7,151 research outputs found

    Phase-Retrieved Tomography enables imaging of a Tumor Spheroid in Mesoscopy Regime

    Get PDF
    Optical tomographic imaging of biological specimen bases its reliability on the combination of both accurate experimental measures and advanced computational techniques. In general, due to high scattering and absorption in most of the tissues, multi view geometries are required to reduce diffuse halo and blurring in the reconstructions. Scanning processes are used to acquire the data but they inevitably introduces perturbation, negating the assumption of aligned measures. Here we propose an innovative, registration free, imaging protocol implemented to image a human tumor spheroid at mesoscopic regime. The technique relies on the calculation of autocorrelation sinogram and object autocorrelation, finalizing the tomographic reconstruction via a three dimensional Gerchberg Saxton algorithm that retrieves the missing phase information. Our method is conceptually simple and focuses on single image acquisition, regardless of the specimen position in the camera plane. We demonstrate increased deep resolution abilities, not achievable with the current approaches, rendering the data alignment process obsolete.Comment: 21 pages, 5 figure

    3.46 Ga Apex chert 'microfossils' reinterpreted as mineral artefacts produced during phyllosilicate exfoliation

    Get PDF
    We acknowledge the facilities, scientific and technical assistance of the Australian Microscopy & Microanalysis Research Facility at: Centre for Microscopy Characterisation and Analysis, The University of Western Australia; Electron Microscopy Unit, The University of New South Wales. These facilities are funded by the Universities, State and Commonwealth Governments. DW was funded by the European Commission and the Australian Research Council (FT140100321). This is ARC CCFS paper number XXX. We acknowledge Martin van Kranendonk, Owen Green, Cris Stoakes, Nicola McLoughlin, the late John Lindsay and the Geological Survey of Western Australia for fieldwork assistance, Thomas Becker for assistance with Raman microspectroscopy, Anthony Burgess from FEI for the preparation of one of the TEM wafers, and Russell Garwood, Tom Davies, Imran Rahman & Stephan Lautenschlager for training and advice on the SPIERS and AVIZO software suites. We thank Chris Fedo and an anonymous reviewer for comments that improved the manuscript.Peer reviewedPostprin

    Compressed sensing electron tomography of needle-shaped biological specimens--Potential for improved reconstruction fidelity with reduced dose.

    Get PDF
    Electron tomography is an invaluable method for 3D cellular imaging. The technique is, however, limited by the specimen geometry, with a loss of resolution due to a restricted tilt range, an increase in specimen thickness with tilt, and a resultant need for subjective and time-consuming manual segmentation. Here we show that 3D reconstructions of needle-shaped biological samples exhibit isotropic resolution, facilitating improved automated segmentation and feature detection. By using scanning transmission electron tomography, with small probe convergence angles, high spatial resolution is maintained over large depths of field and across the tilt range. Moreover, the application of compressed sensing methods to the needle data demonstrates how high fidelity reconstructions may be achieved with far fewer images (and thus greatly reduced dose) than needed by conventional methods. These findings open the door to high fidelity electron tomography over critically relevant length-scales, filling an important gap between existing 3D cellular imaging techniques.The research leading to these results has received funding from the European Union Seventh Framework Programme under Grant Agreement 312483 - ESTEEM2 (Integrated Infrastructure Initiative–I3), as well as from the European Research Council under the European Union’s Seventh Framework Programme (FP/2007-2013)/ERC grant agreement 291522 - 3DIMAGE. B.W. and E.S. acknowledge financial support from the Deutsche Forschungsgemeinschaft (DFG) within the framework of the SPP 1570 as well as through the Cluster of Excellence “Engineering of Advanced Materials” at the Friedrich-Alexander-Universität ErlangenNürnberg. G.D. and C.D. acknowledge funding from the ERC under grant number 259619 PHOTO EM. B.W. acknowledges the Research Training Group “Disperse Systems for Electronic Applications” (DFG GEPRIS GRK 1161). R.L. acknowledges a Junior Research Fellowship from Clare College.This is the final version of the article. It first appeared from Elsevier via http://dx.doi.org/10.1016/j.ultramic.2015.10.02

    Cryo electron microscopy to determine the structure of macromolecular complexes

    Get PDF
    Cryo-electron microscopy (cryo-EM) is a structural molecular and cellular biology technique that has experienced major advances in recent years. Technological developments in image recording as well as in processing software make it possible to obtain three-dimensional reconstructions of macromolecular assemblies at near-atomic resolution that were formerly obtained only by X-ray crystallography or NMR spectroscopy. In parallel, cryo-electron tomography has also benefitted from these technological advances, so that visualization of irregular complexes, organelles or whole cells with their molecular machines in situ has reached subnanometre resolution. Cryo-EM can therefore address a broad range of biological questions. The aim of this review is to provide a brief overview of the principles and current state of the cryo-EM field

    Closer to the native state. Critical evaluation of cryo-techniques for Transmission Electron Microscopy: preparation of biological samples

    Get PDF
    Over the years Transmission Electron Microscopy (TEM) has evolved into a powerful technique for the structural analysis of cells and tissues at various levels of resolution. However, optimal sample preservation is required to achieve results consistent with reality. During the last few decades, conventional preparation methods have provided most of the knowledge about the ultrastructure of organelles, cells and tissues. Nevertheless, some artefacts can be introduced at all stagesofstandard electron microscopy preparation technique. Instead, rapid freezing techniques preserve biological specimens as close as possible to the native state. Our review focuses on different cryo-preparation approaches, starting from vitrification methods dependent on sample size. Afterwards, we discuss Cryo-Electron Microscopy Of VItreous Sections (CEMOVIS) and the main difficulties associated with this technique. Cryo-Focused Ion Beam (cryo-FIB) is described as a potential alternative for CEMOVIS. Another post-processing route for vitrified samples is freeze substitution and embedding in resin for structural analysis or immunolocalization analysis. Cryo-sectioning according to Tokuyasu is a technique dedicated to high efficiency immunogold labelling. Finally, we introduce hybrid techniques, which combine advantages of primary techniques originally dedicated to different approaches. Hybrid approaches permit to perform the study of difficult-to-fix samples and antigens or help optimize the sample preparation protocol for the integrated Laser and Electron Microscopy (iLEM) technique.(Folia Histochemica et Cytobiologica 2014, Vol. 52, No, 1, 1–17
    • …
    corecore