13,338 research outputs found

    A Hybrid Approach to Privacy-Preserving Federated Learning

    Full text link
    Federated learning facilitates the collaborative training of models without the sharing of raw data. However, recent attacks demonstrate that simply maintaining data locality during training processes does not provide sufficient privacy guarantees. Rather, we need a federated learning system capable of preventing inference over both the messages exchanged during training and the final trained model while ensuring the resulting model also has acceptable predictive accuracy. Existing federated learning approaches either use secure multiparty computation (SMC) which is vulnerable to inference or differential privacy which can lead to low accuracy given a large number of parties with relatively small amounts of data each. In this paper, we present an alternative approach that utilizes both differential privacy and SMC to balance these trade-offs. Combining differential privacy with secure multiparty computation enables us to reduce the growth of noise injection as the number of parties increases without sacrificing privacy while maintaining a pre-defined rate of trust. Our system is therefore a scalable approach that protects against inference threats and produces models with high accuracy. Additionally, our system can be used to train a variety of machine learning models, which we validate with experimental results on 3 different machine learning algorithms. Our experiments demonstrate that our approach out-performs state of the art solutions

    A Study on privacy for Sensitive Data by DM algorithms

    Get PDF
    Whenever big data term is concerned the most important concern is privacy of data. One of the most common methods use random permutation techniques to mask the data, for preserving the privacy of sensitive data. Randomize response (RR) techniques were developed for the purpose of protecting surveys privacy and avoiding biased answers. The proposed work is to enhance the privacy level in RR technique using four group schemes. First according to the algorithm random attributes a, b, c, d were considered, then the randomization have been performed on every dataset according to the values of theta. Then ID3 and CART algorithm are applied on the randomized data

    A Survey on Privacy for Sensitive Big Data by DM Algorithms

    Get PDF
    Whenever big data term is concerned the most important concern is privacy of data. One of the most common methods use random permutation techniques to mask the data, for preserving the privacy of sensitive data. Randomize response (RR) techniques were developed for the purpose of protecting surveys privacy and avoiding biased answers. The proposed work is to enhance the privacy level in RR technique using four group schemes. First according to the algorithm random attributes a, b, c, d were considered, then the randomization have been performed on every dataset according to the values of theta. Then ID3 and CART algorithm are applied on the randomized data

    Security in Data Mining- A Comprehensive Survey

    Get PDF
    Data mining techniques, while allowing the individuals to extract hidden knowledge on one hand, introduce a number of privacy threats on the other hand. In this paper, we study some of these issues along with a detailed discussion on the applications of various data mining techniques for providing security. An efficient classification technique when used properly, would allow an user to differentiate between a phishing website and a normal website, to classify the users as normal users and criminals based on their activities on Social networks (Crime Profiling) and to prevent users from executing malicious codes by labelling them as malicious. The most important applications of Data mining is the detection of intrusions, where different Data mining techniques can be applied to effectively detect an intrusion and report in real time so that necessary actions are taken to thwart the attempts of the intruder. Privacy Preservation, Outlier Detection, Anomaly Detection and PhishingWebsite Classification are discussed in this paper

    Secure Outsourced Computation on Encrypted Data

    Get PDF
    Homomorphic encryption (HE) is a promising cryptographic technique that supports computations on encrypted data without requiring decryption first. This ability allows sensitive data, such as genomic, financial, or location data, to be outsourced for evaluation in a resourceful third-party such as the cloud without compromising data privacy. Basic homomorphic primitives support addition and multiplication on ciphertexts. These primitives can be utilized to represent essential computations, such as logic gates, which subsequently can support more complex functions. We propose the construction of efficient cryptographic protocols as building blocks (e.g., equality, comparison, and counting) that are commonly used in data analytics and machine learning. We explore the use of these building blocks in two privacy-preserving applications. One application leverages our secure prefix matching algorithm, which builds on top of the equality operation, to process geospatial queries on encrypted locations. The other applies our secure comparison protocol to perform conditional branching in private evaluation of decision trees. There are many outsourced computations that require joint evaluation on private data owned by multiple parties. For example, Genome-Wide Association Study (GWAS) is becoming feasible because of the recent advances of genome sequencing technology. Due to the sensitivity of genomic data, this data is encrypted using different keys possessed by different data owners. Computing on ciphertexts encrypted with multiple keys is a non-trivial task. Current solutions often require a joint key setup before any computation such as in threshold HE or incur large ciphertext size (at best, grows linearly in the number of involved keys) such as in multi-key HE. We propose a hybrid approach that combines the advantages of threshold and multi-key HE to support computations on ciphertexts encrypted with different keys while vastly reducing ciphertext size. Moreover, we propose the SparkFHE framework to support large-scale secure data analytics in the Cloud. SparkFHE integrates Apache Spark with Fully HE to support secure distributed data analytics and machine learning and make two novel contributions: (1) enabling Spark to perform efficient computation on large datasets while preserving user privacy, and (2) accelerating intensive homomorphic computation through parallelization of tasks across clusters of computing nodes. To our best knowledge, SparkFHE is the first addressing these two needs simultaneously
    • …
    corecore