11 research outputs found

    Cross-lingual Entity Alignment via Joint Attribute-Preserving Embedding

    Full text link
    Entity alignment is the task of finding entities in two knowledge bases (KBs) that represent the same real-world object. When facing KBs in different natural languages, conventional cross-lingual entity alignment methods rely on machine translation to eliminate the language barriers. These approaches often suffer from the uneven quality of translations between languages. While recent embedding-based techniques encode entities and relationships in KBs and do not need machine translation for cross-lingual entity alignment, a significant number of attributes remain largely unexplored. In this paper, we propose a joint attribute-preserving embedding model for cross-lingual entity alignment. It jointly embeds the structures of two KBs into a unified vector space and further refines it by leveraging attribute correlations in the KBs. Our experimental results on real-world datasets show that this approach significantly outperforms the state-of-the-art embedding approaches for cross-lingual entity alignment and could be complemented with methods based on machine translation

    Is Aligning Embedding Spaces a Challenging Task? A Study on Heterogeneous Embedding Alignment Methods

    Get PDF
    Representation Learning of words and Knowledge Graphs (KG) into low dimensional vector spaces along with its applications to many real-world scenarios have recently gained momentum. In order to make use of multiple KG embeddings for knowledge-driven applications such as question answering, named entity disambiguation, knowledge graph completion, etc., alignment of different KG embedding spaces is necessary. In addition to multilinguality and domain-specific information, different KGs pose the problem of structural differences making the alignment of the KG embeddings more challenging. This paper provides a theoretical analysis and comparison of the state-of-the-art alignment methods between two embedding spaces representing entity-entity and entity-word. This paper also aims at assessing the capability and short-comings of the existing alignment methods on the pretext of different applications

    Coordinated Reasoning for Cross-Lingual Knowledge Graph Alignment

    Full text link
    Existing entity alignment methods mainly vary on the choices of encoding the knowledge graph, but they typically use the same decoding method, which independently chooses the local optimal match for each source entity. This decoding method may not only cause the "many-to-one" problem but also neglect the coordinated nature of this task, that is, each alignment decision may highly correlate to the other decisions. In this paper, we introduce two coordinated reasoning methods, i.e., the Easy-to-Hard decoding strategy and joint entity alignment algorithm. Specifically, the Easy-to-Hard strategy first retrieves the model-confident alignments from the predicted results and then incorporates them as additional knowledge to resolve the remaining model-uncertain alignments. To achieve this, we further propose an enhanced alignment model that is built on the current state-of-the-art baseline. In addition, to address the many-to-one problem, we propose to jointly predict entity alignments so that the one-to-one constraint can be naturally incorporated into the alignment prediction. Experimental results show that our model achieves the state-of-the-art performance and our reasoning methods can also significantly improve existing baselines.Comment: in AAAI 202

    Wider Vision: Enriching Convolutional Neural Networks via Alignment to External Knowledge Bases

    Get PDF
    Deep learning models suffer from opaqueness. For Convolutional Neural Networks (CNNs), current research strategies for explaining models focus on the target classes within the associated training dataset. As a result, the understanding of hidden feature map activations is limited by the discriminative knowledge gleaned during training. The aim of our work is to explain and expand CNNs models via the mirroring or alignment of CNN to an external knowledge base. This will allow us to give a semantic context or label for each visual feature. We can match CNN feature activations to nodes in our external knowledge base. This supports knowledge-based interpretation of the features associated with model decisions. To demonstrate our approach, we build two separate graphs. We use an entity alignment method to align the feature nodes in a CNN with the nodes in a ConceptNet based knowledge graph. We then measure the proximity of CNN graph nodes to semantically meaningful knowledge base nodes. Our results show that in the aligned embedding space, nodes from the knowledge graph are close to the CNN feature nodes that have similar meanings, indicating that nodes from an external knowledge base can act as explanatory semantic references for features in the model. We analyse a variety of graph building methods in order to improve the results from our embedding space. We further demonstrate that by using hierarchical relationships from our external knowledge base, we can locate new unseen classes outside the CNN training set in our embeddings space, based on visual feature activations. This suggests that we can adapt our approach to identify unseen classes based on CNN feature activations. Our demonstrated approach of aligning a CNN with an external knowledge base paves the way to reason about and beyond the trained model, with future adaptations to explainable models and zero-shot learning
    corecore