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1. Introduction 

A variant of the traveling salesman problem (TSP) is known as the generalized traveling 
salesman problem (GTSP), where a tour does not necessarily visit all the nodes since the set 

N  of nodes is divided into m  sets or clusters, mNN ,..,1  with NNN m =∪∪ ..1  and 

φ=∩ kj NN  if kj ≠ . The objective is to find a minimum tour length containing at least a 

node from each cluster
j

N . Several applications of the GTSP can be found in postal routing 

[1], computer file processing [2], order picking in warehouses [3], process planning for 
rotational parts [4], and the routing of clients through welfare agencies [5]. Furthermore, 
many other combinatorial optimization problems can be reduced to the GTSP problem [1]. 

TSP is NP-Hard and hence the GTSP is NP-hard because if the set N of nodes is partitioned 

into N  subsets with each containing one node, it results in a TSP.  

Regarding the literature for the GTSP, it was first addressed in [2, 5, 6]. Exact algorithms can 
be found in Laporte et al. [7, 8], Laporte & Nobert [9], Fischetti et al. [10, 11], and others in 
[12, 13]. On the other hand, several worthy heuristic approaches are applied to the GTSP. 
Noon [3] presented several heuristics for the GTSP among which the most promising one is 
an adaptation of the well-known nearest-neighbor heuristic for the TSP. Similar adaptations 
of the farthest-insertion, nearest-insertion, and cheapest-insertion heuristics are proposed in 
Fischetti et al. [11]. GI3 (Generalized Initilialization, Insertion, and Improvement) is one of 
the most sophisticated heuristics, which is developed by Renaud & Boctor [14]. GI3 is a 
generalization of the I3 heuristic presented in Renaud et al. [15]. The application of the 
metaheuristic algorithms specifically to the GTSP is very rare in the litearture. A random O
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key genetic algorithm (RKGA) is proposed by Snyder & Daskin [16], which ignited the 
metaheuristic research on the GTSP. In the RKGA, random key representation is used and 
solutions generated by the RKGA are improved by using two local search heuristics 
namely, 2-opt and “swap” procedures. Note that their “swap” procedure provides a speed-
up method in the search process. It is basically concerned with removing a node j from a 

tour, and inserting all possible nodes k’s from the corresponding cluster in an edge ( )vu,  in 

a tour (i.e., between the node u  and the node v ) with a modified nearest-neighbor criterion. 

They have been separately implemented by embedding them in the level-I improvement and 
level-II improvement procedures.  
For each individual in the population, they store the original (pre-improvement) cost and 
the final cost after improvements have been made. When a new individual is created, they 
compare its pre-improvement cost to the pre-improvement cost of the individual at position 

Np×  in the previous (sorted) population, where [ ]1,0∈p  is a parameter of the algorithm 

and 05.0=p  in Snyder & Daskin [16]. These two improvement procedures are implemented 

as follows: 
1. If the new solution is worse than the pre-improvement cost of this individual, the level-I 

improvement is used by applying one 2-opt exchange and one “swap” procedure 
(assuming a profitable one can be found) and store the resulting individual.  

2. On the other hand, if the new solution is better, the level-II improvement is used by 
applying 2-opt until no profitable 2-opt can be found, then applying “swap” procedures 
until no profitable swaps can be found, and repeat until no improvements have been 
made in a given pass.  

The RKGA focuses on designing the local search to spend more time on improving solutions 
that seem promising in comparison to previous solutions and to spend less time on the 
others. In both level-I and level-II improvement, a ‘‘first-improving’’ strategy is employed 
where the first move of a given type improving the objective value is implemented, rather 
than searching for the best such move before choosing one. Thereafter, Tasgetiren et al. [17, 
18, 19] presented a discrete particle swarm optimization algorithm a genetic algorithm (GA) 
and an iterated greedy algorithm, respectively whereas Silberholz & Golden proposed 
another genetic algorithm in [20] which is denoted as mrOXGA.  
The GSTP may deal with either symmetric where the distance from node j to node k is the 
same as the distance from k to j or asymmetric distances where the distance from node j to 
node k is not the same as the distance from k to j. In this paper, meta-heuristics are presented 
to solve the GTSP on a standard set of benchmark instances with symmetric distances.  
 Particle swarm Optimization (PSO) is one of the most recent evolutionary meta-heuristic 
methods, which receives growing interest from the researchers. It is based on the metaphor 
of social interaction and communication such as bird flocking and fish schooling. PSO was 
first introduced to optimize various continuous nonlinear functions by Eberhart & Kennedy 
[21]. Distinctly different from other evolutionary-type methods such as GA and ES, PSO 
algorithms maintain the members of the entire population through the search procedure. In 
a PSO algorithm, each individual is called a particle, and each particle moves around in the 
multi-dimensional search space with a velocity constantly updated by the particle’s own 
experience, the experience of the particle’s neighbors, or the experience of the whole swarm.  
That is, the search information is socially shared among particles to direct the population 
towards the best position in the search space. The comprehensive surveys of the PSO 
algorithms and applications can be found in Kennedy et al. [22] and Clerc [23]. 
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In this paper, a DPSO algorithm is presented to solve the GTSP on a standard set of 
benchmark instances with symmetric distances. Furthermore, the DPSO algorithm is 
hybridized with local search improvement heuristics to intensify the search process; hence 
to further improve the solution quality.  
The remaining chapter is organized as follows. Section 2 introduces the DPSO algorithm 
and its basic components. Section 3 presents the computational results on benchmark 
problems. Finally, Section 4 summarizes the concluding remarks. 

2. Discrete particle swarm optimization algorithm 

In the standard PSO algorithm, all particles have their position, velocity, and fitness values. 
Particles fly through the m-dimensional space by learning from the historical information 
emerged from the swarm population. For this reason, particles are inclined to fly towards 
better search area over the course of evolution. Let NP denote the swarm size represented as 

[ ]k
NP

kkk xxxx ,...,, 21= . Then each particle in the swarm population has the following attributes: 

A current position represented as [ ]k
im

k
i

k
i

k
i xxxx ,..,, 21= ; a current velocity represented as 

[ ]k
im

k
i

k
i

k
i vvvv ,..,, 21= ; a current personal best position represented as [ ]k

im
k
i

k
i

k
i pppp ,...,, 21= ; and 

a current global best position represented as [ ]k
m

kkk gggg ,...,, 21= . Assuming that the 

function  f  is to be minimized, the current velocity of the jth dimension of the ith particle is 
updated as follows. 

 ( ) ( )11
22

11
11

11 −−−−−− −+−+= k
ij

k
j

k
ij

k
ij

k
ij

kk
ij xgrcxprcvwv  (1) 

where kw  is the inertia weight which is a parameter to control the impact of the previous 

velocities on the current velocity; c1 and c2 are acceleration coefficients and r1 and r2 are 
uniform random numbers between [0,1]. The current position of the jth dimension of the ith 

particle at the generation k is updated using the previous position and current velocity of 

the particle as follows: 

 k
ij

k
ij

k
ij vxx += −1  (2) 

The personal best position of each particle is updated using 

 
( ) ( )
( ) ( )⎪⎩

⎪
⎨
⎧

<
≥

= −

−−

1

11

k
i

k
i

k
i

k
i

k
i

k
ik

i
pfxfifx

pfxfifp
p  (3) 

Finally, the global best position found so far in the swarm population is obtained for 

NPi ≤≤1  as 

 
( ) ( ) ( )

⎪⎩

⎪
⎨
⎧ <

=
−

−

elseg

gfpfifPf
g

k

kk
i

k
i

k
ipk

1

1minminarg
 (4) 

Standard PSO equations cannot be used to generate binary/discrete values since positions 
are real-valued. Pan et al. [24, 25, 26] have presented a DPSO optimization algorithm to 
tackle the binary/discrete spaces, where particles are updated as follows: 
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 ( )( )( )111
12 ,, −−−⊕⊕⊕= kk

i
k
i

k
i gpxFwCRcCRcx ρ  (5) 

The update equation (5) consists of three components: The first component is 

( )1−⊕= k
i

k
i xFwa ρ , which represents the velocity of the particle. In the component 

( )1−⊕= k
i

k
i xFwa ρ , ρF  represents the mutation or perturbation operator with the mutation 

strength of ρ and the mutation probability of w . In other words, a uniform random number 

r  is generated between 0 and 1. If r  is less than w  then the mutation operator is applied to 

generate a perturbed particle by ( )1−= k
i

k
i xFa ρ , otherwise current particle is mutated as 

( )1−= k
i

k
i xinserta . In addition, the mutation strength d  is the degree of perturbation, i.e., 

single insert move or double insert move or some constructive heuristics generating distinct 

solutions and so on. In this paper, we employ the destruction and construction (DC) 

procedure of the IG algorithm in the mutation phase. 

The second component is ( )1
1 , −⊕= k

i
k
i

k
i paCRcb , which is the “cognition” part of the particle 

representing the private thinking of the particle itself. In the component 

( )1
1 , −⊕= k

i
k
i

k
i pbCRcb , CR  represents the crossover operator with the probability of 1c . 

Note that k
ia  and 1−k

ip will be the first and second parents for the crossover operator, 

respectively. It results either in ( )1, −= k
i

k
id

k
i paFb  or in k

i
k
i ab =  depending on the choice of a 

uniform random number. 

The third component is ( )kk
i

k
i gbCRcx ,2 ⊕= , which is the “social” part of the particle 

representing the collaboration among particles. In the component ( )1
2 , −⊕= kk

i
k
i gbCRcx , 

CR  represents the crossover operator with the probability of 2c . Note that k
ib  and 1−kg  

will be the first and second parents for the crossover operator, respectively. It results either 

in ( )1, −= kk
i

k
i gbCRx  or in k

i
k
i bx =  depending on the choice of a uniform random number. 

The basic idea behind the DPSO algorithm is to provide information exchange amongst the 

population members, personal best solutions and the global best solution. 

However, combining the particle with both personal best and then global best solution 

through crossover operator may cause a particle losing some genetic information. Instead, 

we propose a modification to our DPSO algorithm in this paper utilizing either the “social” 

or “cognitive” genetic information during the particle update process. It is achieved as 

follows: 

 
⎪⎩

⎪
⎨
⎧ <

= −

−

elsegaCR

crifpaCR
x

kk
i

k
i

k
ik

i
),(

),(
1

1
1

 (6) 

In other words, after mutation operator, the particle is updated by recombining the 

temporary mutated individual with either the personal best or global best solution 

depending on a search directing probability of 1c . For the DPSO algorithm, the gbest (global 

neighborhood) model of Kennedy et al. [22] was followed. The pseudo code of the DPSO 

algorithm with the local search is given in Fig. 1. 
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Procedure DPSO 

Initialize parameters 

Initialize particles of population 

Evaluate particles of population 

Apply local search to population individuals   %Optional 

While (not termination) Do  

       Find personal best 

       Find global best 

       Update particles of population 

       Evaluate particles of population 

       Apply local search to population individuals   %Optional 

Endwhile 

Return Global best 

Endprocedure 

Fig. 1.  Generic Outline of DPSO Algorithm with Local Search. 

2.1 Solution representation 
We employ a path representation for the GTSP in this paper. In the path representation, 
each consecutive node is listed in order. An advantage of this representation is due to its 
simplicity in objective function evaluation since the total cost of a path can easily be 
calculated by summing the costs (distances) of each pair of adjacent nodes. However, a 
distadvantge of this representation is due to the fact that there is no quarantee that a 
randomly selected solution will be a valid GTSP tour because there is no quarantee that 
each cluster is represented exactly once in the path without some repair procedures. In order 
to handle the decision of which node should be chosen from a given cluster in the GTSP 
solution, we include both cluster and tour information in solutions. In other words, a GTSP 
solution consists of both an array of permutation of clusters ( jn ) and an array of nodes ( jπ ) 

to be visited in m dimensions/clusters. In this way, each solution is guaranteed to be a GTSP 
solution. The solution representation together with the necessary distance information for 

calculating the objective function value ( )xF  of the solution x  is illustrated in Table 1 where 

1+jj
d ππ shows the distance from node jπ  to node 1+jπ . The initial solution is constructed in 

such a way that first a permutation of clusters is determined randomly, then since each 
cluster contains one or more nodes, a tour is established by randomly choosing a single 
node from each corresponding cluster. By including cluster information in solution 
representation, which node must be visited in a tour can be determined easily with either a 
random selection or a systematic way. For example, in the pair ( )jjn π, , jn stands for the 

cluster in the jth dimension whereas jπ  represents the node to be visited from cluster jn . 
 

 j 1 2 ... m-1 m 1 

jn  1n  2n  ... 1−mn  mn  1n   
x  

jπ  
1π  2π  ... 1−mπ  mπ  1π  

 1+jj
d ππ  

21ππd  
32ππd  ... mm

d ππ 1−
 

1ππm
d   

( )=xF  =+∑
= + 11

1 ππππ m

m

j
jj

dd +
21ππd  +

32ππd  ... +
− mm

d ππ 1 1ππm
d   

Table 1. Solution Representation 
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As illustrated in Table 1, the objective function value of a solution x  is the total tour length 

and given by  

 ( ) ∑ +=
−

=
+

1

1
11

m

j
mjj

ddxF ππππ  (1) 

For example, consider a GTSP instance of 11EIL51 from TSPLIB library [27], which has fifty 

one nodes divided into eleven clusters. So the clusters are { }41,40,191 =N , { }36,35,20,32 =N , 

{ }43,243 =N , { }39,334 =N , { }5 11,12,27,32, 46,47,51 ,N =  { }6 2,16,21, 29,34,50 ,N =  

{ }7 8, 22,26, 28,31 ,N =  { }8 13,14,18,25 ,N =  { }9 4,15,17,37, 42, 44,45 ,N =  

{ }48,23,7,6,110 =N , and { }49,38,30,10,9,511 =N . Table 2 illustrates a random GTSP solution 

with the distance information 
1+jj

d ππ  and the objective function ( )xF  for the instance 

11EIL51. In addition, the whole distance matrix and other detailed information about the 
instance 11EIL51 can be found in http://www.ntu.edu.sg/home/EPNSugan. 
 

 j 1 2 3 4 5 6 7 8 9 10 11 1 

jn  10 5 7 2 6 11 4 9 1 8 3 10  
x  

jπ  1 51 22 20 50 10 33 44 41 25 24 1 

 1+jj
d ππ  

51,1d 22,51d 20,22d 50,20d 10,50d 33,10d 44,33d 41,44d 25,41d 24,25d  1,24d   

( )xF  201  14 21  15  21  17  12  17  20  21  14  29   

Table 2. GTSP Solution for Instance 11EIL51 

As to the construction of the initial random solution as mentioned before, first a random 
permutation of clusters is established; then a corresponding node is randomly chosen from 

each cluster to establish the tour. To be more specific, for example, in Table 2, 52 =n  refers 

to the cluster 5N , and the corresponding node 512 =π  refers to the node 51 chosen 

randomly from the cluster 5N .  

2.2 NEH heuristic 

Due to the availability of the insertion methods that we have already proposed in [17, 18, 
19], it is possible to apply the NEH heuristic of Nawaz et al. [28] to the GTSP. Without 
considering cluster information for simplicity, the NEH heuristic for the GTSP can be 
summarized as follows: 
1. Determine an initial tour of nodes. Let this tour be x .   

2. The first two nodes (that is, 1π  and 2π ) are chosen and two possible partial tours of 

these two nodes are evaluated. Note that since a tour must be Hamiltanion cycle, partial 
tours will be evaluated with the first node being the last node, too. As an example, 

partial tours, ( )121 ,, πππ   and  ( )212 ,, πππ  are evaluated. 

3. Repeat the following steps until all nodes are inserted. In the kth step, node kπ  at 

position k  is taken and tentatively inserted into all the possible k  positions of the 

partial tour that are already partially completed. Select these k  tentative partial tours 
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that results in the minimum objective function value or a cost function suitably 
predefined. 

To picture out how the NEH heuristic can be adopted for the GTSP, consider a solution 

with five nodes as { }5,2,4,1,3=x . The following example illustrates the implementation of 

the NEH heuristic for the GTSP: 

1. Current solution is { }3,1,4,2,5 .x =  

2. Evaluate the first two nodes as follows: { }3,1,3  and { }1,3,1 . Assume that the first partial 

tour has a better objective function value than the second one. So the current partial 

tour will be { }3,1 .  

3. Insertions: 

• Insert node 4 into three possible positions of the current partial tour as follows: 

{ }4,1,3,4 , { }3,1,4,3  and { }3,4,1,3 . Assume that the best objective function value is with 

the partial tour { }3,1,4,3 . So the current partial tour will be { }1,4,3 .  

• Next, insert node 2 into four possible positions of the current partial tour as 

follows: { }2,1,4,3,2 , { }3,1,4,2,3 , { }3,1,2,4,3  and { }3,2,1,4,3 . Assume that the best 

objective function value is with the partial tour { }3,1,4,2,3 . So the current partial 

tour will be { }1,4,2,3 .  

• Finally, insert node 5 into five possible positions of the current partial tour as 

follows: { }5,1,4,2,3,5 , { }3,1,4,2,5,3 , { }3,1,4,5,2,3 , { }3,1,5,4,2,3  and { }3,5,1,4,2,3 . Assume 

that the best objective function value is with the partial tour { }3,1,5,4,2,3 . So the final 

complete tour will be { }1,5,4,2,3=x . 

2.3 Destruction and construction procedure 

We employ the destruction and construction (DC) procedure of the iterated greedy (IG) 

algorithm in [29] in the DPSO algorithm. In the destruction step, a given number d  of 

nodes, randomly chosen and without repetition, are removed from the solution. This results 

in two partial solutions. The first one with the size d  of nodes is called Rx  and includes the 

removed nodes in the order where they are removed. The second one with the size dm −  of 

nodes is the original one without the removed nodes, which is called Dx . It should be 

pointed out that we consider each corresponding cluster when the destruction and 
construction procedures are carried out in order to keep the feasibility of the GTSP tour. 
Note that the perturbation scheme is embedded in the destruction phase where p  nodes 

from Rx  are randomly chosen without repetition and they are replaced by some other nodes 

from the corresponding clusters.  
The construction phase requires a constructive heuristic procedure. We employ the NEH 

heuristic described in the previous section. In order to reinsert the set Rx  into the 

destructed solution Dx  in a greedy manner, the first node R
1π  in Rx  is inserted into all 

possible 1+− dm positions in the destructed solution Dx  generating 1+− dm  partial 

solutions. Among these 1+− dm  partial solutions including node R
1π , the best partial 

solution with the minimum tour length is chosen and kept for the next iteration. Then the 
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second node R
2π  in  Rx  is considered and so on until Rx  is empty or a final solution is 

obtained. Hence Dx  is again of size m .  

To figure out how DC can be adopted for the GTSP, consider a solution with five nodes as 

{ }5,2,4,1,3=x . Again, we do not consider cluster information for simplicity: 

1.    Current solution is { }3,1,4,2,5 .x =  

2.   Remove nodes 1 and 5 randomly from the current solution to establish two partial 

solutions as { }2,4,3=Dx  and { }5,1=Rx . 

3.   Insert node 1 into  four possible positions of the current partial tour { }2,4,3=Dx  as 

follows: { }1,2,4,3,1 , { }3,2,4,1,3 , { }3,2,1,4,3  and { }3,1,2,4,3 . Assume that the best 

objective function value is with the partial tour { }3,2,1,4,3 . So the current partial tour 

will be { }2,1,4,3=Dx .  

4.    Next, insert node 5 into five possible positions of the current partial tour { }2,1,4,3=Dx  

as follows: { }5,2,1,4,3,5 , { }3,2,1,4,5,3 , { }3,2,1,5,4,3 , { }3,2,5,1,4,3  and { }3,5,2,1,4,3 . Assume 

that the best objective function value is with the final tour { }5,2,1,4,3,5 . So the final 

complete tour will be { }2,1,4,3,5=x .  

In order to highlight the difference between the NEH insertion and the one proposed in by 
Rosenkrantz et al. [30], we give the same example as follows:  

1.     Current solution is { }5,2,4,1,3=x  

2.   Revove nodes 1 and 5 randomly from the current solution to establish two partial 

solutions as { }2,4,3=Dx  and { }5,1=Rx . 

3.   Insert node 1 into two possible positions of the current partial tour { }2,4,3=Dx  as 

follows: { }3,2,4,1,3 and { }3,2,1,4,3  because there are only two edges in Dx . Assume that 

the best objective function value is with the partial tour { }3,2,1,4,3 . So the current partial 

tour will be { }2,1,4,3=Dx .  

4.    Next, insert node 5 into three possible positions of the current partial tour { }2,1,4,3=Dx  

as follows: { }2,1,4,5,3 , { }3,2,1,5,4,3  and { }3,2,5,1,4,3  because there are only three edges in 
Dx . Assume that the best objective function value is with the final tour { }2,1,4,5,3 . So the 

final complete tour will be { }3,2,1,4,5,3  

As seen in the examples above, the NEH heuristic considers ( )1+n  insertions at each step 

whereas the Rosenkrantz et al. [30] makes ( )1−n  insertions in order to find a complete tour. 

2.4 Insertion methods 
The following insertion methods are proposed by the authors in [19]. These greedy speed-

up methods are based on the insertion of the pair ( )R

k

R

kn π,  into 1+− dm possible positions 

of a partial or destructed solution xd. Note that as an example only a single pair is 
considered to be removed from the current solution, perturbed with another node from the 
same cluster and reinserted into the partial solution. For this reason, the destruction size and 
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the perturbation strength are equal to one (i.e., 1=== kdρ ). As a matter of fact, the 

insertion of node 
R

kπ  into 1−− dm  possible positions is actually proposed by Rosenkrantz 

et al. [30] for the TSP. Snyder & Daskin [16] have adopted it for the GTSP. It is based on the 

removal and the insertion of node R

kπ  in an edge ( )D

v

D

u ππ ,  of a partial tour. However, it 

avoids the insertion of node 
R

kπ  on the first and the last position of any given partial tour. 

We illustrate these possible three insertions using the partial solution Dx  of the instance 

11EIL51 having eleven clusters and nodes. Suppose that the pair ( )51,5  is removed from the 

solution in Table 1; perturbed with node 27 from the same cluster 5N . So the current partial 

solution after removal and the pair to be reinserted are given in Tables 3A and 3B, 
respectively.  
 

 j 1 2 3 4 5 6 7 8 9 10 1  
D
jn  10 7 2 6 11 4 9 1 8 3 10  

Dx  D
jπ  1 22 20 50 10 33 44 41 25 24 1 

 

 D
j

D
j

d
1+ππ 22,1d 20,22d 50,20d 10,50d 33,10d 44,33d 41,44d 25,41d 24,25d  1,24d    

( )DxF  173  7  15  21  17  12  17  20  21  14  29    

Table 3A. Current Partial Solution 

 

 k 1 
R
kn  5  

Rx R
kπ  27

Table 3B. Partial Solution to Be Inserted 

A. Insertion of pair  ( ),R R

k k
n π  in the first position of the partial solution 

a. 
1

Remove D D
m

d
π π

=  

b. 
1

Add R D D R
k m k

d d
π π π π

= +  

c. ( ) ( ) Add RemoveDF x F x= + −  

Example A: 

1

Remove D D
m

d
π π

=  

10 1

Remove D Dd
π π

=  

24,1Remove d=  

1

Add R D D R
k m k

d d
π π π π

= +  

1 1 10 1

Add R D D Rd d
π π π π

= +  

27,1 24,27Add d d= +  

( ) ( ) Add RemoveDF x F x= + −  
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( ) 1,2427,241,271,2424,2525,4141,4444,3333,1010,5050,2020,2222,1 dddddddddddddxF −+++++++++++=  

( ) 27,241,2724,2525,4141,4444,3333,1010,5050,2020,2222,1 dddddddddddxF ++++++++++=  

 

 j 1 2 3 4 5 6 7 8 9 10 11 1 

jn  5 10 7 2 6 11 4 9 1 8 3 5  
x  

jπ  27 1 22 20 50 10 33 44 41 25 24 27 

 1+jj
d ππ  

1,27d 22,1d 20,22d 50,20d 10,50d  33,10d 44,33d 41,44d 25,41d 24,25d  27,24d   

( )xF  174  8  7  15  21  17  12  17  20  21  14  22   

Table 3C. Insertion of pair ( ) ( )27,5, =R
k

R
kn π  into the first position of partial solution 

B. Insertion of pair  ( ),R R

k k
n π  in the last position of partial solution 

a. 
1

Remove D D
m

d
π π

=  

b. 
1

Add D R R D
m k k

d d
π π π π

= +  

c. ( ) ( ) Add RemoveDF x F x= + −  

Example B: 
 

1

Remove D D
m

d
π π

=  

10 1

Remove D Dd
π π

=  

24,1Remove d=  

1

Add D R R D
m k k

d d
π π π π

= +  

10 1 1 1

Add D R R Dd d
π π π π

= +  

24,27 27,1Add d d= +  

( ) ( ) Add RemoveDF x F x= + −  

( ) 1,241,2727,241,2424,2525,4141,4444,3333,1010,5050,2020,2222,1 dddddddddddddxF −+++++++++++=  

( ) 1,2727,2424,2525,4141,4444,3333,1010,5050,2020,2222,1 dddddddddddxF ++++++++++=  

 

 j 1 2 3 4 5 6 7 8 9 10 11 1 

jn  10 7 2 6 11 4 9 1 8 3 5 10  
x  

jπ  1 22 20 50 10 33 44 41 25 24 27 1 

 1+jj
d ππ  

22,1d 20,22d 50,20d 10,50d 33,10d 44,33d 41,44d 25,41d 24,25d 27,24d  1,27d   

( )xF  174  7  15  21  17  12  17  20  21  14  22  8   

Table 3D. Insertion of the pair ( ) ( )27,5, =R
k

R
kn π  into the last position of partial solution 
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Note that even though both tours generated in the examples A and B are different, the 

insertion of pair  ( ) ( )27,5, =R
k

R
kn π  into the first and last positions of the partial solution Dx  is 

equivalent to each other in terms of distance information that they have. In addition, note 
that both solutions are optimal. 

C. Insertion of pair ( ),R R

k k
n π  between the edge  ( ),D D

u u
n π  and ( ),D D

v v
n π  

a. Remove D D
u v

d
π π

=  

b. Add D R R D
u k k v

d d
π π π π

= +  

c. ( ) ( ) Add RemoveDF x F x= + −  

Example C: 

6=u  

7=v  

Remove D D
u v

d
π π

=  

6 7

Remove D Dd
π π

=  

33,44Remove d=  

Add D R R D
u k k v

d d
π π π π

= +  

6 1 1 7

Add D R R Dd d
π π π π

= +  

33,27 27,44Add d d= +  

( ) ( ) Add RemoveDF x F x= + −  

( ) 44,3344,2727,331,2424,2525,4141,4444,3333,1010,5050,2020,2222,1 dddddddddddddxF −+++++++++++=  

( ) 44,2727,331,2424,2525,4141,4433,1010,5050,2020,2222,1 dddddddddddxF ++++++++++=  

 

 j 1 2 3 4 5 6 7 8 9 10 11 1 

jn  10 7 2 6 11 4 5 9 1 8 3 10  
x  

jπ  1 22 20 50 10 33 27 44 41 25 24 1 

 1+jj
d ππ  

22,1d 20,22d 50,20d 10,50d 33,10d 27,33d 44,27d 41,44d 25,41d 24,25d  1,24d   

( )xF  223  7  15  21  17  12  41  33  20  21  14  22   

Table 3E. Insertion of the pair ( ) ( )27,5, =R
k

R
kn π between pairs ( ) ( )33,4, =D

u
D
un π  and ( ) ( )44,9, =D

v
D
vn π . 

It is important to note that above insertion methods, especially insertion to the first and the 
last nodes, make the NEH heuristic applicable in the destruction and construction procedure 
to establish a final complete solution. For this reason, the insertion methods given above are 
neccessary for an IG algorithm to solve the GTSP. 

2.5 Hybridization with local search 
The hybridization of DPSO algorithm with local search heuristics is trivial. It can be 
achieved through the improvement of each solution generated in the construction phase by 
some local search methods. As improvement heuristics, a simple local search (LS) method 
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and the 2-opt heuristic [31] were separately applied to the reconstructed solution. Note that 
the 2-opt heuristic is employed with the first improvement strategy in this study. Regarding 
the LS heuristic, we choose a simple one that is again based on the DC procedure. In other 
words, the destruction and construction procedures with the destruction size and the 
perturbation strength equal to one (i.e., 1== dρ ) are used in the LS procedure whereas the 

LS size is fixed at 5×= nclusterw in order to intensify the search on the local minima. We will 
denote the hybrid DPSO algorithm with both local search improvement heuristics as 
mDPSO from now on. The pseudo code of the LS procedure is given in Fig. 2 whereas the 
proposed mDPSO algorithm is given in Fig. 3.  
 

( )xGTSPLSprocedure _  

 1:=h  

 ( ) dowhwhile ≤  

  ( )xDCx =:*     % d=1 and p=1  

  ( ) ( )( ) thenxfxfif ≤*  

          *: xx =  

          1:=h     

   else  

          1: += hh  

   endif  

 endwhile  

 xreturn  

reendprocedu  

Fig. 2. Local Search Employed 

_procedure DPSO GTSP  

Set 1c , w , NP , maxt  

1000/: ntGetTickCout A =  

( )00
2

0
1 ,..,, NPxxx=Π   %NEH_RANDOM population individuals and evaluate 

( )
NPi

ixf
,..,2,1:

0

=
    %Evaluate population 

NPi
ii xp
,..,2,1:

00

=
=    %Initialize bestsofar population 

( )
NPi

ii xopttwox
,..,2,1

00 _
=

=    %Apply two-opt 

( )
NPi
ii xLSx

,..,2,1

00

=
=    %Apply LS local search 

( ){ }
NPi

ixfg
,..,2,1

00 minarg
=

=   %Find gbest solution 

0: gxB =     %Set bestsofar  

1:=k  

1000/: ntGetTickCoutB =  
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( )( ) dotttwhile AB max<−  

            ( )
NPi

k
id

k
i xDCwa

,..,2,1

1

=

−⊕= ρ   %Temporary population individual by destruction and 

                                                                  construction 

            ( ) ( ){ }
NPi

k
iBB afxfx

,..,2,1:

,minarg
=

=  %Update bestsofar 

           ( )
NPi

kkk
i

k
i gpaCRcx

,..,2,1:

11
1 ,,

=

−−⊕=  %Update population individual by Eq. [6] 

           ( )
NPi

k
ixf

,..,2,1:=
   %Evaluate population 

            ( ) ( ){ }
NPi

k
i

k
i

k
i pfxfp

,..,2,1:

1,minarg
=

−=    %Update personal best 

            ( )
NPi

k
i

k
i xopttwox

,..,2,1

_
=

=   %Apply two-opt 

            ( )
NPi

k
i

k
i xLSx

,..,2,1=
=   %Apply LS local search 

            ( ) ( ){ }
NPi

k
i

k
i

k
i gfpfg

,..,2,1:

1,minarg
=

−=  %Update global best solution 

            ( ) ( ){ }k
BB gfxfx ,minarg=  %Update bestsofar 

1: += kk  

endwhile    

Bxreturn  

reendprocedu  

Fig. 3. DPSO Algorithm with Improvement Heuristics.   

2.6 Crossover operator 

In this paper, the traditional two-cut crossover operator is used in the mDPSO algorithm. 
The two-cut  crossover operator is is illustrated in Table 4.  
 

j 1 2 3 4 5 6 7 8 9 10 11 1 

j
n  10 5 7 2 6 4 11 9 8 1 3 10 

 

1P  
j

π 1 51 22 20 50 33 10 44 25 41 24 1 

j
n  10 6 7 11 5 1 2 9 8 4 3 10  

2P  
j

π 1 50 22 10 27 41 20 44 25 33 24 1 

j 1 2 3 4 5 6 7 8 9 10 11 1 

j
n  10 7 5 1 6 4 11 2 9 8 3 10 

 

1O  
j

π 1 22 27 41 50 33 10 20 44 25 24 1 

Table 4.  Two-Cut Crossover Operator. 

2.7 Insert mutation operator 

The insert mutation operator is basically related to first determining a cluster randomly, 
then removing the corresponding node from the tour of the individual, and replacing that 
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particular node with another node from the same cluster randomly. As shown in Table 5, 

the cluster 52 =n  is randomly chosen and its corresponding node 512 =π  is replaced by the 

node 272 =π  from the same cluster 52 =n using the GTSP instance of 11EIL51.  
 

 j 1 2 3 4 5 6 7 8 9 10 11 1 

j
n  10 5 7 2 6 4 11 9 8 1 3 10  

x  
j

π 1 51 22 20 50 33 10 44 25 41 24 1 

j 1 2 3 4 5 6 7 8 9 10 11 1 

j
n  10 5 7 2 6 4 11 9 8 1 3 10  

x  
j

π 1 27 22 20 50 33 10 44 25 41 24 1 

Table 5.  Insert Mutation Operator 

3. Computational results 

We consider RKGA and mrOXGA for comparison in this paper since they produced some 
of the best heuristic results for the GTSP. The first benchmark set contains between 51 (11) 
and 442 (89) nodes (clusters) and the optimal objective function value for each of the 
problems is available. The second benchmark set contains between 493 (99) and 1084 (217) 
nodes. Since optimal solutions are not available for larger instances, we compare our results 
to Silberholz & Golden [20]. The DPSO algorithm was coded in Visual C++ and run on an 
Intel P IV 3.20GHz with 512MB memory. The population size was fixed at 30. The initial 
population is constructed randomly and then the NEH heuristic was applied to each 
random solution. Destruction size and perturbation strength were taken as 5 and 3, 
respectively. The traditional two-cut crossover is employed where the search direction and 

mutation probabilities are taken as 5.01 =c  and 9.0=w , respectively. The DPSO algorithm 

was terminated when the best so far solution was not improved after 50 consecutive 
generations. Five runs were carried out for each problem instance to report the statistics 

based on the relative percent deviations ( Δ ) from optimal solutions. For the computational 

effort consideration, avgt  denotes average CPU time in seconds to reach the best solution 

found so far during the run, i.e., the point of time that the best so far solution does not 

improve thereafter. optn  stands for the number of optimal solutions found by each 

algorithm whereas avgf  represents the average objective function values out of five runs.  

We compare the mDPSO algorithm to two genetic algorithms, namely, RKGA by Snyder & 
Daskin [16] and mrOXGA by Silberholz & Golden [20] where RKGA is re-implemented 
under the same machine environment. Table 6 summarizes the solution quality in terms of 
relative percent deviations from the optimal values and CPU time requirements for all three 
algorithms. Note that our machine has a similar speed as Silberholz & Golden [20]. A two-
sided paired t-test which compares the results on Table 6 with a null hypothesis that the 
algorithms were identical generated p-values of 0.167 and 0.009 for mDPSO vs. mrOXGA 
and mDPSO vs. RKGA, suggesting near-identical results between mDPSO and mrOXGA. 
On the other hand, the paired t-test confirms that the differences between mDPSO and 
RKGA were significant on the behalf of mDPSO subject to the fact that RKGA was 
computationally less expensive than both mDPSO and mrOXGA when solely the optimal 
instances are considered. 
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 mDPSO mrOXGA RKGA 

Instance optn  avgΔ  avgt  avgΔ  avgt  avgΔ  avgt  

11EIL51 5 0.00 0.10 0.00 0.26 0.00 0.08 

14ST70 5 0.00 0.12 0.00 0.35 0.00 0.07 

16EIL76 5 0.00 0.13 0.00 0.37 0.00 0.11 

16PR76 5 0.00 0.17 0.00 0.45 0.00 0.16 

20KROA100 5 0.00 0.24 0.00 0.63 0.00 0.25 

20KROB100 5 0.00 0.23 0.00 0.60 0.00 0.22 

20KROC100 5 0.00 0.23 0.00 0.62 0.00 0.23 

20KROD100 5 0.00 0.24 0.00 0.67 0.00 0.43 

20KROE100 5 0.00 0.23 0.00 0.58 0.00 0.15 

20RAT99 5 0.00 0.21 0.00 0.50 0.00 0.24 

20RD100 5 0.00 0.23 0.00 0.51 0.00 0.29 

21EIL101 5 0.00 0.19 0.00 0.48 0.00 0.18 

21LIN105 5 0.00 0.25 0.00 0.60 0.00 0.33 

22PR107 5 0.00 0.23 0.00 0.53 0.00 0.20 

25PR124 5 0.00 0.41 0.00 0.68 0.00 0.26 

26BIER127 5 0.00 0.44 0.00 0.78 0.00 0.28 

28PR136 5 0.00 0.52 0.00 0.79 0.16 0.36 

29PR144 5 0.00 0.46 0.00 1.00 0.00 0.44 

30KROA150 5 0.00 0.47 0.00 0.98 0.00 0.32 

30KROB150 5 0.00 0.60 0.00 0.98 0.00 0.71 

31PR152 5 0.00 1.38 0.00 0.97 0.00 0.38 

32U159 5 0.00 0.64 0.00 0.98 0.00 0.55 

39RAT195 5 0.00 0.99 0.00 1.37 0.00 1.33 

40D198 5 0.00 1.77 0.00 1.63 0.07 1.47 

40KROA200 5 0.00 1.11 0.00 1.66 0.00 0.95 

40KROB200 5 0.00 2.44 0.05 1.63 0.01 1.29 

45TS225 2 0.05 1.75 0.14 1.71 0.28 1.09 

46PR226 5 0.00 0.74 0.00 1.54 0.00 1.09 

53GIL262 5 0.00 4.76 0.45 3.64 0.55 3.05 

53PR264 5 0.00 1.11 0.00 2.36 0.09 2.72 

60PR299 1 0.07 5.66 0.05 4.59 0.16 4.08 

64LIN318 5 0.00 5.72 0.00 8.08 0.54 5.39 

80RD400 4 0.02 13.66 0.58 14.58 0.72 10.27 

84FL417 4 0.00 13.06 0.04 8.15 0.06 6.18 

88PR439 3 0.00 16.15 0.00 19.06 0.83 15.09 

89PCB442 3 0.15 28.59 0.01 23.43 1.23 11.74 

Avg 4.64 0.01 2.92 0.04 2.99 0.13 2.00 

Machine P IV 3.20 GHz P IV 3.00 GHz 
 

Table 6. Comparison for Optimal Instances  
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 mDPSO mrOXGA RKGA 

Instance avgf  avgt  avgf  avgt  avgf  avgt  

11EIL51 174.0 100.0 174.0 259.2 174.0 78.2 

14ST70 316.0 120.0 316.0 353.0 316.0 65.6 

16EIL76 209.0 130.0 209.0 369.0 209.0 106.4 

16PR76 64925.0 170.0 64925.0 447.0 64925.0 156.2 

20KROA100 9711.0 240.0 9711.0 628.2 9711.0 249.8 

20KROB100 10328.0 230.0 10328.0 603.2 10328.0 215.6 

20KROC100 9554.0 230.0 9554.0 621.8 9554.0 225.0 

20KROD100 9450.0 240.0 9450.0 668.8 9450.0 434.4 

20KROE100 9523.0 230.0 9523.0 575.0 9523.0 147.0 

20RAT99 497.0 210.0 497.0 500.0 497.0 243.8 

20RD100 3650.0 230.0 3650.0 506.2 3650.0 290.8 

21EIL101 249.0 190.0 249.0 478.2 249.0 184.6 

21LIN105 8213.0 250.0 8213.0 603.2 8213.0 334.4 

22PR107 27898.0 230.0 27898.6 534.4 27898.6 I97.0 

25PR124 36605.0 410.0 36605.0 678.0 36605.0 259.0 

26BIER127 72418.0 440.0 72418.0 784.4 72418.0 275.2 

28PR136 42570.0 520.0 42570.0 793.8 42639.8 362.8 

29PR144 45886.0 460.0 45886.0 1003.2 45887.4 437.6 

30KROA150 11018.0 470.0 11018.0 981.2 11018.0 319.0 

30KROB150 12196.0 600.0 12196.0 978.4 12196.0 712.4 

31PR152 51576.0 1380.0 51576.0 965.4 51576.0 381.2 

32U159 22664.0 640.0 22664.0 984.4 22664.0 553.2 

39RAT195 854.0 990.0 854.0 1374.8 854.0 1325.0 

40D198 10557.0 1770.0 10557.0 1628.2 10564.0 1468.6 

40KROA200 13406.0 1110.0 13406.0 1659.4 13406.0 950.2 

40KROB200 13111.0 2440.0 13117.6 1631.4 13112.2 1294.2 

45TS225 68376.0 1750.0 68435.2 1706.2 68530.8 1087.4 

46PR226 64007.0 740.0 64007.0 1540.6 64007.0 1094.0 

53GIL262 1013.0 4760.0 1017.6 3637.4 1018.6 3046.8 

53PR264 29549.0 1110.0 29549.0 2359.4 29574.8 2718.6 

60PR299 22631.0 5660.0 22627.0 4593.8 22650.2 4084.4 

64LIN318 20765.0 5720.0 20765.0 8084.4 20877.8 5387.6 

80RD400 6362.4 13660.0 6397.8 14578.2 6407.0 10265.6 

84FL417 9651.2 13060.0 9654.6 8152.8 9657.0 6175.2 

88PR439 60099.4 16150.0 60099.0 19059.6 60595.4 15087.6 

89PCB442 21690.0 28590.0 21658.2 23434.4 21923.0 11743.8 

99D493 20118.6 23193.8 20117.2 35718.8 20260.4 14887.8 

115RAT575 2419.8 33521.6 2414.8 48481.0 2442.4 46834.4 

131P654 27432.4 39847.0 27508.2 32672.0 27448.4 46996.8 

132D657 22714.6 64956.2 22599.0 132243.6 22857.6 58449.8 

145U724 17422.8 141587.8 17370.6 161815.2 17806.2 59625.2 

157RAT783 3297.2 114315.8 3300.2 152147.0 3341.0 89362.4 

201PR1002 115759.4 231546.6 114582.2 464356.4 117421.2 332406.2 

212U1060 107316.4 341759.6 108390.4 594637.4 110158.0 216999.8 

217VM1084 131716.8 310097.4 131884.6 562040.6 133743.4 390115.6 

Overal Avg 27553.3 31245.7 27554.3 50930.4 27741.3 30169.1 

Table 7. Comparision to Silberholz & Golden [20] 
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Silberholz & Golden [20] provided larger problem instances ranging from 493 (99) to 1084 

(217) nodes (clusters) where no optimal solutions are available. However, they provided the 

results of mrOXGA and RKGA. We compare the mDPSO results to those presented in 

Silberholz & Golden [20]. As seen in Table 7, mDPSO generated consistently better results 

than both RKGA and mrOXGA in terms of solution quality even if the larger instances 

are considered. In particular, 4 out 9 larger instances are further improved by mDPSO. 

The paired t-test on the objective function values on Table 7 confirms that the differences 

between mDPSO and RKGA were significant since p-value was 0.030 (null hypothesis is 

rejected) whereas mDPSO was equivalent to mrOXGA since p-value was 0.979. In terms 

of CPU times, the paired t-test on the CPU times confirms that the differences between 

mDPSO and mrOXGA were significant since the p-values was 0.040 whereas it was failed 

to reject the null hypothesis of being equal difference between mDPSO and RKGA since 

the p-value was 0.700.  The paired t-test indicates that mDPSO was able to generate lower 

objective function values with less CPU times than mrOXGA. On the other hand, mDPSO 

yielded much better objective function values with identical CPU times than RKGA. 

Finally, the detailed statistics accumulated for the mDPSO algorithm during the runs are 

given in Table 8. Briefly, the statistics about the objective function values, CPU times, 

number of generations, average number of 2-opts, and average number of DC, 

respectively. 

4. Conclusions 

The mDPSO algorithm proposed employs the destruction and construction procedure of 

the iterated greedy algorithm (IG) in its mutation phase. Its performance is enhanced by 

employing a population initialization scheme based on an NEH constructive heuristic for 

which some speed-up methods previously developed by authors are used for greedy node 

insertions. Furthermore, the mDPSO algorithm is hybridized with local search heuristics 

to achieve further improvements in the solution quality. To evaluate its performance, the 

mDPSO algorithm is tested on a set of benchmark instances with symmetric Euclidean 

distances ranging from 51 (11) to 1084 (217) nodes (clusters) from the literature. 

Furthermore, the mDPSO algorithm was able to find optimal solutions for a large 

percentage of problem instances from a set of test problems in the literature. It was also 

able to further improve 4 out of 9 larger instances from the literature. Both solution 

quality and computation times are competitive to or even better than the best performing 

algorithms from the literature.  
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Instance avgf
 minf

 maxf
 avgt

mint maxt avgg
ming maxg opt2  DC  

11EIL51 174.0 174.0 174.0 0.1 0.1 0.2 1.0 1.0 1.0 2.0 7346.6 

14ST70 316.0 316.0 316.0 0.1 0.1 0.1 1.0 1.0 1.0 2.0 10387.8 

16EIL76 209.0 209.0 209.0 0.1 0.1 0.1 1.0 1.0 1.0 2.0 11026.4 

16PR76 64925.0 64925.0 64925.0 0.2 0.2 0.2 1.0 1.0 1.0 2.0 14108.2 

20KROA100 9711.0 9711.0 9711.0 0.2 0.2 0.3 1.0 1.0 1.0 2.0 19958.6 

20KROB100 10328.0 10328.0 10328.0 0.2 0.2 0.3 1.0 1.0 1.0 2.0 18637.0 

20KROC100 9554.0 9554.0 9554.0 0.2 0.2 0.3 1.0 1.0 1.0 2.0 18370.0 

20KROD100 9450.0 9450.0 9450.0 0.2 0.2 0.3 1.0 1.0 1.0 2.0 19146.4 

20KROE100 9523.0 9523.0 9523.0 0.2 0.2 0.3 1.0 1.0 1.0 2.0 19235.8 

20RAT99 497.0 497.0 497.0 0.2 0.2 0.2 1.0 1.0 1.0 2.0 17025.2 

20RD100 3650.0 3650.0 3650.0 0.2 0.2 0.2 1.0 1.0 1.0 2.0 18345.6 

21EIL101 249.0 249.0 249.0 0.2 0.2 0.2 1.0 1.0 1.0 2.0 15256.0 

21LIN105 8213.0 8213.0 8213.0 0.3 0.2 0.3 1.0 1.0 1.0 2.0 20275.6 

22PR107 27898.0 27898.0 27898.0 0.2 0.2 0.2 1.0 1.0 1.0 2.0 17978.0 

25PR124 36605.0 36605.0 36605.0 0.4 0.3 0.7 1.8 1.0 4.0 2.8 31702.0 

26BIER127 72418.0 72418.0 72418.0 0.4 0.3 0.6 1.8 1.0 3.0 2.8 34417.4 

28PR136 42570.0 42570.0 42570.0 0.5 0.4 0.8 2.0 1.0 4.0 3.0 39157.2 

29PR144 45886.0 45886.0 45886.0 0.5 0.4 0.7 1.4 1.0 3.0 2.4 34640.6 

30KROA150 11018.0 11018.0 11018.0 0.5 0.4 0.6 1.2 1.0 2.0 2.2 35139.2 

30KROB150 12196.0 12196.0 12196.0 0.6 0.4 1.3 2.2 1.0 7.0 3.2 44800.0 

31PR152 51576.0 51576.0 51576.0 1.4 0.5 2.3 6.6 1.0 13.0 7.6 102702.0 

32U159 22664.0 22664.0 22664.0 0.6 0.5 1.0 2.2 1.0 5.0 3.2 47115.2 

39RAT195 854.0 854.0 854.0 1.0 0.6 1.2 2.6 1.0 4.0 3.6 68885.4 

40D198 10557.0 10557.0 10557.0 1.8 0.7 2.5 5.8 1.0 10.0 6.8 123194.6 

40KROA200 13406.0 13406.0 13406.0 1.1 0.7 1.3 2.8 1.0 4.0 3.8 76493.0 

40KROB200 13111.0 13111.0 13111.0 2.4 1.2 4.1 9.6 3.0 16.0 10.6 169724.4 

45TS225 68376.0 68340.0 68400.0 1.7 0.7 3.3 6.2 1.0 16.0 37.2 418896.2 

46PR226 64007.0 64007.0 64007.0 0.7 0.7 0.8 1.0 1.0 1.0 2.0 48324.4 

53GIL262 1013.0 1013.0 1013.0 4.8 2.0 9.1 16.2 4.0 37.0 17.2 300605.2 

53PR264 29549.0 29549.0 29549.0 1.1 1.0 1.4 1.2 1.0 2.0 2.2 68722.2 

60PR299 22631.0 22615.0 22635.0 5.7 4.0 7.9 13.8 8.0 29.0 54.8 860095.2 

64LIN318 20765.0 20765.0 20765.0 5.7 3.2 9.7 12.4 5.0 30.0 13.4 334602.4 

80RD400 6362.4 6361.0 6368.0 13.7 6.7 17.3 18.6 8.0 30.0 29.6 911334.6 

84FL417 9651.2 9651.0 9652.0 13.1 11.0 15.7 32.6 24.0 44.0 43.6 829024.2 

88PR439 60099.4 60099.0 60100.0 16.2 8.2 24.8 28.4 9.0 48.0 49.4 1173370.8 

89PCB442 21690.0 21657.0 21802.0 28.6 8.1 59.6 57.2 10.0 125.0 78.2 1813548.8 

99D493 20118.6 20045.0 20271.0 23.2 9.7 39.6 30.4 7.0 67.0 81.4 2240001.4 

115RAT575 2419.8 2388.0 2449.0 33.5 20.5 43.4 32.0 18.0 50.0 83.0 2681845.4 

131P654 27432.4 27432.0 27433.0 39.8 11.8 54.7 58.0 12.0 83.0 109.0 2740248.6 

132D657 22714.6 22543.0 22906.0 65.0 38.1 85.1 61.2 22.0 91.0 112.2 3891504.4 

145U724 17422.8 17257.0 17569.0 141.6 64.8 209.1 100.2 38.0 171.0 151.2 6502515.2 

157RAT783 3297.2 3283.0 3324.0 114.3 80.2 157.3 70.2 47.0 99.0 121.2 5182433.0 

201PR1002 115759.4 114731.0 116644.0 231.5 131.5 325.1 70.2 40.0 125.0 121.2 7972666.2 

212U1060 107316.4 106659.0 107937.0 341.8 169.7 514.4 125.4 65.0 208.0 176.4 10209723.6 

217VM1084 131716.8 131165.0 132394.0 310.1 133.9 389.8 113.6 36.0 156.0 164.6 9468416.8 

Avg 27553.3 27491.5 27617.2 31.2 15.9 44.2 20.1 8.5 33.4 34.0 1304065.5 

Table 8. Experimental Data Collected for mDPSO 
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