149 research outputs found

    The Hilbertian Tensor Norm and Entangled Two-Prover Games

    Full text link
    We study tensor norms over Banach spaces and their relations to quantum information theory, in particular their connection with two-prover games. We consider a version of the Hilbertian tensor norm γ2\gamma_2 and its dual γ2∗\gamma_2^* that allow us to consider games with arbitrary output alphabet sizes. We establish direct-product theorems and prove a generalized Grothendieck inequality for these tensor norms. Furthermore, we investigate the connection between the Hilbertian tensor norm and the set of quantum probability distributions, and show two applications to quantum information theory: firstly, we give an alternative proof of the perfect parallel repetition theorem for entangled XOR games; and secondly, we prove a new upper bound on the ratio between the entangled and the classical value of two-prover games.Comment: 33 pages, some of the results have been obtained independently in arXiv:1007.3043v2, v2: an error in Theorem 4 has been corrected; Section 6 rewritten, v3: completely rewritten in order to improve readability; title changed; references added; published versio

    Quantum Proofs

    Get PDF
    Quantum information and computation provide a fascinating twist on the notion of proofs in computational complexity theory. For instance, one may consider a quantum computational analogue of the complexity class \class{NP}, known as QMA, in which a quantum state plays the role of a proof (also called a certificate or witness), and is checked by a polynomial-time quantum computation. For some problems, the fact that a quantum proof state could be a superposition over exponentially many classical states appears to offer computational advantages over classical proof strings. In the interactive proof system setting, one may consider a verifier and one or more provers that exchange and process quantum information rather than classical information during an interaction for a given input string, giving rise to quantum complexity classes such as QIP, QSZK, and QMIP* that represent natural quantum analogues of IP, SZK, and MIP. While quantum interactive proof systems inherit some properties from their classical counterparts, they also possess distinct and uniquely quantum features that lead to an interesting landscape of complexity classes based on variants of this model. In this survey we provide an overview of many of the known results concerning quantum proofs, computational models based on this concept, and properties of the complexity classes they define. In particular, we discuss non-interactive proofs and the complexity class QMA, single-prover quantum interactive proof systems and the complexity class QIP, statistical zero-knowledge quantum interactive proof systems and the complexity class \class{QSZK}, and multiprover interactive proof systems and the complexity classes QMIP, QMIP*, and MIP*.Comment: Survey published by NOW publisher

    On the Parallel Repetition of Multi-Player Games: The No-Signaling Case

    Get PDF

    Quantum de Finetti Theorems under Local Measurements with Applications

    Get PDF
    Quantum de Finetti theorems are a useful tool in the study of correlations in quantum multipartite states. In this paper we prove two new quantum de Finetti theorems, both showing that under tests formed by local measurements one can get a much improved error dependence on the dimension of the subsystems. We also obtain similar results for non-signaling probability distributions. We give the following applications of the results: We prove the optimality of the Chen-Drucker protocol for 3-SAT, under the exponential time hypothesis. We show that the maximum winning probability of free games can be estimated in polynomial time by linear programming. We also show that 3-SAT with m variables can be reduced to obtaining a constant error approximation of the maximum winning probability under entangled strategies of O(m^{1/2})-player one-round non-local games, in which the players communicate O(m^{1/2}) bits all together. We show that the optimization of certain polynomials over the hypersphere can be performed in quasipolynomial time in the number of variables n by considering O(log(n)) rounds of the Sum-of-Squares (Parrilo/Lasserre) hierarchy of semidefinite programs. As an application to entanglement theory, we find a quasipolynomial-time algorithm for deciding multipartite separability. We consider a result due to Aaronson -- showing that given an unknown n qubit state one can perform tomography that works well for most observables by measuring only O(n) independent and identically distributed (i.i.d.) copies of the state -- and relax the assumption of having i.i.d copies of the state to merely the ability to select subsystems at random from a quantum multipartite state. The proofs of the new quantum de Finetti theorems are based on information theory, in particular on the chain rule of mutual information.Comment: 39 pages, no figure. v2: changes to references and other minor improvements. v3: added some explanations, mostly about Theorem 1 and Conjecture 5. STOC version. v4, v5. small improvements and fixe

    AM with Multiple Merlins

    Get PDF
    We introduce and study a new model of interactive proofs: AM(k), or Arthur-Merlin with k non-communicating Merlins. Unlike with the better-known MIP, here the assumption is that each Merlin receives an independent random challenge from Arthur. One motivation for this model (which we explore in detail) comes from the close analogies between it and the quantum complexity class QMA(k), but the AM(k) model is also natural in its own right. We illustrate the power of multiple Merlins by giving an AM(2) protocol for 3SAT, in which the Merlins' challenges and responses consist of only n^{1/2+o(1)} bits each. Our protocol has the consequence that, assuming the Exponential Time Hypothesis (ETH), any algorithm for approximating a dense CSP with a polynomial-size alphabet must take n^{(log n)^{1-o(1)}} time. Algorithms nearly matching this lower bound are known, but their running times had never been previously explained. Brandao and Harrow have also recently used our 3SAT protocol to show quasipolynomial hardness for approximating the values of certain entangled games. In the other direction, we give a simple quasipolynomial-time approximation algorithm for free games, and use it to prove that, assuming the ETH, our 3SAT protocol is essentially optimal. More generally, we show that multiple Merlins never provide more than a polynomial advantage over one: that is, AM(k)=AM for all k=poly(n). The key to this result is a subsampling theorem for free games, which follows from powerful results by Alon et al. and Barak et al. on subsampling dense CSPs, and which says that the value of any free game can be closely approximated by the value of a logarithmic-sized random subgame.Comment: 48 page

    The Unique Games Conjecture with Entangled Provers is False

    Get PDF

    Extended Nonlocal Games

    Get PDF
    The notions of entanglement and nonlocality are among the most striking ingredients found in quantum information theory. One tool to better understand these notions is the model of nonlocal games; a mathematical framework that abstractly models a physical system. The simplest instance of a nonlocal game involves two players, Alice and Bob, who are not allowed to communicate with each other once the game has started and who play cooperatively against an adversary referred to as the referee. The focus of this thesis is a class of games called extended nonlocal games, of which nonlocal games are a subset. In an extended nonlocal game, the players initially share a tripartite state with the referee. In such games, the winning conditions for Alice and Bob may depend on outcomes of measurements made by the referee, on its part of the shared quantum state, in addition to Alice and Bob's answers to the questions sent by the referee. We build up the framework for extended nonlocal games and study their properties and how they relate to nonlocal games.Comment: PhD thesis, Univ Waterloo, 2017. 151 pages, 11 figure
    • 

    corecore