7 research outputs found

    A Key Substitution Attack on SFLASH^{v3}

    Get PDF
    A practical key substitution attack on SFLASH^{v3} is described: Given a valid (message, signature) pair (m,\sigma) for some public key v_0, one can derive another public key v_1 (along with matching secret data) such that (m,\sigma) is also valid for v_1. The computational effort needed for finding such a `duplicate\u27 key is comparable to the effort needed for ordinary key generation

    A method of Weil sum in multivariate quadratic cryptosystem

    Get PDF
    A new cryptanalytic application is proposed for a number theoretic tool Weil sum to the birthday attack against multivariate quadratic trapdoor function. This new customization of the birthday attack is developed by evaluating the explicit Weil sum of the underlying univariate polynomial and the exact number of solutions of the associated bivariate equation. I designed and implemented new algorithms for computing Weil sum values so that I could explicitly identify some class of weak Dembowski- Ostrom polynomials and the equivalent forms in the multivariate quadratic trapdoor function. This customized attack, also regarded as an equation solving algorithm for the system of some special quadratic equations over finite fields, is fundamentally different from the Grobner basis methods. The theoretical observations and experiments show that the required computational complexity of the attack on these weak polynomial instances can be asymptotically less than the square root complexity of the common birthday attack by a factor as large as 2^(n/8) in terms of the extension degree n of F2n. I also suggest a few open problems that any MQ-based short signature scheme must explicitly take into account for the basic design principles

    Algorithms for Solving Linear and Polynomial Systems of Equations over Finite Fields with Applications to Cryptanalysis

    Get PDF
    This dissertation contains algorithms for solving linear and polynomial systems of equations over GF(2). The objective is to provide fast and exact tools for algebraic cryptanalysis and other applications. Accordingly, it is divided into two parts. The first part deals with polynomial systems. Chapter 2 contains a successful cryptanalysis of Keeloq, the block cipher used in nearly all luxury automobiles. The attack is more than 16,000 times faster than brute force, but queries 0.62 × 2^32 plaintexts. The polynomial systems of equations arising from that cryptanalysis were solved via SAT-solvers. Therefore, Chapter 3 introduces a new method of solving polynomial systems of equations by converting them into CNF-SAT problems and using a SAT-solver. Finally, Chapter 4 contains a discussion on how SAT-solvers work internally. The second part deals with linear systems over GF(2), and other small fields (and rings). These occur in cryptanalysis when using the XL algorithm, which converts polynomial systems into larger linear systems. We introduce a new complexity model and data structures for GF(2)-matrix operations. This is discussed in Appendix B but applies to all of Part II. Chapter 5 contains an analysis of "the Method of Four Russians" for multiplication and a variant for matrix inversion, which is log n faster than Gaussian Elimination, and can be combined with Strassen-like algorithms. Chapter 6 contains an algorithm for accelerating matrix multiplication over small finite fields. It is feasible but the memory cost is so high that it is mostly of theoretical interest. Appendix A contains some discussion of GF(2)-linear algebra and how it differs from linear algebra in R and C. Appendix C discusses algorithms faster than Strassen's algorithm, and contains proofs that matrix multiplication, matrix squaring, triangular matrix inversion, LUP-factorization, general matrix in- version and the taking of determinants, are equicomplex. These proofs are already known, but are here gathered into one place in the same notation

    Veröffentlichungen und Vorträge 2003 der Mitgleider der Fakultät für Informatik

    Get PDF

    Zur Analyse und Struktur von Sicherheitsbegriffen

    Get PDF
    corecore