1,285 research outputs found

    Deflated Iterative Methods for Linear Equations with Multiple Right-Hand Sides

    Full text link
    A new approach is discussed for solving large nonsymmetric systems of linear equations with multiple right-hand sides. The first system is solved with a deflated GMRES method that generates eigenvector information at the same time that the linear equations are solved. Subsequent systems are solved by combining restarted GMRES with a projection over the previously determined eigenvectors. This approach offers an alternative to block methods, and it can also be combined with a block method. It is useful when there are a limited number of small eigenvalues that slow the convergence. An example is given showing significant improvement for a problem from quantum chromodynamics. The second and subsequent right-hand sides are solved much quicker than without the deflation. This new approach is relatively simple to implement and is very efficient compared to other deflation methods.Comment: 13 pages, 5 figure

    Hybrid algorithms for cyclically reduced convection-diffusion problems

    Get PDF
    We consider hybrid and adaptive iterative algorithms for cyclically-reduced discrete convection-diffusion problems. Hybrid algorithms combine via a two phase algorithm, iterative methods which require no a priori information about the coefficient matrix in the first phase with Chebyshev or Richardson iteration in the second phase. For two-dimensional convection-diffusion problems, central difference discretization is considered and the resulting linear system is reduced to approximately half its size by applying one step of cyclic reduction. We examine the numerical performance of the hybrid methods for solving the reduced systems. Our numerical experiments show that for the class of problems considered, an adaptive Chebyshev algorithm that uses modified moments to approximate the eigenvalues requires less work in most cases than the hybrid algorithms based on GMRES/Richardson methods

    Some observations on weighted GMRES

    Get PDF
    We investigate the convergence of the weighted GMRES method for solving linear systems. Two different weighting variants are compared with unweighted GMRES for three model problems, giving a phenomenological explanation of cases where weighting improves convergence, and a case where weighting has no effect on the convergence. We also present new alternative implementations of the weighted Arnoldi algorithm which may be favorable in terms of computational complexity, and examine stability issues connected with these implementations. Two implementations of weighted GMRES are compared for a large number of examples. We find that weighted GMRES may outperform unweighted GMRES for some problems, but more often this method is not competitive with other Krylov subspace methods like GMRES with deflated restarting or BICGSTAB, in particular when a preconditioner is used

    On the eigenvalues and eigenvectors of nonsymmetric saddle point matrices preconditioned by block triangular matrices

    Get PDF
    Block lower triangular and block upper triangular matrices are popular preconditioners for nonsymmetric saddle point matrices. In this note we show that a block lower triangular preconditioner gives the same spectrum as a block upper triangular preconditioner and that the eigenvectors of the two preconditioned systems are related

    Error estimators and their analysis for CG, Bi-CG and GMRES

    Full text link
    We present an analysis of the uncertainty in the convergence of iterative linear solvers when using relative residue as a stopping criterion, and the resulting over/under computation for a given tolerance in error. This shows that error estimation is indispensable for efficient and accurate solution of moderate to high conditioned linear systems (κ>100\kappa>100), where κ\kappa is the condition number of the matrix. An O(1)\mathcal{O}(1) error estimator for iterations of the CG (Conjugate Gradient) algorithm was proposed more than two decades ago. Recently, an O(k2)\mathcal{O}(k^2) error estimator was described for the GMRES (Generalized Minimal Residual) algorithm which allows for non-symmetric linear systems as well, where kk is the iteration number. We suggest a minor modification in this GMRES error estimation for increased stability. In this work, we also propose an O(n)\mathcal{O}(n) error estimator for A-norm and l2l_{2} norm of the error vector in Bi-CG (Bi-Conjugate Gradient) algorithm. The robust performance of these estimates as a stopping criterion results in increased savings and accuracy in computation, as condition number and size of problems increase
    • …
    corecore