1,468 research outputs found

    Interconnected Services for Time-Series Data Management in Smart Manufacturing Scenarios

    Get PDF
    xvii, 218 p.The rise of Smart Manufacturing, together with the strategic initiatives carried out worldwide, have promoted its adoption among manufacturers who are increasingly interested in boosting data-driven applications for different purposes, such as product quality control, predictive maintenance of equipment, etc. However, the adoption of these approaches faces diverse technological challenges with regard to the data-related technologies supporting the manufacturing data life-cycle. The main contributions of this dissertation focus on two specific challenges related to the early stages of the manufacturing data life-cycle: an optimized storage of the massive amounts of data captured during the production processes and an efficient pre-processing of them. The first contribution consists in the design and development of a system that facilitates the pre-processing task of the captured time-series data through an automatized approach that helps in the selection of the most adequate pre-processing techniques to apply to each data type. The second contribution is the design and development of a three-level hierarchical architecture for time-series data storage on cloud environments that helps to manage and reduce the required data storage resources (and consequently its associated costs). Moreover, with regard to the later stages, a thirdcontribution is proposed, that leverages advanced data analytics to build an alarm prediction system that allows to conduct a predictive maintenance of equipment by anticipating the activation of different types of alarms that can be produced on a real Smart Manufacturing scenario

    Interconnected Services for Time-Series Data Management in Smart Manufacturing Scenarios

    Get PDF
    xvii, 218 p.The rise of Smart Manufacturing, together with the strategic initiatives carried out worldwide, have promoted its adoption among manufacturers who are increasingly interested in boosting data-driven applications for different purposes, such as product quality control, predictive maintenance of equipment, etc. However, the adoption of these approaches faces diverse technological challenges with regard to the data-related technologies supporting the manufacturing data life-cycle. The main contributions of this dissertation focus on two specific challenges related to the early stages of the manufacturing data life-cycle: an optimized storage of the massive amounts of data captured during the production processes and an efficient pre-processing of them. The first contribution consists in the design and development of a system that facilitates the pre-processing task of the captured time-series data through an automatized approach that helps in the selection of the most adequate pre-processing techniques to apply to each data type. The second contribution is the design and development of a three-level hierarchical architecture for time-series data storage on cloud environments that helps to manage and reduce the required data storage resources (and consequently its associated costs). Moreover, with regard to the later stages, a thirdcontribution is proposed, that leverages advanced data analytics to build an alarm prediction system that allows to conduct a predictive maintenance of equipment by anticipating the activation of different types of alarms that can be produced on a real Smart Manufacturing scenario

    AI Solutions for MDS: Artificial Intelligence Techniques for Misuse Detection and Localisation in Telecommunication Environments

    Get PDF
    This report considers the application of Articial Intelligence (AI) techniques to the problem of misuse detection and misuse localisation within telecommunications environments. A broad survey of techniques is provided, that covers inter alia rule based systems, model-based systems, case based reasoning, pattern matching, clustering and feature extraction, articial neural networks, genetic algorithms, arti cial immune systems, agent based systems, data mining and a variety of hybrid approaches. The report then considers the central issue of event correlation, that is at the heart of many misuse detection and localisation systems. The notion of being able to infer misuse by the correlation of individual temporally distributed events within a multiple data stream environment is explored, and a range of techniques, covering model based approaches, `programmed' AI and machine learning paradigms. It is found that, in general, correlation is best achieved via rule based approaches, but that these suffer from a number of drawbacks, such as the difculty of developing and maintaining an appropriate knowledge base, and the lack of ability to generalise from known misuses to new unseen misuses. Two distinct approaches are evident. One attempts to encode knowledge of known misuses, typically within rules, and use this to screen events. This approach cannot generally detect misuses for which it has not been programmed, i.e. it is prone to issuing false negatives. The other attempts to `learn' the features of event patterns that constitute normal behaviour, and, by observing patterns that do not match expected behaviour, detect when a misuse has occurred. This approach is prone to issuing false positives, i.e. inferring misuse from innocent patterns of behaviour that the system was not trained to recognise. Contemporary approaches are seen to favour hybridisation, often combining detection or localisation mechanisms for both abnormal and normal behaviour, the former to capture known cases of misuse, the latter to capture unknown cases. In some systems, these mechanisms even work together to update each other to increase detection rates and lower false positive rates. It is concluded that hybridisation offers the most promising future direction, but that a rule or state based component is likely to remain, being the most natural approach to the correlation of complex events. The challenge, then, is to mitigate the weaknesses of canonical programmed systems such that learning, generalisation and adaptation are more readily facilitated

    Big Data Attributes and Knowledge Discovery Process: An Empirical Analysis of the Anticipated Mediating Role of Cloud Computing

    Get PDF
    This study attempt to investigate whether cloud computing can act as a facilitating agent in support of knowledge discovery from big data. The study proposed a number of propositions to investigate this possible effect and impact between computing cloud, big data and knowledge discovery.  The telecommunication industry was selected as the research population and the study sample covered the main leading telecommunication companies in Jordan. A survey questionnaire was developed and distributed to a selected study sample. The proposed models of the study were tested using factor analysis and PLS method.  The results indicated that there is no mediation effect as proposed by the research model between cloud computing characteristics and knowledge discovery processes via could computing.  The results also revealed that big data attributes has a direct significate impact on a selected knowledge discovery processes and a selected cloud computing characteristics. The study also advised on some interesting finding on the three domains of the study. Keywords: Cloud computing characteristics, big data attributes, knowledge discovery processes in database, PLS method.

    Benchmarking News Recommendations in a Living Lab

    Get PDF
    Most user-centric studies of information access systems in literature suffer from unrealistic settings or limited numbers of users who participate in the study. In order to address this issue, the idea of a living lab has been promoted. Living labs allow us to evaluate research hypotheses using a large number of users who satisfy their information need in a real context. In this paper, we introduce a living lab on news recommendation in real time. The living lab has first been organized as News Recommendation Challenge at ACM RecSys’13 and then as campaign-style evaluation lab NEWSREEL at CLEF’14. Within this lab, researchers were asked to provide news article recommendations to millions of users in real time. Different from user studies which have been performed in a laboratory, these users are following their own agenda. Consequently, laboratory bias on their behavior can be neglected. We outline the living lab scenario and the experimental setup of the two benchmarking events. We argue that the living lab can serve as reference point for the implementation of living labs for the evaluation of information access systems

    Response time for cloud computing providers

    Get PDF
    Cloud services are becoming popular in terms of distributed technology because they allow cloud users to rent well-specified resources of computing, network, and storage infrastructure. Users pay for their use of services without needing to spend massive amounts for integration, maintenance, or management of the IT infrastructure. This creates the need for a reliable measurement methodology of the scalability for this type of new paradigm of services. In this paper, we develop performance metrics to measure and compare the scalability of the resources of virtualization on the cloud data centres. First, we discuss the need for a reliable method to compare the performance of cloud services among a number of various services being offered. Second, we develop a different type of metrics and propose a suitable methodology to measure the scalability using these types of metrics. We focus on the visualization resources such as CPU, storage disk, and network infrastructure. Finally, we compare well-known cloud providers using the proposed approach and conclude the recommendations. This type of research will help cloud consumers, before signing any official contract to use the desired services, to ascertain the ability and capacity of the cloud providers to deliver a particular service
    • …
    corecore