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Hybrid algorithms for cyclically reduced
convection-diffusion problems
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Abstract

We consider hybrid and adaptive iterative algorithms for cyclically-
reduced discrete convection-diffusion problems. Hybrid algorithms
combine via a two phase algorithm, iterative methods which require
no a priori information about the coefficient matrix in the first phase
with Chebyshev or Richardson iteration in the second phase. For
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two-dimensional convection-diffusion problems, central difference dis-
cretization is considered and the resulting linear system is reduced
to approximately half its size by applying one step of cyclic reduc-
tion. We examine the numerical performance of the hybrid methods
for solving the reduced systems. Our numerical experiments show
that for the class of problems considered, an adaptive Chebyshev al-
gorithm that uses modified moments to approximate the eigenvalues
requires less work in most cases than the hybrid algorithms based on
gmres/Richardson methods.
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1 Introduction

The gmres method [13] with restarting is often used for solving nonsymmet-
ric linear systems. An effect of restarting is that it slows down the conver-
gence as information about the smallest eigenvalues and corresponding eigen-
vectors is lost at the time of restart. Morgan [9] has proposed the addition of
approximate eigenvectors to improve the convergence. Another alternative
to improve convergence is to use a hybrid algorithm which combines gmres

with Richardson or Chebyshev methods [10].

In this paper, we study the performance of some hybrid iterative al-
gorithms for solving linear systems arising from cyclically reduced discrete
convection-diffusion problems. For solving a linear system with coefficient
matrix A, a hybrid method consists of two phases: a first phase which ac-
quires eigenvalue information about the matrix A and a second phase which
uses the eigenvalue information to construct a polynomial iteration.

Consider the convection-diffusion equation

− [(pux)x + (quy)y] + sux + tuy = f on Ω = (0, 1) × (0, 1) (1)

with u = g on ∂Ω. The functions p(x, y) and q(x, y) are positive in Ω. We
discretize (1) by centred five-point finite difference scheme over a uniform
grid of mesh size h = 1/(n + 1). The resulting linear system using a point
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red-black ordering of the underlying grid has the form [4](
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where D and F are nonsingular diagonal matrices. Eliminating the red points
gives the reduced system[

F − ED−1C
]
u

(b)
h = f

(b)
h − ED−1f

(r)
h . (3)

For the iterative solution of (3), Elman and Golub [3] considered one-line and
two-line orderings of the grid points. The resulting coefficient matrix A(b) =
F −ED−1C derived using each of these orderings have block Property A and
using the analysis of Gauss-Seidel and sor methods for solving the constant
coefficient problems p(x, y) = q(x, y) = 1, s(x, y) = σ, and t(x, y) = δ they
showed that the rates of convergence for solving the reduced system by block
iterative methods were faster than for solving the full system.

2 Hybrid Procedures

Manteuffel [7, 8] first proposed a hybrid algorithm based on the Chebyshev
polynomials in the complex plane for solving nonsymmetric linear systems
whose spectrums can be enclosed in an ellipse that does not contain the
origin. For the nonsymmetric linear system

Au = b, A ∈ RN×N , u, b ∈ RN , (4)
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Phase I of Manteuffel’s algorithm computes the convex hull of the spectrum
of A and in Phase II, the iteration parameters d, the centre and c, the focal
length of the smallest ellipse with foci at d ± c enclosing the spectrum are
used in a Chebyshev iteration.

Let

Tj(z) = cosh(j cosh−1(z))

be the jth Chebyshev polynomial and let pj be the scaled Chebyshev poly-
nomial given by

pj(λ) =
Tj(

d−λ
c

)

Tj(
d
c
)

,

with the parameters c and d restricted so that d > 0 and d2 > c2. Denoting
by u0, an initial approximate solution of (4), the iterates uj in Phase II of
Manteuffel’s algorithm are such that

ej = pj(A)e0 and rj = pj(A)r0, j ≥ 0, (5)

where ej = A−1b − uj denotes the error in uj, rj = b − Auj is the residual
vector. Starting from an initial guess u0 and iteration parameters c and d,
Phase II of Manteuffel’s algorithm is as follows [7]:

Algorithm 1: Chebyshev Iteration
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(1). Compute r0 = b − Au0 and p0 = (1/d)r0.
(2). For j = 1, 2, . . . , until convergence do:

uj = uj−1 + pj−1,
rj = b − Auj,
If j = 1, α1 = 2d

2d2−c2
, β1 = dα1 − 1,

else αj = [d − ( c
2
)2αj−1]

−1, βj = dαj − 1.
(3). pj = αjrj + βjpj−1.

For any choice of the parameters c and d, the rate of convergence of the
Chebyshev iteration is given by [7, 11]

− log

(
max

λ∈σ(A)
S(λ)

)
, (6)

where

S(z) =
d − z + [(d − z)2 − c2]

1/2

d + [d2 − c2]1/2
. (7)

In practice the Chebyshev iteration is performed for a predetermined num-
ber of steps. If convergence in Algorithm I is unsatisfactory, the sequence of
residual vectors are used to compute estimates of the extreme eigenvalues of
A and Algorithm I is restarted using new iteration parameters c and d. An
algorithm for estimating the parameters dynamically is given by Manteuf-
fel [8].
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3 Eigenvalue Estimates Using Modified Mo-

ments

The operator S(A) induced by S(z), given by (7) is such that

rj ≈ S(A)jr0.

In Manteuffel’s algorithm, the eigenvalue estimates of A are computed by
applying the power method to S(A). Another approach presented in [5] uses
modified moments to approximate the eigenvalues of A. For a diagonalizable
matrix A, the idea is to interpret the inner products of residual vectors as
modified moments and the use of the modified Chebyshev algorithm to com-
pute the entries of a tridiagonal matrix Hκ whose eigenvalues are estimates
of the eigenvalues of the matrix A (see [5] for details).

After each 2κ− 1 iterations by the Chebyshev method, a new matrix Hκ

is computed and its spectrum is determined. Let S(H) denote the union of
sets of eigenvalues of all the computed matrices Hκ. Then the parameters c
and d are determined by fitting an ellipse to S(H). If parameters d and c
change insignificantly when eigenvalues of new matrices Hk are included in
the set S(H), then no further modified moments are calculated.
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4 Arnoldi-Based Hybrid Procedures

An alternative to the eigenvalue computation using the modified power method
is to use Arnoldi’s algorithm [1]. An advantage of this procedure is that the
closely related gmres algorithm [13] can be used to updatethe solution. The
spectral information obtained from Arnoldi’s algorithm can be used to adap-
tively build a preconditioner for gmres [6]. Burrage and Erhel [2] show that
the augmented subspace approach of Morgan [9] combined with the precon-
ditioning approach lead to a more robust algorithm.

The spectral information from Arnoldi’s algorithm can also be used to
obtain a hybrid algorithm. Starting with an initial guess u0, the hybrid
Arnoldi/Chebyshev algorithm can be described as follows [11]:

Algorithm 3: Hybrid Arnoldi/Chebyshev.

(1). Compute r0 = b − Au0, β = ‖r0‖2 and set v1 = r0/β.
(2). Adaptive Step:

Perform m steps of Arnoldi/gmres,
i.e., compute the improved solution û from u0 and set u0 = û.
Compute eigenvalue estimates of upper Hessenberg matrix
generated by Arnoldi’s method and determine new
iteration parameters c and d.

(3).Chebyshev steps:
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Perform k steps of Algorithm 1 using u0 and check for convergence.
If convergence criteria is not satisfied, go to (1).

A serious drawback of the Chebyshev iteration is that for non-positive real
A, the computed convex hull may have eigenvalues with positive and nega-
tive real parts [12]. Furthermore, there are problems for which the spectrum
is not well approximated by an ellipse. Smolarski and Saylor [14] suggested
using nonelliptical contours and used a discrete least-squares approximation
on a polygonal region containing eigenvalue estimates to obtain a residual
polynomial. Instead of the Chebyshev iteration, in the second phase the
residual polynomial is used by means of a cyclic Richardson iteration. How-
ever, the method proposed by Smolarski and Saylor to compute the least
squares polynomial is based on classical moments and is unstable. The reason
for this instability is that the moment matrix {〈λi−1, λj−1〉} can become ill-
conditioned. Saad [12] replaced the moment matrix by the matrix {〈Ti, Tj〉},
where Tj is the jth Chebyshev polynomial. Once the modified moment ma-
trix is computed, Saad applies a second-order Richardson iteration based on
a polynomial that is optimal in the L2-sense on some polygon constructed
from the eigenvalue estimates.

4.1 Hybrid GMRES Method

All the hybrid algorithms discussed above construct a domain enclosing the
eigenvalues in the complex plane and then calculate a residual polynomial.
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However, for a nonnormal matrix, eigenvalues alone fail to explain the be-
haviour of the matrix. Nachtigal, Reichel and Trefethen [10] have noted that
there are problems associated with the use of eigenvalue estimates obtained
using Arnoldi’s algorithm. The hybrid procedure that they have proposed
uses the gmres iteration of Phase I and the residual polynomial used in
Phase II of the algorithm is precisely the gmres polynomial obtained at
some step m. Starting with an initial approximation u0, the hybrid gmres

algorithm can be described as follows:

Algorithm 4: Hybrid GMRES Algorithm.

(1) Phase I:
Run gmres until ‖rm‖2 drops by a suitable amount and set ν = m.

(2) Phase II:
Re-apply the gmres polynomial pν(z) cyclically until convergence.

The strategy described in [10] for switching between Phase I and Phase II
is that m is chosen such that there are equal amounts of work in Phase I and
Phase II.
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5 Experimental Results

In this section we describe numerical experiments to analyse the performance
of the different hybrid methods for solving the reduced system (3) arising
from the central-difference discretisation of convection-diffusion problems of
the type (1) on the unit square. The problems considered are taken from [4].
We discretize each problem on the unit square with mesh size h = 1/(n +
1). The full linear system has N = n2 equations and the reduced linear
system has Nr = N/4 equations for even n. Details of the experiments
are as follows. We have used Matlab programs with stopping criterion
‖ri‖2/‖r0‖2 ≤ 10−10. For all problems, the initial guess is x0 = 0. For the
adaptive Chebyshev methods, the adaptive procedure is invoked after at most
16 Chebyshev steps. For the hybrid gmres algorithm, we have switched to
Phase II of the algorithm after 16 gmres steps. Each experiment examines
five methods:

1. chebls: the hybrid least squares method [12],

2. hybrid gmres: the hybrid gmres algorithm [10],

3. cheba: the hybrid Chebyshev-gmres method [11],

4. mp: Adaptive Chebyshev algorithm using modified power method to
obtain eigenvalue estimates [7],

5. mm: Adaptive Chebyshev algorithm using modified moments to obtain
eigenvalue estimates [5].
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In the tables, the numbers of iterations required for solving the reduced linear
system and the ilu(0) preconditioned reduced linear system are denoted
It and Itp, respectively. The column labelled Flops give the flop counts
necessary for satisfying the stopping criterion. In the figures, the convergence
histories of the different methods are denoted as follows: a-gmres(16), b-

chebls, c-hybrid-gmres, d-cheba, e-mp, and f-mm, respectively.

Problem 1. We consider the constant coefficient problem

−∆u + σux = 0, (x, y) ∈ (0, 1) × (0, 1), (8)

with Dirichlet boundary conditions determined from the exact solution

u(x, y) = eσx/2 sin πy

sinh ξ

(
2e−σ/2 sinh ξx + sinh ξ(1 − x)

)
, (9)

where ξ2 = π2 + σ2/4. We consider a grid size with n = 50. Table 1 shows
the number of iterations and the flop counts required to satisfy the stopping
criterion. For the Chebyshev method based on modified moments, we have
used κ = 4.

The performance of the methods for the case σ = 500 is shown in Fig. 1.
We remark that the adaptive algorithm mm requires lesser work than the
other methods to achieve convergence. The Chebyshev algorithm based on
modified moments uses 5 adaptive steps. In this case, the adaptive Cheby-
shev algorithm based on the power method (mp) uses 4 adaptive steps. We
also remark the restarted gmres algorithm with m = 16 converges slowly.
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Figure 1: Problem 1: σ = 500
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Table 1: Iteration and Flop counts (×106) for constant coefficient Problem 1
σ = 100 σ = 200 σ = 500

It Flops It Flops It Flops
chebls 107 4.82 163 6.47 254 9.24

hybrid gmres 111 9.12 106 8.76 127 10.32
cheba 92 4.20 180 6.57 161 6.16

mp 210 6.36 130 4.23 211 6.30
mm 125 3.74 102 3.20 133 4.34

Problem 2. We consider the problem

−∆u + σux + δuy = f(x, y), (x, y) ∈ (0, 1) × (0, 1) (10)

with Dirichlet boundary conditions u = 0. The number of iterations and the
flop counts required for convergence are shown in Table 2. We remark that
for the highly nonsymmetric case σ = 200, δ = 100, the hybrid Chebyshev-
gmres method performs well for the preconditioned reduced linear system.
For the unpreconditioned linear system, the method chebls performs poorly
and its performance is greatly improved in the preconditioned case.

Problem 3. We consider the variable coefficient problem

−∆u +
σ

2

(
1 + x2

)
ux + δuy = f(x, y), (x, y) ∈ (0, 1) × (0, 1) (11)
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Figure 2: Problem 2: σ = 200, δ = 100
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Table 2: Iteration and Flop counts (×106) for Problem 2
σ = 100, δ = 10 σ = 200, δ = 100

It Flops Itp Flops it Flops Itp Flops
chebls 114 3.96 183 10.53 126 5.40 17 1.17

hybrid gmres 85 6.49 84 4.92 111 9.12 47 2.85
cheba 83 2.87 98 5.48 99 4.41 12 0.87

mp 80 2.31 39 2.45 99 3.24 32 1.97
mm 62 1.88 38 2.19 91 2.99 22 1.34

with Dirichlet boundary conditions u = 0. The discrete solution to the
reduced linear system is taken as a vector of ones. We consider a problem
size of n = 50. Table 3 shows that for the case σ = δ = 20, cheba requires
the least amount of work for the unpreconditioned reduced linear system
in this case, whereas the two adaptive methods require a large number of
iterations to converge. We also remark that, for σ = δ = 40, the hybrid
gmres(16) algorithm performs better than the other methods.

Problem 4. We consider the variable coefficient problem

−∆u + σ(1 − 2x)ux + δ(1 − 2y)uy = 0 (x, y) ∈ (0, 1) × (0, 1) (12)

with Dirichlet boundary conditions u = 0. Table 4 shows the performance of
the different algorithms for solving the reduced linear system.
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Table 3: Iteration and Flop counts (×106) for Problem 3
σ = δ = 20 σ = δ = 40

It Flops Itp Flops It Flops Itp Flops
chebls 756 23.65 50 3.48 312 9.71 74 4.51

hybrid gmres 446 14.23 81 4.85 263 8.28 32 2.05
cheba 222 6.86 59 3.87 232 6.78 46 2.81

mp 800 23.07 47 2.74 335 10.04 41 2.37
mm 484 13.93 48 2.79 210 6.18 38 2.24

Table 4: Iteration and Flop counts (×106) for Problem 4
σ = δ = 40 σ = δ = 60

It Flops Itp Flops It Flops Itp Flops
chebls 290 6.74 91 3.45 183 4.68 74 4.51

hybrid gmres 104 5.58 35 1.41 94 5.10 30 1.23
cheba 101 2.95 53 1.99 76 2.51 34 1.34

mp 219 4.26 22 0.90 125 2.58 16 0.62
mm 114 2.16 21 0.81 73 1.48 18 0.69
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Figure 3: Problem 4: σ = δ = 40
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6 Conclusion

We have carried out an experimental study of the performance of hybrid al-
gorithms for solving reduced linear systems arising from convection-diffusion
problems. We have investigated several procedures for obtaining eigenvalue
estimates to compute iteration parameters for a polynomial iteration. For the
class of problems that we have considered the adaptive Chebyshev scheme
based on modified moments often converges faster than the scheme based on
the modified power method. Comparisons with other hybrid schemes also
show that the Chebyshev algorithm using modified moments requires less
work in most cases.
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