102,728 research outputs found

    Impact of Supercapacitors on a Fuel-Cell-Based Triple Hybrid for Small Unmanned Aircraft

    Get PDF
    Hybrid fuel-cell-based propulsion systems have the potential to transform the use of small electric powered unmanned aircraft. Offering the possibility of greatly increased flight endurance and range over existing battery systems, hybrid systems also overcome some of the limitations inherent with fuel cell only systems such as low specific power and comparatively slow dynamic response. However, although there have been many fuel-cell/battery hybrid systems developed for unmanned aerial vehicle (UAV) propulsion, alternative power storage devices such as supercapacitors have not been adequately explored. Supercapacitors are fast acting with a high specific power and cycle lifetime, making them ideal candidates for use in a fuel cell hybrid system. This research develops and evaluates the use of hybrid fuel cell propulsion systems incorporating supercapacitors in the overall hybrid architecture. First, the performance of supercapacitors is evaluated and compared with the performance of fuel cells and batteries to enable an assessment of the strengths and weaknesses of the different energy sources. Next, the integration of supercapacitors with fuel cells is performed in a robust and efficient manner that ensures the hybrid system architecture maximises the benefits inherent in each of the power sources. A comparison is made between fuel-cell/battery, fuel-cell/supercapacitor, and fuel-cell/battery/supercapacitor hybrids for a UAV propulsion application through hardware-in-the-loop simulation. Finally, flight testing of a fuel-cell-based triple hybrid in a small UAV is performed to validate the operation and performance of the power system

    Saving Hydrogen Fuel Consumption and Operating at High Efficiency of Fuel Cell in Hybrid System to Power UAV

    Get PDF
    The present fuel cell technology is under considerations as a potential power source for Unmanned Aerial Vehicles. Fuel cells are an electrochemical power plant that takes hydrogen and oxygen as inputs and produces electricity, water and heat as outputs.  Most of the global hydrogen production is from non-renewable fossil fuels. Therefore, this paper investigates how to save hydrogen fuel consumption and operate at high efficiency in the fuel cell/battery hybrid system to power a small Aircraft. We achieved that by working on the power management of the fuel cell/battery hybrid propulsion system for small UAV by using the fuzzy logic controller and charging up the batteries. The hybrid propulsion system consists of a 1.2kW PEM fuel cell, three 12V batteries, DC/DC converters, and an electric engine. The fuzzy logic controls the batteries' output powers through the bidirectional DC/DC converter. It will help maintain the fuel cell operates at an optimal point with high efficiency as the main power supply for different flight phases to achieve the desired power

    Real-Time Power Management of A Fuel Cell/Ultracapacitor Hybrid

    Get PDF
    This thesis presents the system architecture design, system integration methodology, and real-time control of a fuel cell/ultracapacitor hybrid power system. The main objective is for the hybrid system to respond to real-world fluctuations in power without negatively impacting fuel cell life. A Proton Exchange Membrane (PEM) Fuel Cell is an electrochemical device which converts the chemical energy of pure hydrogen into electricity through a chemical reaction with oxygen. The high conversion efficiency, zero harmful emissions, high power-to-weight ratio, scalability, and low temperature operation make PEM fuel cells very attractive for stationary and portable power applications. However, fuel cells are limited in responding to fast transients in power demand, moreover power fluctuations have negative impact on fuel cell durability. This motivates the use of a supplementary energy storage device to assist the fuel cell by buffering sharp transients in power demand. The high power density, long cycle life, and efficiency of ultracapacitors make them an ideal solution for such auxiliary energy storage in a hybrid fuel cell system. The power management strategy that determines the power split between the fuel cell and ultracapacitor is key to the power following capability, long-term performance, and life-time of the fuel cell. In this thesis, a rule-based and a model predictive control strategy are designed, implemented and evaluated for power management of a fuel cell/ultracapacitor hybrid. The high-level control objectives are to respond to rapid variations in load while minimizing damaging fluctuations in fuel cell current and maintaining ultracapacitor charge (or voltage) within allowable bounds. An experimental test stand was created to evaluate the performance of the controllers. The test stand connects the fuel cell and ultracapacitor to an electronic load through two dc/dc converters, which provide two degrees of freedom, enabling independent low-level control of the DC BUS voltage and the current split between the fuel cell and ultracapacitor. Experiments show that both rule-based and model predictive power management strategies can be tuned to meet both high and low-level control objectives for a given power demand profile. However, the capability to explicitly enforce the constraints in model predictive scheme and its predictive nature in meeting power demands enables a more systematic design and results in general in smoother performance

    An intelligent power management system for unmanned earial vehicle propulsion applications

    Get PDF
    Electric powered Unmanned Aerial Vehicles (UAVs) have emerged as a promi- nent aviation concept due to the advantageous such as stealth operation and zero emission. In addition, fuel cell powered electric UAVs are more attrac- tive as a result of the long endurance capability of the propulsion system. This dissertation investigates novel power management architecture for fuel cell and battery powered unmanned aerial vehicle propulsion application. The research work focused on the development of a power management system to control the hybrid electric propulsion system whilst optimizing the fuel cell air supplying system performances. The multiple power sources hybridization is a control challenge associated with the power management decisions and their implementation in the power electronic interface. In most applications, the propulsion power distribu- tion is controlled by using the regulated power converting devices such as unidirectional and bidirectional converters. The amount of power shared with the each power source is depended on the power and energy capacities of the device. In this research, a power management system is developed for polymer exchange membrane fuel cell and Lithium-Ion battery based hybrid electric propulsion system for an UAV propulsion application. Ini- tially, the UAV propulsion power requirements during the take-off, climb, endurance, cruising and maximum velocity are determined. A power man- agement algorithm is developed based on the UAV propulsion power re- quirement and the battery power capacity. Three power states are intro- duced in the power management system called Start-up power state, High power state and Charging power state. The each power state consists of the power management sequences to distribute the load power between the battery and the fuel cell system. A power electronic interface is developed Electric powered Unmanned Aerial Vehicles (UAVs) have emerged as a promi- nent aviation concept due to the advantageous such as stealth operation and zero emission. In addition, fuel cell powered electric UAVs are more attrac- tive as a result of the long endurance capability of the propulsion system. This dissertation investigates novel power management architecture for fuel cell and battery powered unmanned aerial vehicle propulsion application. The research work focused on the development of a power management system to control the hybrid electric propulsion system whilst optimizing the fuel cell air supplying system performances. The multiple power sources hybridization is a control challenge associated with the power management decisions and their implementation in the power electronic interface. In most applications, the propulsion power distribu- tion is controlled by using the regulated power converting devices such as unidirectional and bidirectional converters. The amount of power shared with the each power source is depended on the power and energy capacities of the device. In this research, a power management system is developed for polymer exchange membrane fuel cell and Lithium-Ion battery based hybrid electric propulsion system for an UAV propulsion application. Ini- tially, the UAV propulsion power requirements during the take-off, climb, endurance, cruising and maximum velocity are determined. A power man- agement algorithm is developed based on the UAV propulsion power re- quirement and the battery power capacity. Three power states are intro- duced in the power management system called Start-up power state, High power state and Charging power state. The each power state consists of the power management sequences to distribute the load power between the battery and the fuel cell system. A power electronic interface is developed with a unidirectional converter and a bidirectional converter to integrate the fuel cell system and the battery into the propulsion motor drive. The main objective of the power management system is to obtain the controlled fuel cell current profile as a performance variable. The relationship between the fuel cell current and the fuel cell air supplying system compressor power is investigated and a referenced model is developed to obtain the optimum compressor power as a function of the fuel cell current. An adaptive controller is introduced to optimize the fuel cell air supplying system performances based on the referenced model. The adaptive neuro-fuzzy inference system based controller dynamically adapts the actual compressor operating power into the optimum value defined in the reference model. The online learning and training capabilities of the adaptive controller identify the nonlinear variations of the fuel cell current and generate a control signal for the compressor motor voltage to optimize the fuel cell air supplying system performances. The hybrid electric power system and the power management system were developed in real time environment and practical tests were conducted to validate the simulation results

    Modeling and Simulation of a Microturbine Generator to be Coupled With a Molten Carbonate Fuel Cell for Distributed Generation

    Get PDF
    Distributed generation is desired when the individual energy requirements ranging from 25-75 kW of office buildings, restaurants, hospitals and apartments can not be met by the current electric utility grid. Microturbine generators as stand alone power generation systems have been designed to meet these requirements. For power requirements up to 50 MW, hybrid fuel cell systems offer higher efficiency and lower levels of pollutant emissions with more advanced fuel energy savings than non-hybrid systems. The objective of this project is to develop a simulation of a microturbine generator as a stand alone power generation system to validate a microturbine generator as part of a hybrid power generation system designed to produce 250 kW of usable power in MATLAB/Simulink®. The stand alone power generation system will be modeled using a 1-Dimensional approach. The hybrid power generation system is modeled as three major sub-systems; a hybrid microturbine generator, a molten carbonate fuel cell with catalytic oxidizer, and a shell-and-tube heat exchanger. The hybrid power generation system will be analyzed by two different models; a 0-Dimensional hybrid model where all the components are 0-Dimensional and a 0-Dimensional model with 1-Dimensional zooming for the hybrid microturbine generator. The analysis of the stand alone system is used for validation of the hybrid system at the operating design point of the microturbine generator. A control system was placed on the hybrid microturbine generator power generation system and an analysis was completed on the temperature response of the 0-Dimensionl hybrid system as the microturbine generator power was ramped from 0-30 kW over six different time intervals. A second controller was placed on the fuel cell power generation system to further analyze the hybrid system\u27s controllability. The three MATLAB/Simulink® models developed provide an initial design methodology for modeling and simulation of a hybrid power generation system

    Development and experimental evaluation of the control system of a hybrid fuel cell vehicle

    Get PDF
    This work presents the development and experimental evaluation of a Fuel Cell Hybrid Vehicle, focusing on the control system. The main objective of this paper is to present a real vehicle which has been designed in order to demonstrate the feasibility of the use of hydrogen as an energy source for automotive applications. The paper describes the components that are integrated in the vehicle and presents several experimental results obtained during normal operation. A control system is designed and tested in order to perform all the operations related to the coordinated operation of the fuel cell, the intermediate electrical storage and the power train. Its main task is to compute the power that must be demanded to the fuel cell in real time. This computation is done in order to satisfy the power demand of the electric motor taking into account the state of charge of the batteries and the operating regime of the fuel cell. This is accomplished by manipulating the electronic converter which regulate the current that the fuel cell supplies to the batteries.Ministerio de Ciencia y Tecnología DPI2007-66718-C04-0

    Design and experimental verification of a fuel cell/supercapacitor passive configuration for a light vehicle

    Get PDF
    The fuel cell/supercapacitor passive configuration without using any DC/DC converters is promising in auto-motive applications as it can downsize the fuel cell stack, maintain the peak power capability, improve the system efficiency, and remove the need of additional control. This paper presents the design and characterization of a fuel cell/supercapacitor passive hybrid system for a 60 V light vehicle. A detailed design procedure for the passive hybrid test platform is presented with each component modelled and experimentally verified. The voltage error of the fuel cell and the supercapacitor model in the steady state is within 2% and 3%, respectively. Experimental results also validate the function of the passive configuration under conditions of a step load and a drive cycle. The simulation model of the passive hybrid system matches the measurements when a step load current is applied. The supercapacitor provides the transient current due to its smaller resistance while the fuel cell handles the steady state current, which makes it possible to downsize the fuel cell stack. For the drive cycle examined in this paper, the fuel cell stack can be downsized to one third of the load peak power

    A novel hybrid propulsion system configuration and power distribution strategy for light electric aircraft

    Get PDF
    Similar to the electrification of the automotive industry, the growing concerns with the shortage of fossil fuels has also called for a paradigm shift in aviation industry. To promote the aviation electrification process, it is necessary to develop an efficient energy storage system and a stable power transmission system to improve the reliability and extend the endurance of electric aircraft. This paper designs a novel propulsion system topology and power distribution algorithm for light manned electric aircraft. Firstly, a novel aircraft hybrid propulsion system topology is designed, in which the battery energy storage system can work synergistically with the fuel cell to provide power to the aircraft electric engine. Then, an adaptive energy management framework is developed to distribute the aircraft power requirement between energy storage devices. Meanwhile, an aircraft power balance state recognizer is designed to enhance the dynamic performance of the aircraft and adjust the working state of the propulsion system. The proposed hybrid propulsion system configuration and power distribution algorithm are verified under a prototype two-seater electric aircraft: Alpha Electro. Numerical analysis results indicate that the developed methods can dynamically meet the power requirement of aircraft under fast-charging and peak power requirement scenarios. With the developed hybrid propulsion system, most of the fuel cell high-power working points are moved to the medium and low area, which indicates that the fuel cell is effectively protected. Furthermore, the quantified hydrogen consumption can be reduced by 7.63% comparing to fuel cell electric aircraft.</p

    Connecticut transit (CTTRANSIT) fuel cell transit bus: Third evaluation report and appendices

    Full text link
    This report describes operations at Connecticut Transit (CTTRANSIT) in Hartford for one prototype fuel cell bus and three newer diesel buses operating from the same location. The prototype fuel cell bus was manufactured by Van Hool and ISE Corp. and features an electric hybrid drive system with a UTC Power PureMotion 120 Fuel Cell Power System and ZEBRA batteries for energy storage. The fuel cell bus started operation in April 2007, and evaluation results through October 2009 are provided in this report

    A Small-Scale Hybrid Wind Turbine and Fuel Cell Electrical Generator

    Get PDF
    The global increase in energy demand combined with socioeconomic, political and environmental concerns associated with fossil fuels have increased the interest in alternative sources of energy. A wind turbine converts mechanical energy in the wind into the kinetic energy and to electrical energy. A fuel cell is an electrochemical device that converts fuel and oxidant into electricity and water with up to 83% efficiency. Flooding is a limitation of fuel cells and occurs when water cannot be expelled from the polymer electrode membrane at a sufficient rate to maintain a continuous reaction. This study presents a small-scale prototype hybrid wind turbine/fuel cell system that combines two demonstrated alternative energy technologies in an effort to achieve a higher efficiency electrical generator through the reduction of flooding in the fuel cell. In the hybrid system, the fuel cell is mounted on the rotating shaft of the wind turbine in order to increase the rate of water removal in the fuel cell membrane. The small-scale hybrid wind turbine and the fuel cell electrical generator is tested in a wind tunnel and power measurements are obtained for the hybrid system over a range of wind speeds. The experimental results show that the proposed hybrid system is technically feasible and that the rotation increases the fuel cell efficiency up to 10% when compared to a stationary fuel cell
    corecore