4,839 research outputs found

    External query reformulation for text-based image retrieval

    Get PDF
    In text-based image retrieval, the Incomplete Annotation Problem (IAP) can greatly degrade retrieval effectiveness. A standard method used to address this problem is pseudo relevance feedback (PRF) which updates user queries by adding feedback terms selected automatically from top ranked documents in a prior retrieval run. PRF assumes that the target collection provides enough feedback information to select effective expansion terms. This is often not the case in image retrieval since images often only have short metadata annotations leading to the IAP. Our work proposes the use of an external knowledge resource (Wikipedia) in the process of refining user queries. In our method, Wikipedia documents strongly related to the terms in user query (" definition documents") are first identified by title matching between the query and titles of Wikipedia articles. These definition documents are used as indicators to re-weight the feedback documents from an initial search run on a Wikipedia abstract collection using the Jaccard coefficient. The new weights of the feedback documents are combined with the scores rated by different indicators. Query-expansion terms are then selected based on these new weights for the feedback documents. Our method is evaluated on the ImageCLEF WikipediaMM image retrieval task using text-based retrieval on the document metadata fields. The results show significant improvement compared to standard PRF methods

    Aerospace medicine and biology: A continuing bibliography with indexes, supplement 203

    Get PDF
    This bibliography lists 150 reports, articles, and other documents introduced into the NASA scientific and technical information system in January 1980

    Dense Text Retrieval based on Pretrained Language Models: A Survey

    Full text link
    Text retrieval is a long-standing research topic on information seeking, where a system is required to return relevant information resources to user's queries in natural language. From classic retrieval methods to learning-based ranking functions, the underlying retrieval models have been continually evolved with the ever-lasting technical innovation. To design effective retrieval models, a key point lies in how to learn the text representation and model the relevance matching. The recent success of pretrained language models (PLMs) sheds light on developing more capable text retrieval approaches by leveraging the excellent modeling capacity of PLMs. With powerful PLMs, we can effectively learn the representations of queries and texts in the latent representation space, and further construct the semantic matching function between the dense vectors for relevance modeling. Such a retrieval approach is referred to as dense retrieval, since it employs dense vectors (a.k.a., embeddings) to represent the texts. Considering the rapid progress on dense retrieval, in this survey, we systematically review the recent advances on PLM-based dense retrieval. Different from previous surveys on dense retrieval, we take a new perspective to organize the related work by four major aspects, including architecture, training, indexing and integration, and summarize the mainstream techniques for each aspect. We thoroughly survey the literature, and include 300+ related reference papers on dense retrieval. To support our survey, we create a website for providing useful resources, and release a code repertory and toolkit for implementing dense retrieval models. This survey aims to provide a comprehensive, practical reference focused on the major progress for dense text retrieval

    Deep Learning based Recommender System: A Survey and New Perspectives

    Full text link
    With the ever-growing volume of online information, recommender systems have been an effective strategy to overcome such information overload. The utility of recommender systems cannot be overstated, given its widespread adoption in many web applications, along with its potential impact to ameliorate many problems related to over-choice. In recent years, deep learning has garnered considerable interest in many research fields such as computer vision and natural language processing, owing not only to stellar performance but also the attractive property of learning feature representations from scratch. The influence of deep learning is also pervasive, recently demonstrating its effectiveness when applied to information retrieval and recommender systems research. Evidently, the field of deep learning in recommender system is flourishing. This article aims to provide a comprehensive review of recent research efforts on deep learning based recommender systems. More concretely, we provide and devise a taxonomy of deep learning based recommendation models, along with providing a comprehensive summary of the state-of-the-art. Finally, we expand on current trends and provide new perspectives pertaining to this new exciting development of the field.Comment: The paper has been accepted by ACM Computing Surveys. https://doi.acm.org/10.1145/328502

    University of Glasgow at WebCLEF 2005: experiments in per-field normalisation and language specific stemming

    Get PDF
    We participated in the WebCLEF 2005 monolingual task. In this task, a search system aims to retrieve relevant documents from a multilingual corpus of Web documents from Web sites of European governments. Both the documents and the queries are written in a wide range of European languages. A challenge in this setting is to detect the language of documents and topics, and to process them appropriately. We develop a language specific technique for applying the correct stemming approach, as well as for removing the correct stopwords from the queries. We represent documents using three fields, namely content, title, and anchor text of incoming hyperlinks. We use a technique called per-field normalisation, which extends the Divergence From Randomness (DFR) framework, to normalise the term frequencies, and to combine them across the three fields. We also employ the length of the URL path of Web documents. The ranking is based on combinations of both the language specific stemming, if applied, and the per-field normalisation. We use our Terrier platform for all our experiments. The overall performance of our techniques is outstanding, achieving the overall top four performing runs, as well as the top performing run without metadata in the monolingual task. The best run only uses per-field normalisation, without applying stemming
    • 

    corecore