9,820 research outputs found

    Unified clustering and communication protocol for wireless sensor networks

    Get PDF
    In this paper we present an energy-efficient cross layer protocol for providing application specific reservations in wireless senor networks called the “Unified Clustering and Communication Protocol ” (UCCP). Our modular cross layered framework satisfies three wireless sensor network requirements, namely, the QoS requirement of heterogeneous applications, energy aware clustering and data forwarding by relay sensor nodes. Our unified design approach is motivated by providing an integrated and viable solution for self organization and end-to-end communication is wireless sensor networks. Dynamic QoS based reservation guarantees are provided using a reservation-based TDMA approach. Our novel energy-efficient clustering approach employs a multi-objective optimization technique based on OR (operations research) practices. We adopt a simple hierarchy in which relay nodes forward data messages from cluster head to the sink, thus eliminating the overheads needed to maintain a routing protocol. Simulation results demonstrate that UCCP provides an energy-efficient and scalable solution to meet the application specific QoS demands in resource constrained sensor nodes. Index Terms — wireless sensor networks, unified communication, optimization, clustering and quality of service

    Machine Learning in Wireless Sensor Networks: Algorithms, Strategies, and Applications

    Get PDF
    Wireless sensor networks monitor dynamic environments that change rapidly over time. This dynamic behavior is either caused by external factors or initiated by the system designers themselves. To adapt to such conditions, sensor networks often adopt machine learning techniques to eliminate the need for unnecessary redesign. Machine learning also inspires many practical solutions that maximize resource utilization and prolong the lifespan of the network. In this paper, we present an extensive literature review over the period 2002-2013 of machine learning methods that were used to address common issues in wireless sensor networks (WSNs). The advantages and disadvantages of each proposed algorithm are evaluated against the corresponding problem. We also provide a comparative guide to aid WSN designers in developing suitable machine learning solutions for their specific application challenges.Comment: Accepted for publication in IEEE Communications Surveys and Tutorial

    Exploiting Interference for Efficient Distributed Computation in Cluster-based Wireless Sensor Networks

    Full text link
    This invited paper presents some novel ideas on how to enhance the performance of consensus algorithms in distributed wireless sensor networks, when communication costs are considered. Of particular interest are consensus algorithms that exploit the broadcast property of the wireless channel to boost the performance in terms of convergence speeds. To this end, we propose a novel clustering based consensus algorithm that exploits interference for computation, while reducing the energy consumption in the network. The resulting optimization problem is a semidefinite program, which can be solved offline prior to system startup.Comment: Accepted for publication at IEEE Global Conference on Signal and Information Processing (GlobalSIP 2013

    AMCTD: Adaptive Mobility of Courier nodes in Threshold-optimized DBR Protocol for Underwater Wireless Sensor Networks

    Full text link
    In dense underwater sensor networks (UWSN), the major confronts are high error probability, incessant variation in topology of sensor nodes, and much energy consumption for data transmission. However, there are some remarkable applications of UWSN such as management of seabed and oil reservoirs, exploration of deep sea situation and prevention of aqueous disasters. In order to accomplish these applications, ignorance of the limitations of acoustic communications such as high delay and low bandwidth is not feasible. In this paper, we propose Adaptive mobility of Courier nodes in Threshold-optimized Depth-based routing (AMCTD), exploring the proficient amendments in depth threshold and implementing the optimal weight function to achieve longer network lifetime. We segregate our scheme in 3 major phases of weight updating, depth threshold variation and adaptive mobility of courier nodes. During data forwarding, we provide the framework for alterations in threshold to cope with the sparse condition of network. We ultimately perform detailed simulations to scrutinize the performance of our proposed scheme and its comparison with other two notable routing protocols in term of network lifetime and other essential parameters. The simulations results verify that our scheme performs better than the other techniques and near to optimal in the field of UWSN.Comment: 8th International Conference on Broadband and Wireless Computing, Communication and Applications (BWCCA'13), Compiegne, Franc

    A Secure and Low-Energy Zone-based Wireless Sensor Networks Routing Protocol for Pollution Monitoring

    Full text link
    [EN] Sensor networks can be used in many sorts of environments. The increase of pollution and carbon footprint are nowadays an important environmental problem. The use of sensors and sensor networks can help to make an early detection in order to mitigate their effect over the medium. The deployment of wireless sensor networks (WSNs) requires high-energy efficiency and secures mechanisms to ensure the data veracity. Moreover, when WSNs are deployed in harsh environments, it is very difficult to recharge or replace the sensor's batteries. For this reason, the increase of network lifetime is highly desired. WSNs also work in unattended environments, which is vulnerable to different sort of attacks. Therefore, both energy efficiency and security must be considered in the development of routing protocols for WSNs. In this paper, we present a novel Secure and Low-energy Zone-based Routing Protocol (SeLeZoR) where the nodes of the WSN are split into zones and each zone is separated into clusters. Each cluster is controlled by a cluster head. Firstly, the information is securely sent to the zone-head using a secret key; then, the zone-head sends the data to the base station using the secure and energy efficient mechanism. This paper demonstrates that SeLeZoR achieves better energy efficiency and security levels than existing routing protocols for WSNs.Mehmood, A.; Lloret, J.; Sendra, S. (2016). A Secure and Low-Energy Zone-based Wireless Sensor Networks Routing Protocol for Pollution Monitoring. Wireless Communications and Mobile Computing. 16(17):2869-2883. https://doi.org/10.1002/wcm.2734S286928831617Sendra S Deployment of efficient wireless sensor nodes for monitoring in rural, indoor and underwater environments 2013Javaid, N., Qureshi, T. N., Khan, A. H., Iqbal, A., Akhtar, E., & Ishfaq, M. (2013). EDDEEC: Enhanced Developed Distributed Energy-efficient Clustering for Heterogeneous Wireless Sensor Networks. Procedia Computer Science, 19, 914-919. doi:10.1016/j.procs.2013.06.125Garcia, M., Sendra, S., Lloret, J., & Canovas, A. (2011). Saving energy and improving communications using cooperative group-based Wireless Sensor Networks. Telecommunication Systems, 52(4), 2489-2502. doi:10.1007/s11235-011-9568-3Garcia, M., Lloret, J., Sendra, S., & Rodrigues, J. J. P. C. (2011). Taking Cooperative Decisions in Group-Based Wireless Sensor Networks. Cooperative Design, Visualization, and Engineering, 61-65. doi:10.1007/978-3-642-23734-8_9Garcia, M., & Lloret, J. (2009). A Cooperative Group-Based Sensor Network for Environmental Monitoring. Cooperative Design, Visualization, and Engineering, 276-279. doi:10.1007/978-3-642-04265-2_41Jain T Wireless environmental monitoring system (wems) using data aggregation in a bidirectional hybrid protocol In Proc of the 6th International Conference ICISTM 2012 2012Senouci, M. R., Mellouk, A., Senouci, H., & Aissani, A. (2012). Performance evaluation of network lifetime spatial-temporal distribution for WSN routing protocols. Journal of Network and Computer Applications, 35(4), 1317-1328. doi:10.1016/j.jnca.2012.01.016Heinzelman WR Chandrakasan A Balakrishnan H Energy-efficient communication protocol for wireless microsensor networks In proc of the 33rd Annual Hawaii International Conference on System Sciences 2000 2000Xiangning F Yulin S Improvement on LEACH protocol of wireless sensor network In proc of the 2007 International Conference on Sensor Technologies and Applications SensorComm 2007 2007Tong M Tang M LEACH-B: an improved LEACH protocol for wireless sensor network In proc of the 6th International Conference on Wireless Communications Networking and Mobile Computing WiCOM 2010 2010Mohammad El-Basioni, B. M., Abd El-kader, S. M., Eissa, H. S., & Zahra, M. M. (2011). An Optimized Energy-aware Routing Protocol for Wireless Sensor Network. Egyptian Informatics Journal, 12(2), 61-72. doi:10.1016/j.eij.2011.03.001Younis O Fahmy S Distributed clustering in ad-hoc sensor networks: a hybrid, energy-efficient approach In proc of the Twenty-third Annual Joint Conference of the IEEE Computer and Communications Societies INFOCOM 2004 2004Noack, A., & Spitz, S. (2009). Dynamic Threshold Cryptosystem without Group Manager. Network Protocols and Algorithms, 1(1). doi:10.5296/npa.v1i1.161Nasser, N., & Chen, Y. (2007). SEEM: Secure and energy-efficient multipath routing protocol for wireless sensor networks. Computer Communications, 30(11-12), 2401-2412. doi:10.1016/j.comcom.2007.04.014Alippi, C., Camplani, R., Galperti, C., & Roveri, M. (2011). A Robust, Adaptive, Solar-Powered WSN Framework for Aquatic Environmental Monitoring. IEEE Sensors Journal, 11(1), 45-55. doi:10.1109/jsen.2010.2051539Parra L Sendra S Jimenez JM Lloret J Smart system to detect and track pollution in marine environments, in proc. of the 2015 2015 1503 1508Atto, M., & Guy, C. (2014). Routing Protocols and Quality of Services for Security Based Applications Using Wireless Video Sensor Networks. Network Protocols and Algorithms, 6(3), 119. doi:10.5296/npa.v6i3.5802Liu, Z., Zheng, Q., Xue, L., & Guan, X. (2012). A distributed energy-efficient clustering algorithm with improved coverage in wireless sensor networks. Future Generation Computer Systems, 28(5), 780-790. doi:10.1016/j.future.2011.04.019Bri D Sendra S Coll H Lloret J How the atmospheric variables affect to the WLAN datalink layer parameters 2010Ganesh, S., & Amutha, R. (2013). Efficient and secure routing protocol for wireless sensor networks through SNR based dynamic clustering mechanisms. Journal of Communications and Networks, 15(4), 422-429. doi:10.1109/jcn.2013.000073Amjad M 2014 Energy efficient multi level and distance clustering mechanism for wireless sensor networksMeghanathan, N. (2015). A Generic Algorithm to Determine Maximum Bottleneck Node Weight-based Data Gathering Trees for Wireless Sensor Networks. Network Protocols and Algorithms, 7(3), 18. doi:10.5296/npa.v7i3.796
    • …
    corecore