
2π in Rx is considered and so on until Rx is empty or a final solution is

obtained. Hence Dx is again of size m .

To figure out how DC can be adopted for the GTSP, consider a solution with five nodes as

{ }5,2,4,1,3=x . Again, we do not consider cluster information for simplicity:

1. Current solution is { }3,1,4,2,5 .x =

2. Remove nodes 1 and 5 randomly from the current solution to establish two partial

solutions as { }2,4,3=Dx and { }5,1=Rx .

3. Insert node 1 into four possible positions of the current partial tour { }2,4,3=Dx as

follows: { }1,2,4,3,1 , { }3,2,4,1,3 , { }3,2,1,4,3 and { }3,1,2,4,3 . Assume that the best

objective function value is with the partial tour { }3,2,1,4,3 . So the current partial tour

will be { }2,1,4,3=Dx .

4. Next, insert node 5 into five possible positions of the current partial tour { }2,1,4,3=Dx

as follows: { }5,2,1,4,3,5 , { }3,2,1,4,5,3 , { }3,2,1,5,4,3 , { }3,2,5,1,4,3 and { }3,5,2,1,4,3 . Assume

that the best objective function value is with the final tour { }5,2,1,4,3,5 . So the final

complete tour will be { }2,1,4,3,5=x .

In order to highlight the difference between the NEH insertion and the one proposed in by
Rosenkrantz et al. [30], we give the same example as follows:

1. Current solution is { }5,2,4,1,3=x

2. Revove nodes 1 and 5 randomly from the current solution to establish two partial

solutions as { }2,4,3=Dx and { }5,1=Rx .

3. Insert node 1 into two possible positions of the current partial tour { }2,4,3=Dx as

follows: { }3,2,4,1,3 and { }3,2,1,4,3 because there are only two edges in Dx . Assume that

the best objective function value is with the partial tour { }3,2,1,4,3 . So the current partial

tour will be { }2,1,4,3=Dx .

4. Next, insert node 5 into three possible positions of the current partial tour { }2,1,4,3=Dx

as follows: { }2,1,4,5,3 , { }3,2,1,5,4,3 and { }3,2,5,1,4,3 because there are only three edges in
Dx . Assume that the best objective function value is with the final tour { }2,1,4,5,3 . So the

final complete tour will be { }3,2,1,4,5,3

As seen in the examples above, the NEH heuristic considers ()1+n insertions at each step

whereas the Rosenkrantz et al. [30] makes ()1−n insertions in order to find a complete tour.

2.4 Insertion methods
The following insertion methods are proposed by the authors in [19]. These greedy speed-

up methods are based on the insertion of the pair ()R

k

R

kn π, into 1+− dm possible positions

of a partial or destructed solution xd. Note that as an example only a single pair is
considered to be removed from the current solution, perturbed with another node from the
same cluster and reinserted into the partial solution. For this reason, the destruction size and

www.intechopen.com

A Modified Discrete Particle Swarm Optimization Algorithm
for the Generalized Traveling Salesman Problem

105

the perturbation strength are equal to one (i.e., 1=== kdρ). As a matter of fact, the

insertion of node
R

kπ into 1−− dm possible positions is actually proposed by Rosenkrantz

et al. [30] for the TSP. Snyder & Daskin [16] have adopted it for the GTSP. It is based on the

removal and the insertion of node R

kπ in an edge ()D

v

D

u ππ , of a partial tour. However, it

avoids the insertion of node
R

kπ on the first and the last position of any given partial tour.

We illustrate these possible three insertions using the partial solution Dx of the instance

11EIL51 having eleven clusters and nodes. Suppose that the pair ()51,5 is removed from the

solution in Table 1; perturbed with node 27 from the same cluster 5N . So the current partial

solution after removal and the pair to be reinserted are given in Tables 3A and 3B,
respectively.

 j 1 2 3 4 5 6 7 8 9 10 1
D
jn 10 7 2 6 11 4 9 1 8 3 10

Dx D
jπ 1 22 20 50 10 33 44 41 25 24 1

 D
j

D
j

d
1+ππ 22,1d 20,22d 50,20d 10,50d 33,10d 44,33d 41,44d 25,41d 24,25d 1,24d

()DxF 173 7 15 21 17 12 17 20 21 14 29

Table 3A. Current Partial Solution

 k 1
R
kn 5

Rx R
kπ 27

Table 3B. Partial Solution to Be Inserted

A. Insertion of pair (),R R

k k
n π in the first position of the partial solution

a.
1

Remove D D
m

d
π π

=

b.
1

Add R D D R
k m k

d d
π π π π

= +

c. () () Add RemoveDF x F x= + −

Example A:

1

Remove D D
m

d
π π

=

10 1

Remove D Dd
π π

=

24,1Remove d=

1

Add R D D R
k m k

d d
π π π π

= +

1 1 10 1

Add R D D Rd d
π π π π

= +

27,1 24,27Add d d= +

() () Add RemoveDF x F x= + −

www.intechopen.com

 Travelling Salesman Problem

106

() 1,2427,241,271,2424,2525,4141,4444,3333,1010,5050,2020,2222,1 dddddddddddddxF −+++++++++++=

() 27,241,2724,2525,4141,4444,3333,1010,5050,2020,2222,1 dddddddddddxF ++++++++++=

 j 1 2 3 4 5 6 7 8 9 10 11 1

jn 5 10 7 2 6 11 4 9 1 8 3 5
x

jπ 27 1 22 20 50 10 33 44 41 25 24 27

 1+jj
d ππ

1,27d 22,1d 20,22d 50,20d 10,50d 33,10d 44,33d 41,44d 25,41d 24,25d 27,24d

()xF 174 8 7 15 21 17 12 17 20 21 14 22

Table 3C. Insertion of pair () ()27,5, =R
k

R
kn π into the first position of partial solution

B. Insertion of pair (),R R

k k
n π in the last position of partial solution

a.
1

Remove D D
m

d
π π

=

b.
1

Add D R R D
m k k

d d
π π π π

= +

c. () () Add RemoveDF x F x= + −

Example B:

1

Remove D D
m

d
π π

=

10 1

Remove D Dd
π π

=

24,1Remove d=

1

Add D R R D
m k k

d d
π π π π

= +

10 1 1 1

Add D R R Dd d
π π π π

= +

24,27 27,1Add d d= +

() () Add RemoveDF x F x= + −

() 1,241,2727,241,2424,2525,4141,4444,3333,1010,5050,2020,2222,1 dddddddddddddxF −+++++++++++=

() 1,2727,2424,2525,4141,4444,3333,1010,5050,2020,2222,1 dddddddddddxF ++++++++++=

 j 1 2 3 4 5 6 7 8 9 10 11 1

jn 10 7 2 6 11 4 9 1 8 3 5 10
x

jπ 1 22 20 50 10 33 44 41 25 24 27 1

 1+jj
d ππ

22,1d 20,22d 50,20d 10,50d 33,10d 44,33d 41,44d 25,41d 24,25d 27,24d 1,27d

()xF 174 7 15 21 17 12 17 20 21 14 22 8

Table 3D. Insertion of the pair () ()27,5, =R
k

R
kn π into the last position of partial solution

www.intechopen.com

A Modified Discrete Particle Swarm Optimization Algorithm
for the Generalized Traveling Salesman Problem

107

Note that even though both tours generated in the examples A and B are different, the

insertion of pair () ()27,5, =R
k

R
kn π into the first and last positions of the partial solution Dx is

equivalent to each other in terms of distance information that they have. In addition, note
that both solutions are optimal.

C. Insertion of pair (),R R

k k
n π between the edge (),D D

u u
n π and (),D D

v v
n π

a. Remove D D
u v

d
π π

=

b. Add D R R D
u k k v

d d
π π π π

= +

c. () () Add RemoveDF x F x= + −

Example C:

6=u

7=v

Remove D D
u v

d
π π

=

6 7

Remove D Dd
π π

=

33,44Remove d=

Add D R R D
u k k v

d d
π π π π

= +

6 1 1 7

Add D R R Dd d
π π π π

= +

33,27 27,44Add d d= +

() () Add RemoveDF x F x= + −

() 44,3344,2727,331,2424,2525,4141,4444,3333,1010,5050,2020,2222,1 dddddddddddddxF −+++++++++++=

() 44,2727,331,2424,2525,4141,4433,1010,5050,2020,2222,1 dddddddddddxF ++++++++++=

 j 1 2 3 4 5 6 7 8 9 10 11 1

jn 10 7 2 6 11 4 5 9 1 8 3 10
x

jπ 1 22 20 50 10 33 27 44 41 25 24 1

 1+jj
d ππ

22,1d 20,22d 50,20d 10,50d 33,10d 27,33d 44,27d 41,44d 25,41d 24,25d 1,24d

()xF 223 7 15 21 17 12 41 33 20 21 14 22

Table 3E. Insertion of the pair () ()27,5, =R
k

R
kn π between pairs () ()33,4, =D

u
D
un π and () ()44,9, =D

v
D
vn π .

It is important to note that above insertion methods, especially insertion to the first and the
last nodes, make the NEH heuristic applicable in the destruction and construction procedure
to establish a final complete solution. For this reason, the insertion methods given above are
neccessary for an IG algorithm to solve the GTSP.

2.5 Hybridization with local search
The hybridization of DPSO algorithm with local search heuristics is trivial. It can be
achieved through the improvement of each solution generated in the construction phase by
some local search methods. As improvement heuristics, a simple local search (LS) method

www.intechopen.com

 Travelling Salesman Problem

108

and the 2-opt heuristic [31] were separately applied to the reconstructed solution. Note that
the 2-opt heuristic is employed with the first improvement strategy in this study. Regarding
the LS heuristic, we choose a simple one that is again based on the DC procedure. In other
words, the destruction and construction procedures with the destruction size and the
perturbation strength equal to one (i.e., 1== dρ) are used in the LS procedure whereas the

LS size is fixed at 5×= nclusterw in order to intensify the search on the local minima. We will
denote the hybrid DPSO algorithm with both local search improvement heuristics as
mDPSO from now on. The pseudo code of the LS procedure is given in Fig. 2 whereas the
proposed mDPSO algorithm is given in Fig. 3.

()xGTSPLSprocedure _

 1:=h

 () dowhwhile ≤

 ()xDCx =:* % d=1 and p=1

 () ()() thenxfxfif ≤*

 *: xx =

 1:=h

 else

 1: += hh

 endif

 endwhile

 xreturn

reendprocedu

Fig. 2. Local Search Employed

_procedure DPSO GTSP

Set 1c , w , NP , maxt

1000/: ntGetTickCout A =

()00
2

0
1 ,..,, NPxxx=Π %NEH_RANDOM population individuals and evaluate

()
NPi

ixf
,..,2,1:

0

=
 %Evaluate population

NPi
ii xp
,..,2,1:

00

=
= %Initialize bestsofar population

()
NPi

ii xopttwox
,..,2,1

00 _
=

= %Apply two-opt

()
NPi
ii xLSx

,..,2,1

00

=
= %Apply LS local search

(){ }
NPi

ixfg
,..,2,1

00 minarg
=

= %Find gbest solution

0: gxB = %Set bestsofar

1:=k

1000/: ntGetTickCoutB =

www.intechopen.com

A Modified Discrete Particle Swarm Optimization Algorithm
for the Generalized Traveling Salesman Problem

109

()() dotttwhile AB max<−

 ()
NPi

k
id

k
i xDCwa

,..,2,1

1

=

−⊕= ρ %Temporary population individual by destruction and

 construction

 () (){ }
NPi

k
iBB afxfx

,..,2,1:

,minarg
=

= %Update bestsofar

 ()
NPi

kkk
i

k
i gpaCRcx

,..,2,1:

11
1 ,,

=

−−⊕= %Update population individual by Eq. [6]

 ()
NPi

k
ixf

,..,2,1:=
 %Evaluate population

 () (){ }
NPi

k
i

k
i

k
i pfxfp

,..,2,1:

1,minarg
=

−= %Update personal best

 ()
NPi

k
i

k
i xopttwox

,..,2,1

_
=

= %Apply two-opt

 ()
NPi

k
i

k
i xLSx

,..,2,1=
= %Apply LS local search

 () (){ }
NPi

k
i

k
i

k
i gfpfg

,..,2,1:

1,minarg
=

−= %Update global best solution

 () (){ }k
BB gfxfx ,minarg= %Update bestsofar

1: += kk

endwhile

Bxreturn

reendprocedu

Fig. 3. DPSO Algorithm with Improvement Heuristics.

2.6 Crossover operator

In this paper, the traditional two-cut crossover operator is used in the mDPSO algorithm.
The two-cut crossover operator is is illustrated in Table 4.

j 1 2 3 4 5 6 7 8 9 10 11 1

j
n 10 5 7 2 6 4 11 9 8 1 3 10

1P
j

π 1 51 22 20 50 33 10 44 25 41 24 1

j
n 10 6 7 11 5 1 2 9 8 4 3 10

2P
j

π 1 50 22 10 27 41 20 44 25 33 24 1

j 1 2 3 4 5 6 7 8 9 10 11 1

j
n 10 7 5 1 6 4 11 2 9 8 3 10

1O
j

π 1 22 27 41 50 33 10 20 44 25 24 1

Table 4. Two-Cut Crossover Operator.

2.7 Insert mutation operator

The insert mutation operator is basically related to first determining a cluster randomly,
then removing the corresponding node from the tour of the individual, and replacing that

www.intechopen.com

 Travelling Salesman Problem

110

particular node with another node from the same cluster randomly. As shown in Table 5,

the cluster 52 =n is randomly chosen and its corresponding node 512 =π is replaced by the

node 272 =π from the same cluster 52 =n using the GTSP instance of 11EIL51.

 j 1 2 3 4 5 6 7 8 9 10 11 1

j
n 10 5 7 2 6 4 11 9 8 1 3 10

x
j

π 1 51 22 20 50 33 10 44 25 41 24 1

j 1 2 3 4 5 6 7 8 9 10 11 1

j
n 10 5 7 2 6 4 11 9 8 1 3 10

x
j

π 1 27 22 20 50 33 10 44 25 41 24 1

Table 5. Insert Mutation Operator

3. Computational results

We consider RKGA and mrOXGA for comparison in this paper since they produced some
of the best heuristic results for the GTSP. The first benchmark set contains between 51 (11)
and 442 (89) nodes (clusters) and the optimal objective function value for each of the
problems is available. The second benchmark set contains between 493 (99) and 1084 (217)
nodes. Since optimal solutions are not available for larger instances, we compare our results
to Silberholz & Golden [20]. The DPSO algorithm was coded in Visual C++ and run on an
Intel P IV 3.20GHz with 512MB memory. The population size was fixed at 30. The initial
population is constructed randomly and then the NEH heuristic was applied to each
random solution. Destruction size and perturbation strength were taken as 5 and 3,
respectively. The traditional two-cut crossover is employed where the search direction and

mutation probabilities are taken as 5.01 =c and 9.0=w , respectively. The DPSO algorithm

was terminated when the best so far solution was not improved after 50 consecutive
generations. Five runs were carried out for each problem instance to report the statistics

based on the relative percent deviations (Δ) from optimal solutions. For the computational

effort consideration, avgt denotes average CPU time in seconds to reach the best solution

found so far during the run, i.e., the point of time that the best so far solution does not

improve thereafter. optn stands for the number of optimal solutions found by each

algorithm whereas avgf represents the average objective function values out of five runs.

We compare the mDPSO algorithm to two genetic algorithms, namely, RKGA by Snyder &
Daskin [16] and mrOXGA by Silberholz & Golden [20] where RKGA is re-implemented
under the same machine environment. Table 6 summarizes the solution quality in terms of
relative percent deviations from the optimal values and CPU time requirements for all three
algorithms. Note that our machine has a similar speed as Silberholz & Golden [20]. A two-
sided paired t-test which compares the results on Table 6 with a null hypothesis that the
algorithms were identical generated p-values of 0.167 and 0.009 for mDPSO vs. mrOXGA
and mDPSO vs. RKGA, suggesting near-identical results between mDPSO and mrOXGA.
On the other hand, the paired t-test confirms that the differences between mDPSO and
RKGA were significant on the behalf of mDPSO subject to the fact that RKGA was
computationally less expensive than both mDPSO and mrOXGA when solely the optimal
instances are considered.

www.intechopen.com

A Modified Discrete Particle Swarm Optimization Algorithm
for the Generalized Traveling Salesman Problem

111

 mDPSO mrOXGA RKGA

Instance optn avgΔ avgt avgΔ avgt avgΔ avgt

11EIL51 5 0.00 0.10 0.00 0.26 0.00 0.08

14ST70 5 0.00 0.12 0.00 0.35 0.00 0.07

16EIL76 5 0.00 0.13 0.00 0.37 0.00 0.11

16PR76 5 0.00 0.17 0.00 0.45 0.00 0.16

20KROA100 5 0.00 0.24 0.00 0.63 0.00 0.25

20KROB100 5 0.00 0.23 0.00 0.60 0.00 0.22

20KROC100 5 0.00 0.23 0.00 0.62 0.00 0.23

20KROD100 5 0.00 0.24 0.00 0.67 0.00 0.43

20KROE100 5 0.00 0.23 0.00 0.58 0.00 0.15

20RAT99 5 0.00 0.21 0.00 0.50 0.00 0.24

20RD100 5 0.00 0.23 0.00 0.51 0.00 0.29

21EIL101 5 0.00 0.19 0.00 0.48 0.00 0.18

21LIN105 5 0.00 0.25 0.00 0.60 0.00 0.33

22PR107 5 0.00 0.23 0.00 0.53 0.00 0.20

25PR124 5 0.00 0.41 0.00 0.68 0.00 0.26

26BIER127 5 0.00 0.44 0.00 0.78 0.00 0.28

28PR136 5 0.00 0.52 0.00 0.79 0.16 0.36

29PR144 5 0.00 0.46 0.00 1.00 0.00 0.44

30KROA150 5 0.00 0.47 0.00 0.98 0.00 0.32

30KROB150 5 0.00 0.60 0.00 0.98 0.00 0.71

31PR152 5 0.00 1.38 0.00 0.97 0.00 0.38

32U159 5 0.00 0.64 0.00 0.98 0.00 0.55

39RAT195 5 0.00 0.99 0.00 1.37 0.00 1.33

40D198 5 0.00 1.77 0.00 1.63 0.07 1.47

40KROA200 5 0.00 1.11 0.00 1.66 0.00 0.95

40KROB200 5 0.00 2.44 0.05 1.63 0.01 1.29

45TS225 2 0.05 1.75 0.14 1.71 0.28 1.09

46PR226 5 0.00 0.74 0.00 1.54 0.00 1.09

53GIL262 5 0.00 4.76 0.45 3.64 0.55 3.05

53PR264 5 0.00 1.11 0.00 2.36 0.09 2.72

60PR299 1 0.07 5.66 0.05 4.59 0.16 4.08

64LIN318 5 0.00 5.72 0.00 8.08 0.54 5.39

80RD400 4 0.02 13.66 0.58 14.58 0.72 10.27

84FL417 4 0.00 13.06 0.04 8.15 0.06 6.18

88PR439 3 0.00 16.15 0.00 19.06 0.83 15.09

89PCB442 3 0.15 28.59 0.01 23.43 1.23 11.74

Avg 4.64 0.01 2.92 0.04 2.99 0.13 2.00

Machine P IV 3.20 GHz P IV 3.00 GHz

Table 6. Comparison for Optimal Instances

www.intechopen.com

 Travelling Salesman Problem

112

 mDPSO mrOXGA RKGA

Instance avgf avgt avgf avgt avgf avgt

11EIL51 174.0 100.0 174.0 259.2 174.0 78.2

14ST70 316.0 120.0 316.0 353.0 316.0 65.6

16EIL76 209.0 130.0 209.0 369.0 209.0 106.4

16PR76 64925.0 170.0 64925.0 447.0 64925.0 156.2

20KROA100 9711.0 240.0 9711.0 628.2 9711.0 249.8

20KROB100 10328.0 230.0 10328.0 603.2 10328.0 215.6

20KROC100 9554.0 230.0 9554.0 621.8 9554.0 225.0

20KROD100 9450.0 240.0 9450.0 668.8 9450.0 434.4

20KROE100 9523.0 230.0 9523.0 575.0 9523.0 147.0

20RAT99 497.0 210.0 497.0 500.0 497.0 243.8

20RD100 3650.0 230.0 3650.0 506.2 3650.0 290.8

21EIL101 249.0 190.0 249.0 478.2 249.0 184.6

21LIN105 8213.0 250.0 8213.0 603.2 8213.0 334.4

22PR107 27898.0 230.0 27898.6 534.4 27898.6 I97.0

25PR124 36605.0 410.0 36605.0 678.0 36605.0 259.0

26BIER127 72418.0 440.0 72418.0 784.4 72418.0 275.2

28PR136 42570.0 520.0 42570.0 793.8 42639.8 362.8

29PR144 45886.0 460.0 45886.0 1003.2 45887.4 437.6

30KROA150 11018.0 470.0 11018.0 981.2 11018.0 319.0

30KROB150 12196.0 600.0 12196.0 978.4 12196.0 712.4

31PR152 51576.0 1380.0 51576.0 965.4 51576.0 381.2

32U159 22664.0 640.0 22664.0 984.4 22664.0 553.2

39RAT195 854.0 990.0 854.0 1374.8 854.0 1325.0

40D198 10557.0 1770.0 10557.0 1628.2 10564.0 1468.6

40KROA200 13406.0 1110.0 13406.0 1659.4 13406.0 950.2

40KROB200 13111.0 2440.0 13117.6 1631.4 13112.2 1294.2

45TS225 68376.0 1750.0 68435.2 1706.2 68530.8 1087.4

46PR226 64007.0 740.0 64007.0 1540.6 64007.0 1094.0

53GIL262 1013.0 4760.0 1017.6 3637.4 1018.6 3046.8

53PR264 29549.0 1110.0 29549.0 2359.4 29574.8 2718.6

60PR299 22631.0 5660.0 22627.0 4593.8 22650.2 4084.4

64LIN318 20765.0 5720.0 20765.0 8084.4 20877.8 5387.6

80RD400 6362.4 13660.0 6397.8 14578.2 6407.0 10265.6

84FL417 9651.2 13060.0 9654.6 8152.8 9657.0 6175.2

88PR439 60099.4 16150.0 60099.0 19059.6 60595.4 15087.6

89PCB442 21690.0 28590.0 21658.2 23434.4 21923.0 11743.8

99D493 20118.6 23193.8 20117.2 35718.8 20260.4 14887.8

115RAT575 2419.8 33521.6 2414.8 48481.0 2442.4 46834.4

131P654 27432.4 39847.0 27508.2 32672.0 27448.4 46996.8

132D657 22714.6 64956.2 22599.0 132243.6 22857.6 58449.8

145U724 17422.8 141587.8 17370.6 161815.2 17806.2 59625.2

157RAT783 3297.2 114315.8 3300.2 152147.0 3341.0 89362.4

201PR1002 115759.4 231546.6 114582.2 464356.4 117421.2 332406.2

212U1060 107316.4 341759.6 108390.4 594637.4 110158.0 216999.8

217VM1084 131716.8 310097.4 131884.6 562040.6 133743.4 390115.6

Overal Avg 27553.3 31245.7 27554.3 50930.4 27741.3 30169.1

Table 7. Comparision to Silberholz & Golden [20]

www.intechopen.com

A Modified Discrete Particle Swarm Optimization Algorithm
for the Generalized Traveling Salesman Problem

113

Silberholz & Golden [20] provided larger problem instances ranging from 493 (99) to 1084

(217) nodes (clusters) where no optimal solutions are available. However, they provided the

results of mrOXGA and RKGA. We compare the mDPSO results to those presented in

Silberholz & Golden [20]. As seen in Table 7, mDPSO generated consistently better results

than both RKGA and mrOXGA in terms of solution quality even if the larger instances

are considered. In particular, 4 out 9 larger instances are further improved by mDPSO.

The paired t-test on the objective function values on Table 7 confirms that the differences

between mDPSO and RKGA were significant since p-value was 0.030 (null hypothesis is

rejected) whereas mDPSO was equivalent to mrOXGA since p-value was 0.979. In terms

of CPU times, the paired t-test on the CPU times confirms that the differences between

mDPSO and mrOXGA were significant since the p-values was 0.040 whereas it was failed

to reject the null hypothesis of being equal difference between mDPSO and RKGA since

the p-value was 0.700. The paired t-test indicates that mDPSO was able to generate lower

objective function values with less CPU times than mrOXGA. On the other hand, mDPSO

yielded much better objective function values with identical CPU times than RKGA.

Finally, the detailed statistics accumulated for the mDPSO algorithm during the runs are

given in Table 8. Briefly, the statistics about the objective function values, CPU times,

number of generations, average number of 2-opts, and average number of DC,

respectively.

4. Conclusions

The mDPSO algorithm proposed employs the destruction and construction procedure of

the iterated greedy algorithm (IG) in its mutation phase. Its performance is enhanced by

employing a population initialization scheme based on an NEH constructive heuristic for

which some speed-up methods previously developed by authors are used for greedy node

insertions. Furthermore, the mDPSO algorithm is hybridized with local search heuristics

to achieve further improvements in the solution quality. To evaluate its performance, the

mDPSO algorithm is tested on a set of benchmark instances with symmetric Euclidean

distances ranging from 51 (11) to 1084 (217) nodes (clusters) from the literature.

Furthermore, the mDPSO algorithm was able to find optimal solutions for a large

percentage of problem instances from a set of test problems in the literature. It was also

able to further improve 4 out of 9 larger instances from the literature. Both solution

quality and computation times are competitive to or even better than the best performing

algorithms from the literature.

5. Acknowledgment

The first author dedicates this paper to Dr. Alice E. Smith from Industrial and Systems

Engineering Department at Auburn University. He is grateful to Dr. Thomas Stützle from

IRIDIA, University of Brussels, for his generosity in providing his IG code. We are also

greatiful to Dr. Gregory Gutin and Daniel Karapetyan from University of London for

preparing the larger GTSP instances. In addition, P. N. Suganthan acknowledges the

financial support offered by the A*Star (Agency for Science, Technology and Research)

under the grant # 052 101 0020.

www.intechopen.com

 Travelling Salesman Problem

114

Instance avgf
 minf

 maxf
 avgt

mint maxt avgg
ming maxg opt2 DC

11EIL51 174.0 174.0 174.0 0.1 0.1 0.2 1.0 1.0 1.0 2.0 7346.6

14ST70 316.0 316.0 316.0 0.1 0.1 0.1 1.0 1.0 1.0 2.0 10387.8

16EIL76 209.0 209.0 209.0 0.1 0.1 0.1 1.0 1.0 1.0 2.0 11026.4

16PR76 64925.0 64925.0 64925.0 0.2 0.2 0.2 1.0 1.0 1.0 2.0 14108.2

20KROA100 9711.0 9711.0 9711.0 0.2 0.2 0.3 1.0 1.0 1.0 2.0 19958.6

20KROB100 10328.0 10328.0 10328.0 0.2 0.2 0.3 1.0 1.0 1.0 2.0 18637.0

20KROC100 9554.0 9554.0 9554.0 0.2 0.2 0.3 1.0 1.0 1.0 2.0 18370.0

20KROD100 9450.0 9450.0 9450.0 0.2 0.2 0.3 1.0 1.0 1.0 2.0 19146.4

20KROE100 9523.0 9523.0 9523.0 0.2 0.2 0.3 1.0 1.0 1.0 2.0 19235.8

20RAT99 497.0 497.0 497.0 0.2 0.2 0.2 1.0 1.0 1.0 2.0 17025.2

20RD100 3650.0 3650.0 3650.0 0.2 0.2 0.2 1.0 1.0 1.0 2.0 18345.6

21EIL101 249.0 249.0 249.0 0.2 0.2 0.2 1.0 1.0 1.0 2.0 15256.0

21LIN105 8213.0 8213.0 8213.0 0.3 0.2 0.3 1.0 1.0 1.0 2.0 20275.6

22PR107 27898.0 27898.0 27898.0 0.2 0.2 0.2 1.0 1.0 1.0 2.0 17978.0

25PR124 36605.0 36605.0 36605.0 0.4 0.3 0.7 1.8 1.0 4.0 2.8 31702.0

26BIER127 72418.0 72418.0 72418.0 0.4 0.3 0.6 1.8 1.0 3.0 2.8 34417.4

28PR136 42570.0 42570.0 42570.0 0.5 0.4 0.8 2.0 1.0 4.0 3.0 39157.2

29PR144 45886.0 45886.0 45886.0 0.5 0.4 0.7 1.4 1.0 3.0 2.4 34640.6

30KROA150 11018.0 11018.0 11018.0 0.5 0.4 0.6 1.2 1.0 2.0 2.2 35139.2

30KROB150 12196.0 12196.0 12196.0 0.6 0.4 1.3 2.2 1.0 7.0 3.2 44800.0

31PR152 51576.0 51576.0 51576.0 1.4 0.5 2.3 6.6 1.0 13.0 7.6 102702.0

32U159 22664.0 22664.0 22664.0 0.6 0.5 1.0 2.2 1.0 5.0 3.2 47115.2

39RAT195 854.0 854.0 854.0 1.0 0.6 1.2 2.6 1.0 4.0 3.6 68885.4

40D198 10557.0 10557.0 10557.0 1.8 0.7 2.5 5.8 1.0 10.0 6.8 123194.6

40KROA200 13406.0 13406.0 13406.0 1.1 0.7 1.3 2.8 1.0 4.0 3.8 76493.0

40KROB200 13111.0 13111.0 13111.0 2.4 1.2 4.1 9.6 3.0 16.0 10.6 169724.4

45TS225 68376.0 68340.0 68400.0 1.7 0.7 3.3 6.2 1.0 16.0 37.2 418896.2

46PR226 64007.0 64007.0 64007.0 0.7 0.7 0.8 1.0 1.0 1.0 2.0 48324.4

53GIL262 1013.0 1013.0 1013.0 4.8 2.0 9.1 16.2 4.0 37.0 17.2 300605.2

53PR264 29549.0 29549.0 29549.0 1.1 1.0 1.4 1.2 1.0 2.0 2.2 68722.2

60PR299 22631.0 22615.0 22635.0 5.7 4.0 7.9 13.8 8.0 29.0 54.8 860095.2

64LIN318 20765.0 20765.0 20765.0 5.7 3.2 9.7 12.4 5.0 30.0 13.4 334602.4

80RD400 6362.4 6361.0 6368.0 13.7 6.7 17.3 18.6 8.0 30.0 29.6 911334.6

84FL417 9651.2 9651.0 9652.0 13.1 11.0 15.7 32.6 24.0 44.0 43.6 829024.2

88PR439 60099.4 60099.0 60100.0 16.2 8.2 24.8 28.4 9.0 48.0 49.4 1173370.8

89PCB442 21690.0 21657.0 21802.0 28.6 8.1 59.6 57.2 10.0 125.0 78.2 1813548.8

99D493 20118.6 20045.0 20271.0 23.2 9.7 39.6 30.4 7.0 67.0 81.4 2240001.4

115RAT575 2419.8 2388.0 2449.0 33.5 20.5 43.4 32.0 18.0 50.0 83.0 2681845.4

131P654 27432.4 27432.0 27433.0 39.8 11.8 54.7 58.0 12.0 83.0 109.0 2740248.6

132D657 22714.6 22543.0 22906.0 65.0 38.1 85.1 61.2 22.0 91.0 112.2 3891504.4

145U724 17422.8 17257.0 17569.0 141.6 64.8 209.1 100.2 38.0 171.0 151.2 6502515.2

157RAT783 3297.2 3283.0 3324.0 114.3 80.2 157.3 70.2 47.0 99.0 121.2 5182433.0

201PR1002 115759.4 114731.0 116644.0 231.5 131.5 325.1 70.2 40.0 125.0 121.2 7972666.2

212U1060 107316.4 106659.0 107937.0 341.8 169.7 514.4 125.4 65.0 208.0 176.4 10209723.6

217VM1084 131716.8 131165.0 132394.0 310.1 133.9 389.8 113.6 36.0 156.0 164.6 9468416.8

Avg 27553.3 27491.5 27617.2 31.2 15.9 44.2 20.1 8.5 33.4 34.0 1304065.5

Table 8. Experimental Data Collected for mDPSO

www.intechopen.com

A Modified Discrete Particle Swarm Optimization Algorithm
for the Generalized Traveling Salesman Problem

115

6. References

G. Laporte, A. Asef-Vaziri, C. Sriskandarajah, Some applications of the generalized
travelling salesman problem, Journal of the Operational Research Society 47 (12)
(1996) 461–1467.

A. Henry-Labordere, The record balancing problem—A dynamic programming solution of a
generalized travelling salesman problem, Revue Francaise D Informatique
DeRecherche Operationnelle 3 (NB2) (1969) 43–49.

C.E. Noon, The generalized traveling salesman problem, Ph.D. thesis, University of
Michigan, 1988.

D. Ben-Arieh, G. Gutin, M. Penn, A. Yeo, A. Zverovitch, Process planning for rotational
parts using the generalized traveling salesman problem, International Journal of
Production Research 41 (11) (2003) 2581–2596.

J.P. Saskena, Mathematical model of scheduling clients through welfare agencies, Journal of
the Canadian Operational Research Society 8 (1970) 185–200.

S.S. Srivastava, S. Kumar, R.C. Garg, P. Sen, Generalized traveling salesman problem
through n sets of nodes, Journal of the Canadian Operational Research Society 7
(1970) 97–101.

G. Laporte, H. Mercure, Y. Nobert, Finding the shortest Hamiltonian circuit through n
clusters: A Lagrangian approach, Congressus Numerantium 48 (1985) 277–290.

G. Laporte, H. Mercure, Y. Nobert, Generalized travelling salesman problem through n-sets
of nodes—The asymmetrical case, Discrete Applied Mathematics 18 (2) (1987) 185–
197.

G. Laporte, Y. Nobert, Generalized traveling salesman problem through n-sets of nodes—
An integer programming approach, INFOR 21 (1) (1983) 61–75.

M. Fischetti, J.J. Salazar-Gonzalez, P. Toth, The symmetrical generalized traveling salesman
polytope, Networks 26(2) (1995) 113–123.

M. Fischetti, J.J. Salazar-Gonza´lez, P. Toth, A branch-and-cut algorithm for the symmetric
generalized travelling salesman problem, Operations Research 45 (3) (1997) 378–
394.

A.G. Chentsov, L.N. Korotayeva, The dynamic programming method in the generalized
traveling salesman problem, Mathematical and Computer Modelling 25 (1) (1997)
93–105.

C.E. Noon, J.C. Bean, A Lagrangian based approach for the asymmetric generalized
traveling salesman problem, Operations Research 39 (4) (1991) 623–632.

J. Renaud, F.F. Boctor, An efficient composite heuristic for the symmetric generalized
traveling salesman problem, European Journal of Operational Research 108 (3)
(1998) 571–584.

J. Renaud, F.F. Boctor, G. Laporte, A fast composite heuristic for the symmetric traveling
salesman problem, INFORMS Journal on Computing 4 (1996) 134–143.

L.V. Snyder and M.S. Daskin, A random-key genetic algorithm for the generalized traveling
salesman problem, European Journal of Operational research 174 (2006) 38-53.

M.F. Tasgetiren, P.N. Suganthan, Q.-K. Pan, A discrete particle swarm optimization
algorithm for the generalized traveling salesman problem, In the Proceedings of the
9th annual conference on genetic and evolutionary computation (GECCO2007),
2007, London, UK, pp.158-167.

www.intechopen.com

 Travelling Salesman Problem

116

M.F. Tasgetiren, P.N. Suganthan, Q.-K. Pan, Y.-C. Liang, A genetic algorithm for the
generalized traveling salesman problem, In the Proceeding of the World Congress
on Evolutionary Computation (CEC2007), 2007, Singapore, p:2382-2389.

M.F. Tasgetiren, P.N. Suganthan, Q.-K. Pan, Y.-C. Liang, A hybrid iterated greedy algorithm
for the generalized traveling salesman problem, 2006, Under second revision by
European Journal of Operational Research.

J. Silberholz, B. Golden, The generalized traveling salesman problem: A new genetic
algorithm approach, In: Edward K. B. et al. (Eds.), Extending the horizons:
Advances in Computing, Optimization and Decision Technologies. Vol. 37,
Springer-Verlag, pp. 165-181.

R.C. Eberhart, J. Kennedy A new optimizer using particle swarm theory. Proceedings of the
Sixth International Symposium on Micro Machine and Human Science, Nagoya,
Japan, 1995. p. 39-43.

J. Kennedy, R. C. Eberhart, and Y. Shi, Swarm Intelligence. San Mateo, Morgan Kaufmann,
CA, USA, 2001.

M. Clerc Particle Swarm Optimization, ISTE Ltd., France, 2006.
Q.-K. Pan, M.F. Tasgetiren, Y.-C. Liang, 2006a, Minimizing total earliness and tardiness

penalties with a common due date on a single machine using a discrete
particle swarm optimization algorithm. In: Proceedings of Ant Colony
Optimization and Swarm Intelligence (ANTS2006), LNCS 4150, Springer-Verlag,
pp. 460-467.

Q.-K. Pan, M.F. Tasgetiren, Y.-C. Liang, 2006b, A discrete particle swarm optimization
algorithm for the permutation flowshop sequencing problem with makespan
criterion. In: Proceedings of the 26th SGAI International Conference on Innovative
Techniques and Applications of Artificial Intelligence (AI-2006), Cambridge, UK,
pp. 19-31.

Q.-K. Pan, M.F. Tasgetiren, Y.-C. Liang, 2007a, A discrete particle swarm optimization
algorithm for the no-wait flowshop scheduling problem with makespan and total
flowtime criteria. Computers and Operations Research 35(9) (2008) 2807-2839.

G. Reinelt, TSPLIB—A traveling salesman problem library, ORSA Journal on Computing 4
(1996) 134–143.

M. Nawaz, E.E. Enscore Jr., I.A. Ham., Heuristic algorithm for the m-machine, n-job flow
shop sequencing problem. OMEGA; 11(1) (1983) 91-95.

R. Ruiz and T. Stutzle, A simple and effective iterated greedy algorithm for the permutation
flowshop scheduling problem, European Journal of Operational Research 174
(2006)38-53.

D. Rosenkrantz, R. Stearns, P. Lewis, Approximate algorithms for the traveling salesman
problem. Proceedings of the 15th Annual Symposium of Switching and Automata
Theory 1974 .33-42.

S. Lin, B.W. Kernighan, An effective heuristic algorithm for the traveling salesman problem
Operations Research, 21 (1973) 498-516.

www.intechopen.com

Traveling Salesman Problem

Edited by Federico Greco

ISBN 978-953-7619-10-7

Hard cover, 202 pages

Publisher InTech

Published online 01, September, 2008

Published in print edition September, 2008

InTech Europe

University Campus STeP Ri

Slavka Krautzeka 83/A

51000 Rijeka, Croatia

Phone: +385 (51) 770 447

Fax: +385 (51) 686 166

www.intechopen.com

InTech China

Unit 405, Office Block, Hotel Equatorial Shanghai

No.65, Yan An Road (West), Shanghai, 200040, China

Phone: +86-21-62489820

Fax: +86-21-62489821

The idea behind TSP was conceived by Austrian mathematician Karl Menger in mid 1930s who invited the

research community to consider a problem from the everyday life from a mathematical point of view. A

traveling salesman has to visit exactly once each one of a list of m cities and then return to the home city. He

knows the cost of traveling from any city i to any other city j. Thus, which is the tour of least possible cost the

salesman can take? In this book the problem of finding algorithmic technique leading to good/optimal solutions

for TSP (or for some other strictly related problems) is considered. TSP is a very attractive problem for the

research community because it arises as a natural subproblem in many applications concerning the every day

life. Indeed, each application, in which an optimal ordering of a number of items has to be chosen in a way that

the total cost of a solution is determined by adding up the costs arising from two successively items, can be

modelled as a TSP instance. Thus, studying TSP can never be considered as an abstract research with no

real importance.

How to reference

In order to correctly reference this scholarly work, feel free to copy and paste the following:

Mehmet Fatih Tasgetiren, Yun-Chia Liang, Quan-Ke Pan and P. N. Suganthan (2008). A Modified Discrete

Particle Swarm Optimization Algorithm for the Generalized Traveling Salesman Problem, Traveling Salesman

Problem, Federico Greco (Ed.), ISBN: 978-953-7619-10-7, InTech, Available from:

http://www.intechopen.com/books/traveling_salesman_problem/a_modified_discrete_particle_swarm_optimiza

tion_algorithm_for_the_generalized_traveling_salesman_pro

© 2008 The Author(s). Licensee IntechOpen. This chapter is distributed

under the terms of the Creative Commons Attribution-NonCommercial-

ShareAlike-3.0 License, which permits use, distribution and reproduction for

non-commercial purposes, provided the original is properly cited and

derivative works building on this content are distributed under the same

license.

