1,351 research outputs found

    Multi - objective sliding mode control of active magnetic bearing system

    Get PDF
    Active Magnetic Bearing (AMB) system is known to inherit many nonlinearity effects due to its rotor dynamic motion and the electromagnetic actuators which make the system highly nonlinear, coupled and open-loop unstable. The major nonlinearities that are associated with AMB system are gyroscopic effect, rotor mass imbalance and nonlinear electromagnetics in which the gyroscopics and imbalance are dependent to the rotational speed of the rotor. In order to provide satisfactory system performance for a wide range of system condition, active control is thus essential. The main concern of the thesis is the modeling of the nonlinear AMB system and synthesizing a robust control method based on Sliding Mode Control (SMC) technique such that the system can achieve robust performance under various system nonlinearities. The model of the AMB system is developed based on the integration of the rotor and electromagnetic dynamics which forms nonlinear time varying state equations that represent a reasonably close description of the actual system. Based on the known bound of the system parameters and state variables, the model is restructured to become a class of uncertain system by using a deterministic approach. In formulating the control algorithm to control the system, SMC theory is adapted which involves the formulation of the sliding surface and the control law such that the state trajectories are driven to the stable sliding manifold. The surface design involves the transformation of the system into a special canonical representation such that the sliding motion can be characterized by a convex representation of the desired system performances. Optimal Linear Quadratic (LQ) characteristics and regional pole-clustering of the closed-loop poles are designed to be the objectives to be fulfilled in the surface design where the formulation is represented as a set of Linear Matrix Inequality optimization problem. For the control law design, a new continuous SMC controller is proposed in which asymptotic convergence of the system’s state trajectories in finite time is guaranteed. This is achieved by adapting the equivalent control approach with the exponential decaying boundary layer technique. The newly designed sliding surface and control law form the complete Multi-objective SMC (MO-SMC) and the proposed algorithm is applied into the nonlinear AMB in which the results show that robust system performance is achieved for various system conditions. The findings also demonstrate that the MO-SMC gives better system response than the reported ideal SMC (I-SMC) and continuous SMC (C-SMC)

    Active vibration damping of the Space Shuttle remote manipulator system

    Get PDF
    The feasibility of providing active damping augmentation of the Space Shuttle Remote Manipulator System (RMS) following normal payload handling operations is investigated. The approach used in the analysis is described, and the results for both linear and nonlinear performance analysis of candidate laws are presented, demonstrating that significant improvement in the RMS dynamic response can be achieved through active control using measured RMS tip acceleration data for feedback

    A synopsis of test results and knowledge gained from the Phase-0 CSI evolutionary model

    Get PDF
    The Phase-0 CSI Evolutionary Model (CEM) is a testbed for the study of space platform global line-of-sight (LOS) pointing. Now that the tests have been completed, a summary of hardware and closed-loop test experiences is necessary to insure a timely dissemination of the knowledge gained. The testbed is described and modeling experiences are presented followed by a summary of the research performed by various investigators. Some early lessons on implementing the closed-loop controllers are described with particular emphasis on real-time computing requirements. A summary of closed-loop studies and a synopsis of test results are presented. Plans for evolving the CEM from phase 0 to phases 1 and 2 are also described. Subsequently, a summary of knowledge gained from the design and testing of the Phase-0 CEM is made

    Damage Tolerant Active Contro l: Concept and State of the Art

    Get PDF
    Damage tolerant active control is a new research area relating to fault tolerant control design applied to mechanical structures. It encompasses several techniques already used to design controllers and to detect and to diagnose faults, as well to monitor structural integrity. Brief reviews of the common intersections of these areas are presented, with the purpose to clarify its relations and also to justify the new controller design paradigm. Some examples help to better understand the role of the new area

    Predictive Control for Alleviation of Gust Loads on Very Flexible Aircraft

    No full text
    In this work the dynamics of very flexible aircraft are described by a set of non-linear, multi-disciplinary equations of motion. Primary structural components are represented by a geometrically-exact composite beam model which captures the large dynamic deformations of the aircraft and the interaction between rigid-body and elastic degrees-of-freedom. In addition, an implementation of the unsteady vortex-lattice method capable of handling arbitrary kinematics is used to capture the unsteady, three-dimensional flow-eld around the aircraft as it deforms. Linearization of this coupled nonlinear description, which can in general be about a nonlinear reference state, is performed to yield relatively high-order linear time-invariant state-space models. Subsequent reduction of these models using standard balanced truncation results in low-order models suitable for the synthesis of online, optimization-based control schemes that incorporate actuator constraints. Predictive controllers are synthesized using these reduced-order models and applied to nonlinear simulations of the plant dynamics where they are shown to be superior to equivalent optimal linear controllers (LQR) for problems in which constraints are active

    The LQR Control Active of Smart Plate Based on the Finite Element Method

    Get PDF
    This paper presents a numerical study pertaining to on the active vibration control (AVC) of the 3-D rectangle simply supported plate bonded of the piezoelectric sensor/ actuator pairs. AVC is a large area of interest either in all sections of industry or in research. One way to control the vibration of dynamic systems is by using piezoelectric materials. A finite element method (FEM) analysis is used to model the dynamic behavior of the system. The frequencies of the isotropic pate and a smart structure are verified by the comparison between the analytical calculations and simulation. A LQR controller is designed based on the independent mode space control techniques to stifle the vibration of the system. The change in the sizes of the patches was a clear impact on the control results, and also in the values of the voltage in actuator. The results were established by simulating in ANSYS and MATLAB

    Numerical and Experimental Modal Control of Flexible Rotor Using Electromagnetic Actuator

    Get PDF
    The present work is dedicated to active modal control applied to flexible rotors. The effectiveness of the corresponding techniques for controlling a flexible rotor is tested numerically and experimentally. Two different approaches are used to determine the appropriate controllers. The first uses the linear quadratic regulator and the second approach is the fuzzy modal control. This paper is focused on the electromagnetic actuator, which in this case is part of a hybrid bearing. Due to numerical reasons it was necessary to reduce the size of the model of the rotating system so that the design of the controllers and estimator could be performed. The role of the Kalman estimator in the present contribution is to estimate the modal states of the system and to determine the displacement of the rotor at the position of the hybrid bearing. Finally, numerical and experimental results demonstrate the success of the methodology conveyed

    Intelligent manipulator with flexible link and joint: modeling and vibration control

    Get PDF
    This paper presents a finite-element (FE) model of a manipulator with a flexible link and flexible joint as well as embedded PZT actuators and proposes a corrected rebuilt reduced model (CRRM) to make its dynamic characteristics more consistent with reality and facilitate control design. The CRRM considers the holding torque of the manipulator driving motor and eliminates the response divergence induced by a fault of the mass matrix of the FE model. In order to reduce the dimensions and maintain the precision of the model, an iterated improved reduction system (IIRS) method is adopted. Additionally, a LQR controller is designed based on the output function of the improved model. The simulation results demonstrate that the CRRM is consistent with reality and the active controller has good performance in suppressing vibration of the manipulator with both the flexible link and the flexible joint
    corecore