6,611 research outputs found

    Sequential Recommendation with Self-Attentive Multi-Adversarial Network

    Full text link
    Recently, deep learning has made significant progress in the task of sequential recommendation. Existing neural sequential recommenders typically adopt a generative way trained with Maximum Likelihood Estimation (MLE). When context information (called factor) is involved, it is difficult to analyze when and how each individual factor would affect the final recommendation performance. For this purpose, we take a new perspective and introduce adversarial learning to sequential recommendation. In this paper, we present a Multi-Factor Generative Adversarial Network (MFGAN) for explicitly modeling the effect of context information on sequential recommendation. Specifically, our proposed MFGAN has two kinds of modules: a Transformer-based generator taking user behavior sequences as input to recommend the possible next items, and multiple factor-specific discriminators to evaluate the generated sub-sequence from the perspectives of different factors. To learn the parameters, we adopt the classic policy gradient method, and utilize the reward signal of discriminators for guiding the learning of the generator. Our framework is flexible to incorporate multiple kinds of factor information, and is able to trace how each factor contributes to the recommendation decision over time. Extensive experiments conducted on three real-world datasets demonstrate the superiority of our proposed model over the state-of-the-art methods, in terms of effectiveness and interpretability

    Deep Learning based Recommender System: A Survey and New Perspectives

    Full text link
    With the ever-growing volume of online information, recommender systems have been an effective strategy to overcome such information overload. The utility of recommender systems cannot be overstated, given its widespread adoption in many web applications, along with its potential impact to ameliorate many problems related to over-choice. In recent years, deep learning has garnered considerable interest in many research fields such as computer vision and natural language processing, owing not only to stellar performance but also the attractive property of learning feature representations from scratch. The influence of deep learning is also pervasive, recently demonstrating its effectiveness when applied to information retrieval and recommender systems research. Evidently, the field of deep learning in recommender system is flourishing. This article aims to provide a comprehensive review of recent research efforts on deep learning based recommender systems. More concretely, we provide and devise a taxonomy of deep learning based recommendation models, along with providing a comprehensive summary of the state-of-the-art. Finally, we expand on current trends and provide new perspectives pertaining to this new exciting development of the field.Comment: The paper has been accepted by ACM Computing Surveys. https://doi.acm.org/10.1145/328502

    KinshipGAN: Synthesizing of Kinship Faces From Family Photos by Regularizing a Deep Face Network

    Full text link
    In this paper, we propose a kinship generator network that can synthesize a possible child face by analyzing his/her parent's photo. For this purpose, we focus on to handle the scarcity of kinship datasets throughout the paper by proposing novel solutions in particular. To extract robust features, we integrate a pre-trained face model to the kinship face generator. Moreover, the generator network is regularized with an additional face dataset and adversarial loss to decrease the overfitting of the limited samples. Lastly, we adapt cycle-domain transformation to attain a more stable results. Experiments are conducted on Families in the Wild (FIW) dataset. The experimental results show that the contributions presented in the paper provide important performance improvements compared to the baseline architecture and our proposed method yields promising perceptual results.Comment: Accepted to IEEE ICIP 201

    Computational Intelligence for the Micro Learning

    Get PDF
    The developments of the Web technology and the mobile devices have blurred the time and space boundaries of people’s daily activities, which enable people to work, entertain, and learn through the mobile device at almost anytime and anywhere. Together with the life-long learning requirement, such technology developments give birth to a new learning style, micro learning. Micro learning aims to effectively utilise learners’ fragmented spare time and carry out personalised learning activities. However, the massive volume of users and the online learning resources force the micro learning system deployed in the context of enormous and ubiquitous data. Hence, manually managing the online resources or user information by traditional methods are no longer feasible. How to utilise computational intelligence based solutions to automatically managing and process different types of massive information is the biggest research challenge for realising the micro learning service. As a result, to facilitate the micro learning service in the big data era efficiently, we need an intelligent system to manage the online learning resources and carry out different analysis tasks. To this end, an intelligent micro learning system is designed in this thesis. The design of this system is based on the service logic of the micro learning service. The micro learning system consists of three intelligent modules: learning material pre-processing module, learning resource delivery module and the intelligent assistant module. The pre-processing module interprets the content of the raw online learning resources and extracts key information from each resource. The pre-processing step makes the online resources ready to be used by other intelligent components of the system. The learning resources delivery module aims to recommend personalised learning resources to the target user base on his/her implicit and explicit user profiles. The goal of the intelligent assistant module is to provide some evaluation or assessment services (such as student dropout rate prediction and final grade prediction) to the educational resource providers or instructors. The educational resource providers can further refine or modify the learning materials based on these assessment results

    Social4Rec: Distilling User Preference from Social Graph for Video Recommendation in Tencent

    Full text link
    Despite recommender systems play a key role in network content platforms, mining the user's interests is still a significant challenge. Existing works predict the user interest by utilizing user behaviors, i.e., clicks, views, etc., but current solutions are ineffective when users perform unsettled activities. The latter ones involve new users, which have few activities of any kind, and sparse users who have low-frequency behaviors. We uniformly describe both these user-types as "cold users", which are very common but often neglected in network content platforms. To address this issue, we enhance the representation of the user interest by combining his social interest, e.g., friendship, following bloggers, interest groups, etc., with the activity behaviors. Thus, in this work, we present a novel algorithm entitled SocialNet, which adopts a two-stage method to progressively extract the coarse-grained and fine-grained social interest. Our technique then concatenates SocialNet's output with the original user representation to get the final user representation that combines behavior interests and social interests. Offline experiments on Tencent video's recommender system demonstrate the superiority over the baseline behavior-based model. The online experiment also shows a significant performance improvement in clicks and view time in the real-world recommendation system. The source code is available at https://github.com/Social4Rec/SocialNet
    • …
    corecore