
Wright State University Wright State University 

CORE Scholar CORE Scholar 

Browse all Theses and Dissertations Theses and Dissertations 

2007 

Modeling and Simulation of a Microturbine Generator to be Modeling and Simulation of a Microturbine Generator to be 

Coupled With a Molten Carbonate Fuel Cell for Distributed Coupled With a Molten Carbonate Fuel Cell for Distributed 

Generation Generation 

Karleine M. Justice 
Wright State University 

Follow this and additional works at: https://corescholar.libraries.wright.edu/etd_all 

 Part of the Mechanical Engineering Commons 

Repository Citation Repository Citation 
Justice, Karleine M., "Modeling and Simulation of a Microturbine Generator to be Coupled With a Molten 
Carbonate Fuel Cell for Distributed Generation" (2007). Browse all Theses and Dissertations. 124. 
https://corescholar.libraries.wright.edu/etd_all/124 

This Thesis is brought to you for free and open access by the Theses and Dissertations at CORE Scholar. It has 
been accepted for inclusion in Browse all Theses and Dissertations by an authorized administrator of CORE 
Scholar. For more information, please contact library-corescholar@wright.edu. 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by CORE

https://core.ac.uk/display/36753917?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://corescholar.libraries.wright.edu/
https://corescholar.libraries.wright.edu/etd_all
https://corescholar.libraries.wright.edu/etd_comm
https://corescholar.libraries.wright.edu/etd_all?utm_source=corescholar.libraries.wright.edu%2Fetd_all%2F124&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/293?utm_source=corescholar.libraries.wright.edu%2Fetd_all%2F124&utm_medium=PDF&utm_campaign=PDFCoverPages
https://corescholar.libraries.wright.edu/etd_all/124?utm_source=corescholar.libraries.wright.edu%2Fetd_all%2F124&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:library-corescholar@wright.edu


 



 

MODELING AND SIMULATION OF A MICROTURBINE GENERATOR TO BE 

COUPLED WITH A MOLTEN CARBONATE FUEL CELL FOR DISTRIBUTED 

GENERATION 

 
 
 
 
 
 
 
 
 
 
 

A thesis submitted in partial fulfillment 
of the requirements for the degree of  

Master of Science in Engineering 
 
 
 

By 
 
 
 
 

KARLEINE M. JUSTICE 
B.S., University of Idaho, 2003 

 
 
 
 
 
 
 

2007 
Wright State University 



 

WRIGHT STATE UNIVERISTY 

SCHOOL OF GRADUATE STUDIES 
 
 
 

May 10, 2007 
 
 
 

I HEREBY COMMEND THAT THE THESIS PREPARED UNDER MY 
SUPERVISION BY Karleine M. Justice ENTITLED Modeling and Simulation of a 
Microturbine Generator to be Coupled with a Molten Carbonate Fuel Cell for Distributed 
Generation BE ACCEPTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS 
FOR THE DEGREE OF Master of Science in Engineering. 
 
 
 
Committee on 
Final Examination 
               J. Mitch Wolff, Ph.D. 
        Thesis Director 
 
    J. Mitch Wolff, Ph.D.        
        George P.G. Huang, P.E., Ph.D. 
                   Department Chair 
 
        P. Ruby Mawasha, P.E., Ph.D. 
   
 
 
       Haibo Dong, Ph.D.   
 
 
 
     Jeffrey Dalton, Ph.D.   
 
 
  
          Joseph F. Thomas, Jr., Ph.D. 
      Dean, School of Graduate Studies 



 

vi 

ABSTRACT 
 
 
 

Justice, Karleine M. M.S.Egr., Department of Mechanical and Materials Engineering, 
Wright State University, 2007.   Modeling and Simulation of a Microturbine Generator to 
be Coupled with a Molten Carbonate Fuel Cell for Distributed Generation. 

 
 
 

Distributed generation is desired when the individual energy requirements ranging from 

25-75 kW of office buildings, restaurants, hospitals and apartments can not be met by the 

current electric utility grid.  Microturbine generators as stand alone power generation 

systems have been designed to meet these requirements.  For power requirements up to 

50 MW, hybrid fuel cell systems offer higher efficiency and lower levels of pollutant 

emissions with more advanced fuel energy savings than non-hybrid systems.  The 

objective of this project is to develop a simulation of a microturbine generator as a stand 

alone power generation system to validate a microturbine generator as part of a hybrid 

power generation system designed to produce 250 kW of usable power in 

MATLAB/Simulink®.  The stand alone power generation system will be modeled using a 

1-Dimensional approach.  The hybrid power generation system is modeled as three major 

sub-systems; a hybrid microturbine generator, a molten carbonate fuel cell with catalytic 

oxidizer, and a shell-and-tube heat exchanger.  The hybrid power generation system will 

be analyzed by two different models; a 0-Dimensional hybrid model where all the 

components are 0-Dimensional and a 0-Dimensional model with 1-Dimensional zooming 

for the hybrid microturbine generator.  The analysis of the stand alone system is used for 



 

vii 

validation of the hybrid system at the operating design point of the microturbine 

generator.  A control system was placed on the hybrid microturbine generator power 

generation system and an analysis was completed on the temperature response of the 0-

Dimensionl hybrid system as the microturbine generator power was ramped from 0-30 

kW over six different time intervals.  A second controller was placed on the fuel cell 

power generation system to further analyze the hybrid system’s controllability. The three 

MATLAB/Simulink® models developed provide an initial design methodology for 

modeling and simulation of a hybrid power generation system. 
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NOMENCLATURE 

Microturbine Generator 

Cp – specific heat at constant pressure, Btu/lbm-R (kJ/kg-K) 

Cv – specific heat at constant volume, Btu/lbm-R (kJ/kg-K) 

HHV – higher heating value of natural gas, Btu/lbm (MJ/kg) 

LHV – lower heating value of natural gas, Btu/lbm (MJ/kg) 

M – Mach number 

M0 – upstream Mach number 

N – shaft speed, rpm 

Ndes – design shaft speed, rpm 

%N  – percent operating speed of the engine 

P – power, Btu/hr (W) 

Pref  – reference pressure, psia (kPa) 

Ps – static pressure, psia (kPa) 

Pt – total pressure, psia (kPa) 

inQ& – heat added to the system, Btu/hr (W) 

R – gas constant, Btu/lbm-R (kJ/kg-K) 

Tref  – reference temperature, R (K) 

Ts – static temperature, R (K) 

Tt – total temperature, R (K) 

Ut – rotor tip speed, ft/s (m/s) 



 

xxii 

∀  – plenum volume, ft3 (m3) 

V – absolute velocity, ft/s (m/s) 

VR – relative velocity, ft/s (m/s) 

a – speed of sound, ft/s (m/s) 

b – width of diffuser section, ft (m) 

dr – diameter of rotor, ft (m) 

dh – diameter of hub, ft (m) 

dt – diameter of tip, ft (m) 

e – polytropic efficiency 

f – fuel/air ratio 

fstoich – stoichiometric fuel/air ratio 

h – enthalpy, Btu/lbm (kJ/kg) 

ocm& – corrected mass flow rate of compressor, lbm/s (kg/s) 

om& – mass flow rate of compressor, lbm/s (kg/s) 

fm& – mass flow rate of fuel, lbm/s (kg/s) 

tm& – mass flow rate of turbine, lbm/s (kg/s) 

n – number of compressor rotor vanes 

rr – radius of rotor, ft (m) 

rh – radius at hub of inducer, ft (m) 

rt - radius at tip of inducer, ft (m) 

u – axial component of velocity, ft/s (m/s) 

v – tangential (swirl) component of velocity, ft/s (m/s) 

w – radial component of velocity, ft/s (m/s) 



 

xxiii 

Subscripts 

c – compressor 

cc – combustion chamber 

d – diffuser 

m – mechanical power 

net – net power produced 

t – turbine 

th – thermal power 

0,1, 2, 3 …– stage or station locations 

 

Heat Exchangers – Primary Surface and Shell-and-Tube 

Ai – inner surface area of cold flow geometry, ft2 (m2) 

Ao – outer surface area of cold flow geometry, ft2 (m2) 

ASm – flow area at middle of central baffle compartment, ft2 (m2) 

ASw – flow area through baffle window, ft2 (m2) 

Ax – cross-sectional area of single flow channel geometry, ft2 (m2) 

Axtot – total cross sectional area of entire recuperator core, ft2 (m2) 

Cc – cold flow heat capacity rate, Btu/hr-R (W/K) 

Ch – hot flow heat capacity rate, Btu/hr-R (W/K) 

Cp – specific heat at constant pressure, Btu/lbm-R (kJ/kg-K) 

C* - heat capacity rate ratio 

Dh – hydraulic diameter, ft (m) 

Di – inner diameter of single tube, ft (m) 



 

xxiv 

Do – outer diameter of single tube, ft (m) 

Ds – shell diameter, ft (m) 

inE&  – energy into a control volume, Btu/hr (W) 

outE&  – energy out of a control volume, Btu/hr (W) 

stE&  – energy stored within a control volume, Btu/hr (W) 

Gs – mass velocity of fluid in shell-side, lbm/s-ft2 (kg/s-m2) 

Gt – mass velocity of fluid in tube-side, lbm/s-ft2 (kg/s-m2) 

Lhx – length of heat exchanger, ft (m) 

Lb – distance between baffles, ft (m) 

Na – anode molar flow, mol/s 

Nc – cathode molar flow, mol/s 

Nox – oxidizer molar flow, mol/s 

Nb – number of baffles 

Nc – number of tube rows crossed during one cross flow 

Ncw – number of tube rows crossed in each baffle window 

Nt – number of tubes 

NFC – total number of cold flow channels 

NS – number of heat exchanger sections – 1 section is equivalent to one tube bundle pass 

NTU – number of transfer units 

Nu – Nusselt number 

P – wetted perimeter, in (mm) 

Pc,in – inside wetted perimeter of cold flow geometry, in (mm) 

Pc,out – outside wetted perimeter of cold flow geometry, in (mm) 
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Phot – inside wetted perimeter of hot flow geometry, in (mm) 

ΔP – pressure drop on hot or cold side of recuperator, psia (kPa) 

ΔPbi – pressure drop of an ideal tube bank in one baffle compartment of the central baffle 

 spacing, psia (kPa) 

ΔPc – pressure drop in the entire interior cross-flow section, psia (kPa) 

ΔPe – combined pressure drop for entrance and exit sections, psia (kPa) 

ΔPs – pressure drop on shell-side, psia (kPa) 

ΔPt – pressure drop on tube-side, psia (kPa) 

ΔPw – pressure drop for entire window in the arrangement, psia (kPa) 

ΔPwi – pressure drop of an ideal tube bank in one baffle window section, psia (kPa) 

Pr – Prandtl number 

Q&  – heat transfer rate, Btu/hr (W) 

maxQ&  – maximum possible heat transfer rate, Btu/hr (W) 

Re – Reynolds number 

Rfi – fouling resistance of air, hr-ft2-R/Btu (m2-K/W) 

Rfo – fouling resistance of natural gas flue gas or oxidizer exhaust, hr-ft2-R/Btu (m2-K/W) 

Rb – correlation factor for baffle bypass flow 

Rl – correlation factor for baffle leakage effects 

Rs – correlation factor for entrance and exit sections 

Rw – material wall resistance, hr-ft2-R/Btu (m2-K/W) 

Tc,avg – average temperature of cold flow, R (K) 

Tci – temperature of cold flow into, R (K)  

Tco – temperature of cold flow out of, R (K) 



 

xxvi 

Th,avg – average temperature of hot flow, R (K) 

Thi – temperature of hot flow into, R (K) 

Tho – temperature of hot flow out of, R (K) 

U&  – internal energy stored in a control volume, Btu/hr (W) 

Uo – overall heat transfer coefficient, Btu/hr-ft2-R (W/m2-K) 

∀ – volume, ft3 (m3) 

Xa – anode mass fractions 

Xc – cathode mass fractions 

Xox – oxidizer mass fractions 

b – base of cell geometry, in (mm) 

ff – Darcy friction factor 

h – height of cell geometry, in (mm) 

hi – convective heat transfer coefficient of inner fluid, Btu/hr-ft2-R (W/m2-K) 

ho – convective heat transfer coefficient of outer fluid, Btu/hr-ft2-R (W/m2-K) 

k – thermal conductivity, Btu/hr-ft-R (W/m-K) 

m – mass of the fluid, lbm (kg) 

sm&  – mass flow rate of fluid on shell-side, lbm/s (kg/s) 

tm&  – mass flow rate of fluid on tube-side, lbm/s (kg/s) 

tss – thickness of Type 347 stainless steel, in (mm) 

tb – baffle thickness, ft (m) 

um – mean velocity of the fluid, ft/s (m/s) 
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Molten Carbonate Fuel Cell (SI Units Only) 

Eo – standard potential, (V) 

F – Faraday’s constant, (C/mol) 

I – cell current density, (A/cm2) 

MoxCpox – oxidizer solid mass-specific heat product, (J/K) 

MsCps – stack solid mass-specific heat product, (J/K) 

Ni – total molar flow of gas species i, (mol/s) 

Pdc – stack DC power, (W) 

R – Universal gas constant, (J/mol-K) 

Ri – total production rate of species i (from all reactions), (mol/s) 

Ts – fuel cell stack solid average temperature, (K) 

∀  – compartment volume, (m3) 

Vcell – cell voltage, (V) 

Vo – equilibrium potential, (V) 

hi – partial molar enthalpies of species i, (J/mol) 

ni – number of moles of species i 

xi – mol fraction of species i 

z – cell ohmic impedance, (Ω-cm) 

Superscript 

air – air flow into oxidizer 

gas – anode off-gas into oxidizer 

in – flow in 

out – flow out 
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s - stack 

Subscript 

a – anode  

c – cathode  

ox – oxidizer, oxidizer exhaust 

tot – total  

 

Greek 

α – absolute flow angle, ° (degrees) 

βh – relative flow angle at inducer hub, ° (degrees) 

βt – relative flow angle at inducer tip, ° (degrees) 

γ – compressor specific heat ratio 

δ – normalized pressure 

ε – heat exchanger effectiveness 

εavg – heat exchanger effectiveness averaged over operating design line 

η – isentropic efficiency 

ηact – activation polarization, (V) 

ηconc – concentration polarization, (V) 

ηth – thermal efficiency 

θ – normalized temperature 

κ – turbine specific heat ratio 

μ – viscosity, lbm/ft-hr (kg/m-s) 

π
1 – expansion ratio 
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π – total pressure ratio 

σ – slip factor 

τ – total temperature ratio 

τC – compressor torque, ft-lbf (N-m) 

τT – turbine torque, ft-lbf (N-m) 

τLOAD – load applied to shaft, ft-lbf (N-m) 

τLOSS – bearing loss, ft-lbf (N-m) 

φ – equivalence ratio 

ω – angular velocity, (rad/s) 

ξ – total number of gas species 
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CHAPTER 1: INTRODUCTION 

 

The introduction of distributed generation for electrical power is the result of 

changing market forces, energy security issues and advancement in energy technology.  

A few of the driving forces behind distributed generation are the ever increasing need for 

reliable digital systems with quality power, the overburdening of the transmission and 

distribution grid of the nation, and energy security with efficient and productive use of 

domestic resources.  Environmental concerns also play a big role in distributed 

generation.  Near zero emissions and ultra-high efficiency help to compel today’s electric 

production market towards distributed generation. 

 Distributed generation (DG) is the use of small electric power generators whether 

located on the utility system, at the site of the utility costumer or at an isolated site not 

connected to the power grid.  The application of these DG systems is to provide lower 

voltage when needed to the distribution parts of an electric utility grid.  Most types of 

distributed generators use the traditional power generation systems, i.e., diesel, 

combustion turbine, combined cycle turbine, or other various types of turbomachinery.  

These traditional systems give on average between 20 to 30 percent plant efficiency.  

This efficiency is determined by the amount of energy in the fuel that is converted to 

useful electric power.  The plant efficiency can be increased by 50 percent for small 

hybrid systems suitable for distributed generation [1]. 
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The use of small power plants in the distribution network allows for the relief of 

congested distribution networks and avoids transmission losses and costs.  A need for 

small power generation is seen in remote areas and areas where emergency and 

uninterrupted power is critical. The most economical solution available is to generate 

power through small gas turbine systems, categorized as microturbines (3-200 kW) and 

miniturbines (200-500 kW) [26]. Microturbines enable small energy consumers to 

generate their own electricity from a secured power supply even at peak load periods.   

Microturbines have been design to meet the energy requirements ranging from 

25-75 kW of office buildings, restaurants, hospitals and apartments.  Cogeneration 

systems (i.e., combined heat and power) for a single household would require the 

microturbine to give 3 kW of power output [27]. Microturbines must compete directly 

with reciprocating engines and the continuous improvements of small diesel engines.  

Nonetheless, microturbines have over-ruling benefits in terms of low emissions, multi-

fuel capability, compact size, and low maintenance cost.  Gaining a low unit price cost of 

the gas turbine unit together with low emissions should be of highest priorities for gas 

turbine manufactures [28, 29]. 

Hybrid fuel cell designs under development and consideration include a high 

temperature fuel cell with a gas turbine generator, a fuel cell with a reciprocating or more 

commonly referred to piston engine, and designs that incorporate different fuel cell 

technologies.  Fuel cell hybrid systems that incorporate gas turbine technology that can 

generate power on the scale of 10 kW to 50 MW are envisioned to participate in the new 

market for distributed generation [3].  Figure 1.1 represents the hybrid power generation 

system that will be modified and is the focus of this paper. 
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CHAPTER 2: LITERATURE REVIEW 

 

2.1 Background and Existing Modeling Efforts 

 Fuel cells are classified primarily by the type of electrolyte they have.  The type 

of electrolyte determines the chemical reactions that take place in the cell, the catalysts 

required, the temperature range in which the cell operates, and the fuel required.  These 

characteristics affect the applications for which the fuel cells are most suitable.  There are 

several types of fuel cells currently under development, each with its own advantages, 

limitations and potential applications [4]. This chapter will describe three different types 

of fuel cells and fuel cell hybrid systems; the proton exchange membrane (PEM) fuel 

cell, the molten carbonate fuel cell (MCFC), and the solid oxide fuel cell (SOFC).  The 

emphasis will be placed on hybridization of the MCFC and SOFC, since these two are 

more apt to be modeled with a heat engine, such as a microturbine generator (MTG). 

 The background and modeling of a microturbine generator as it is applied to a 

hybrid system will be described in the hybrid power generation section, Section 2.2, and 

the MTG will be described in Section 2.3 as a stand alone power generation system.  

Since recuperation plays such a large role in the efficiency of a MTG, this chapter has a 

section dedicated explicitly to the background and design of a primary surface 

recuperator. 
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2.2 Hybrid Power Generation Systems 

Hybrid fuel cell designs under development and consideration include a high 

temperature fuel cell with a gas turbine generator, a fuel cell with a reciprocating or more 

commonly referred to as a piston engine, and designs that incorporate different fuel cell 

technologies.  It is very important to properly match and integrate the fuel cell with the 

gas turbine portions of the cycle.  A complete shut down of the turbine can be damaging 

to the fuel cell and other system components [5].  Hybrid systems have proven to 

generate high efficiency with essential low levels of pollutant emissions at greater fuel 

energy savings than non-hybrid systems.  Fuel cell hybrid systems that incorporate gas 

turbine technology in the form of microturbines that generate power on the scale of 10 

kW to 50 MW are envisioned to participate in the new market for distributed generation 

[3, 6, 7, 8]. 

 The National Fuel Cell Research Center (NFCRC) was established in 1998 to 

accelerate the evolution of fuel cells and fuel cell systems.  The Center assists the market 

in understanding this unique power system and the opportunities for both central and 

distributed power generation.  With the ability for high fuel-to-electrical efficiency, 

hybrid systems pose a shift for the future of power generation for a variety of 

applications.  The fuel cells most attractive for hybridization are the Molten Carbonate 

Fuel Cell (MCFC) and the Solid Oxide Fuel Cell (SOFC) due to the high operating and 

discharge temperatures.  Hybrid power systems that combine a gas turbine with the high 

temperature fuel cell (HTFC) has been extensively analyzed by U.S. Department of 

Energy, industry such as Fuel Cell Energy, Inc., National Energy Technology Laboratory 

(NETL), and the NFCRC over the last 5 years. As of 2004, Fuel Cell Energy, Inc. in 
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Danbury, CT has been operating a 250kW MCFC/MTG sub-MW hybrid system in 

cooperation with Capstone Turbine Corporation for over 4,500 hours in successful 

duration [7, 9, 10].   

 A fuel cell generates electricity directly through electrochemical reactions.  

Generating electricity in this matter is more efficient than a heat engine (gas turbine) 

because losses due to mechanical or rotating machinery are not an issue. The most 

efficient heat engine cycle allowed by physical laws is the Carnot cycle. When the second 

law of thermodynamics states that not all the supplied heat in a heat engine can be used to 

do work, the Carnot efficiency sets the limiting value on the fraction of the heat which 

can be used.  A fuel cell is not limited to the Carnot efficiency constraints so the fuel cell 

will most likely be the core of a high-efficiency hybrid power cycle [7].  A fuel cell 

derives its power from the heat of electrochemical reactions occurring within.  Therefore, 

the limit of efficiency for direct energy conversion is the ratio of available Gibb’s free 

energy to the total heat of electrochemical reaction.  The fuel cell model is developed on 

the basis of thermodynamics of the applicable reforming and electrochemical reactions 

and the associate reaction kinetics [8]. 

 Fuel cells operate at high efficiencies regardless of size and load.  The high 

temperature waste heat can be transformed into electricity.  The gas turbine in the hybrid 

system can be arranged in such a way that the thermal energy from the waste heat can be 

extracted to drive the compressor which in turn supplies the pressurized air to the fuel 

cell.  Any additional enthalpy is expanded through the turbine and additional electricity is 

produced by a shaft connected to a generator.  In this manner, efficiencies can reach 

upwards of 80 percent of the lower heating value (LHV) of the fuel used by the fuel cell, 

http://hyperphysics.phy-astr.gsu.edu/hbase/thermo/seclaw.html#c1
http://hyperphysics.phy-astr.gsu.edu/hbase/thermo/seclaw.html#c1
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natural gas.  With the extremely low NOx admissions from the fuel cell, the hybrid 

system will also be very environmentally aware [7, 9, 11].  

 

2.2.1 Proton Exchange Membrane (PEM) Fuel Cell Hybrid Power Generation 

Proton exchange membrane (PEM) fuel cells deliver high power density and offer 

the advantages of low weight and volume.  PEM fuel cells use a solid polymer as an 

electrolyte and porous carbon electrodes containing a platinum catalyst.  These fuel cells 

need only hydrogen, the oxygen from air, and water to operate and do not require any 

corrosive fluids.  Typically, they are fueled by pure hydrogen from storage tanks or 

onboard reformers.  The chemical reactions can be seen in Figure 2.1. 

PEM fuel cells operate at very low temperatures (when compared to MCFC or 

SOFC), around 353°K (635°R).  Low temperature operation allows for quick start up and 

results in less wear on system components giving better durability.  Requiring a noble 

metal catalyst (platinum) to separate the hydrogen’s electrons and protons adds to the 

cost of the fuel cell.  The platinum catalyst is exceptionally sensitive to carbon monoxide 

(CO) poisoning.  This increases cost by requiring an additional reactor to reduce CO in 

the fuel if the hydrogen is derived from an alcohol or hydrocarbon fuel (CH4).  PEM fuel 

cells are primarily for transportation application and some stationary applications.  A 

significant barrier to using these fuel cells in vehicles is hydrogen storage [4]. 

Auxiliary power units (APUs) on military and commercial aircraft may be 

replaced by a fuel cell system.  Barchewitz et al [12] modeled a fuel cell system 

comprised of a compressor-turbine unit, a kerosene reformer, and a proton exchange 
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membrane fuel cell PEM-FC.  With the increase in electric power demand a move toward 

more electric or all electric aircraft is feasible. 

 Hussain et al [13] claim that PEM fuel cells have the potential to replace 

conventional internal combustion engines in transportation applications.  A 

thermodynamic analysis of a PEM fuel cell power system for a light-duty fuel cell 

vehicle was done using the exergy method of analyzing energy systems.  The exergy 

method integrates the first and second law of thermodynamics and reference 

environmental conditions.  Exergy is defined as the maximum amount of work which can 

be obtained from a system or a flow of matter when it is brought reversibly to equilibrium 

with the reference environment.   

Jagaduri et al [14] developed a MATLAB/Simulink® model to simulate a 

combined hybrid PEM fuel cell microturbine distributed generation plant.  The purpose 

of the modeling was to address a grid connected fuel cell where the fuel cell controls the 

voltage magnitude and the reactive power compensation.  The bulk of the load following 

is provided by the microturbine.  The transient behavior of the distributed generation 

model reacted to the expectations of the authors. 
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Figure 2.1: Proton Exchange Membrane (PEM) Fuel Cell Reactions 
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2.2.2. Molten Carbonate Fuel Cell (MCFC) Hybrid Power Generation 

 Molten carbonate fuel cells (MCFC) are currently being developed for natural gas 

(CH4) and coal based power plants.  The power plants include electrical utility, industrial, 

and military applications.  The MCFC, seen in Figure 2.2, is a high temperature fuel cell 

that uses an electrolyte composed of a molten carbonate salt mixture suspended in porous 

chemically inert ceramic lithium aluminum oxide (LiAlO2) matrix.  Since these fuel cells 

operate at very high temperatures, roughly 923°K (1661°R), non-precious metals can be 

used for the catalysts at the anode and cathode, thus cost of the fuel cell is reduced.   

 Molten carbonate fuel cells can reach efficiencies approaching 60 percent [15], 

and when the waste heat is captured and reused, overall fuel efficiencies can reach as 

high as 85 percent.  An external reformer, used to convert more energy dense fuels to 

hydrogen, is not required for a MCFC.  With the high operating temperatures, fuels are 

converted to hydrogen within the fuel cell itself, this process is known as internal 

reforming.  The carbon monoxide poisoning mentioned in Section 2.2.1, does not affect 

the MCFC.  Carbon oxides (CO and CO2) can be used as fuel for the MCFC.  The 

primary disadvantage of current MCFC technology is durability.  The high temperatures 

and corrosive electrolyte accelerate component breakdown and corrosion, this decreases 

cell life [4].  

 A Direct FuelCell/Turbine® (DFC/T®) power plant for generation of clean power 

at very high efficiency has been developed by FuelCell Energy, Inc.  The DFC/T® is an 

internally reformed molten carbonate fuel cell. The system is based on an indirectly 

heated gas turbine to supplement fuel cell generated power.  The DFC/T® concept 

extends the high efficiency of the fuel cell by utilizing the fuel cell’s byproduct heat in a 
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Brayton cycle. A 250kW fuel cell stack is integrated with the Capstone C60 (60kW) 

MTG.  Tests were conducted with the power plant connected to the utility grid and 

providing real time grid connected operational experience. A power plant flowsheet and 

model were prepared using Chemcad simulation software by Ghezel-Ayagh et al [9, 10 

16].  The dynamic modeling was done in MATLAB/Simulink®, with the primary focus 

on the fuel cell.  The model of the fuel cell stack is based on a lumped-parameter 

assumption, for each the anode and cathode, with interchange of mass (ions) through the 

electrolyte matrix separating the two sides.  The direct fuel cell stack model is completed 

by supplementing the process states with a model for average fuel cell voltage, 

determined from the Nernst equation. 

 The dynamic simulation capabilities developed at National Fuel Cell Research 

Center (NFCRC) and National Energy Technology Laboratory (NETL) are useful for 

determining design requirements, analyzing dynamic response, and developing control 

strategies for MCFC/MTG hybrid systems.  The NETL model used C++ in combination 

with ProTRAX software package.  NFCRC used MATLAB/Simlink® software package.  

Identical assumptions were made to formulate the governing equations for the fuel cell 

models; includes discretized solution of the Nernst equation, all major electrochemical 

losses (polarizations), mass conservation, energy conservation and heat transfer 

processes.  Slightly different compressor and turbine performance maps were used. The 

MCFC models are constructed to simulate the fundamental operation of a MCFC similar 

to that currently manufactured by FuelCell Energy, Inc.  The hybrid models described in 

[5] by Roberts et al, have similar features and the configuration of FuelCell Energy, Inc. 

DFC/T® sub-MW system.  
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  There are two distinct features that make SOFC and MCFC differ from one 

another when it comes to positioning and integrating them in the gas turbine based 

system.  The first is the operating temperature – 1073-1273°K (1931-2291°R) for the 

SOFC and 873-923°K (1571-1661°R) for the MCFC.  The other is the requirement of 

carbon dioxide (CO2).  CO2 in the anode stream adversely affects the performance of a 

SOFC; but it is a requirement for the MCFC.  A SOFC is almost constantly placed 

upstream of the microturbine while the MCFC is integrated downstream of the 

microturbine.  For a system with the combustion chamber still present is the microturbine 

model, the MCFC is integrated such that the exhaust gas from the microturbine is used to 

feed the MCFC along with the anode exhaust [8].   
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Figure 2.2: Molten Carbonate Fuel Cell (MCFC) Reactions 
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2.2.3 Solid Oxide Fuel Cell (SOFC) Hybrid Power Generation 

 Solid oxide fuel cells (SOFC), seen in Figure 2.3, use a hard, non-porous ceramic 

compound as the electrolyte.  Since the electrolyte is a solid, construction of the SOFC 

does not have to be in the plate-like configuration typical of other fuel cell types.  It is 

expected that SOFC efficiency at converting fuel to electricity is between 50-60 percent.  

In co-generation or combined heat and power (CHP) applications where the waste heat is 

captured and utilized, the overall system fuel use efficiencies can reach 80-85 percent.  

The solid oxide fuel cell operates at extremely high temperatures, 1273°K (2290°R).  The 

high operating temperature removes the need for precious-metal catalysts, thus reducing 

the cost of the fuel cell.  Internal reforming is also seen with the SOFC, enabling a variety 

of fuels to be used and reducing the cost of having to add a reformer to the system.  The 

SOFC is the most sulfur-resistant type of fuel cell and it does not suffer from carbon 

monoxide poisoning.  This allows the SOFC to use fuel made from coal.   

 High temperature operation has disadvantages in the form of slow startup and the 

requirement of significant thermal shielding to retain heat and protect personnel.  The 

high temperatures of the SOFC may be acceptable for utility purposes, but not for 

transportation and small portable applications.  Durability of materials is also of high 

concern.  The development of low-cost materials with high durability at SOFC operating 

temperatures is the key technical challenge facing this technology [4]. 

 As of 2004, the first hybrid demonstration of a pressurized SOFC/MTG is being 

conducted at the NFCRC. The initiative lead by Southern California Edison is a 220kW 

unit that used a Siemens Westinghouse SOFC and an Ingersoll-Rand Energy Systems 

MTG.  This system has over 2,000 hours of operation and attained the world record in 
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fuel-to-electricity conversion efficiency.  The unit is natural gas fired and controlled 

through two dissipaters.  AC is used for the turbine output and DC for the fuel cell output 

[7]. 

 Modeling and simulation is performed at the Pacific Northwest National 

Laboratory (PNNL) located in Richland, Washington on SOFC cells, stacks, and systems 

as means for stationary power systems (distributed generation and centralized power 

plants), automotive power systems, and military power systems.  Modeling activity 

includes thermal-fluid modeling tools (CFD based) and thermodynamic and 

electrochemistry analysis using MATLAB/Simulink® [17]. 

 Auxiliary power units (APUs) are devices that can provide all or part of the non-

propulsion power of a vehicle.  The SOFC technology is most favorable due to 

characteristics such as the ability to use a variety of hydrocarbon fuels with a simpler 

reforming process and no need for any water management system.  The SOFC is 

predicted to be the first fuel cell to penetrate the transportation industry, for heavy-duty 

trucks and luxury vehicles.  The SOFC APU would replace the need for drivers to idle 

their engines to produce power for climate-control devices, and sleeper compartment 

accessories.  Baratto et al [18] has simulated the entire fuel cell system in ASPEN 

PLUSTM simulation software and the results where compared to experimental data 

whenever available and other models published in the literature showing good agreement. 

 SOFC-MTG hybrid power plants are a very attractive near term option, achieving 

efficiencies of over 60% with small power outputs (200-400kW).  Since the operating 

temperature of a SOFC stack is similar to the turbine inlet temperatures of the latest 



 

16 

generation microturbine generator around 1170°K (2106°R), the combustion chamber 

can be replaced by the SOFC stack.   

The SOFC-MTG power plant performance was evaluated by means of the 

ASPEN PLUSTM simulation software by Cocco et al [19].  The ASPEN model library, 

consisting of many standard components used by energy conversion systems, has been 

integrated with a dedicated fuel cell model.  The model simulates fuel cell performance 

by solving mass and energy balances for given values of the main operating parameters.  

The results of using ASPEN PLUSTM simulation software demonstrate that methanol is a 

viable fuel for SOFC hybrid plants especially when reformed externally.      

Costamagna et al [20] modeled the design and off-design performance of a 

SOFC-MTG hybrid.  The SOFC clean effluent replaced the combustor in this model and 

was written in the MATLAB® language.  This model demonstrated the feasibility of 

achieving efficiency of 60 percent at design point and always over 50 percent at part load 

conditions. 

 A SOFC system was modeled dynamically to provide data for the specification of 

equipment and control philosophy of an experimental test facility.  The balance of plant 

(BOP) of a SOFC carries out a number of service functions for the fuel cell stack.  The 

BOP alters the fuel and air supply to the fuel cell stack in response to changes in the 

electrical load while maintaining the inlet and outlet temperature constraints of the 

system, nominally set to 1123°K (2020°R) and 1323°K (2380°R), respectfully.  The 

dynamic modeling for this system was done by Dicks et al [21] and an in-house code was 

used.  The in-house code usage and modeling provided data for specification of 

equipment and control philosophy for and experimental test facility. 
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 Successful commercial application of SOFC technologies will require selection of 

appropriate operating conditions.  By varying operating conditions, a wide range of 

power and efficiency may be derived from a SOFC system.  Based on isothermal closed 

form parametric performance modeling, natural gas performance maps were created.  The 

functional form of the model and the boundaries of the operating envelope provide useful 

insight into SOFC operating characteristics and simple means of selecting conditions for 

natural gas operation. The operating temperature of the SOFC system was not considered 

an independent variable by Hartvigsen et al [22].  It is assumed that to minimize 

resistance, the stack is operated at the highest temperature consistent with stack life and 

system balance of plant constraints. 
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Figure 2.3: Solid Oxide Fuel Cell (SOFC) Reactions 
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2.3 Microturbine Generator (MTG) Stand Alone Power Generation 

The microturbine generator has a single-stage centrifugal compressor, low 

emission annular combustor that operates on natural gas, single-stage radial inflow 

turbine, a recuperator used to pre-heat the air into the combustor for increased efficiency 

thus resulting in the air returning to the surroundings to experience additional cooling, 

and a single shaft design running on a thin film of pressurized air inside the bearings.  

These very small, high-speed, gas turbine engines are of radial design and can be 

compared more easily to low-cost turbochargers than to the more complex axial designs 

seen in larger industrial gas turbines or aircraft gas turbine engines.  The MTG operates at 

a more conservative temperature eradicating the need for high-cost materials.  This 

elimination of the need for high-cost materials coupled with simplicity of microturbine 

generator design leads to low costs for production and the desire to do so in volume [6].   

 Distributed generation in the form of microturbine generators offers an attractive 

strategy for meeting future demands for reliable, cost effective electrical energy.  

However, the widespread commercialization of the microturbine generator may be 

limited due to recently adopted regulations that require the emissions of criteria pollutants 

such as nitrogen oxides (NOx) and carbon monoxide (CO) to be on par with advanced 

central power station’s emissions.  Capstone® Model C60 microturbine generator is one 

of the most widely used commercial microturbines [23]. 

 FuelCell Energy, Inc. has created mathematical models and computer simulations 

of the Capstone® Model 330 (30kW) MTG in 2003 and Model C60 (60kW) MTG by 

2005.  The Capstone® Model 330 has a rated power of 30kW and LHV efficiency of 

14%±2% at ISO Conditions operating on natural gas.   In [16], Ghezel-Ayagh et al 
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performed the computer simulation on the MTG section of the DFC/T® hybrid using 

ChemCad process simulation software.  

 For modeling of the Capstone® Model C60, Ghezel-Ayagh et al [9] used 0-

Dimensional correlations on the manufacturer’s performance curves of the microturbine 

to determine any unknown parameters.  The compressor and turbine exhaust temperature 

was correlated to the inlet temperature, pressure ratio, and efficiency.  The compressor 

and turbine are mechanically linked via a common shaft and thermodynamic cycle 

analysis is compared to known manufacturer performance. 

 Kim et al [24] transiently modeled a single spool turbojet engine using 

MATLAB/Simulink® and compared the model to an existing transient FORTRAN code.  

The Simulink model is of modular construction to represent the components, i.e. 

compressor, turbine, combustor, etc. with the controls being fuel flow, altitude and Mach 

number.  The compressor performance map is represented by a 2-D array in a look-up 

table.  This has been modified from the existing FORTRAN code for improved transient 

behavior.  The inputs for the look-up table are the R- or β-line, and corrected engine 

speed.  The tables give corrected mass flow rate, efficiency, and pressure ratio.  Typical 

isentropic equations give compressor power, exit pressure and temperature.  The 

objective of this paper was to check fuel flow control for fuel cut-off and starting fuel 

schedule.  The comparison between the two models was inconclusive since the 

FORTRAN model had a limited initial rotation speed range. 

 Al-Hamdan et al [25] also created a transient model in MATLAB/Simulink®.  

Component matching was done by the way of superimposing the turbine performance 

map on the compressor map while meeting the component matching conditions of 
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compressor and turbine shaft speed, continuity and energy balances.  The performance 

maps were also placed into 2-D arrays represented as look-up tables with the same input 

and table values seen in [24].  The model was created to satisfy the matching conditions 

analytically between the various gas turbine components to produce an equilibrium 

running line and to verify that the engine is operating in a region of adequate compressor 

and turbine efficiency. 

 

2.3.1 MTG Primary Surface Recuperator Modeling 

 Compact heat exchangers are commonly used in the automotive, aerospace, gas 

turbine, and cryogenics industries as well as in power generation, air conditioning, 

refrigeration, process industries and some heat recovery and process applications.  More 

recently newer applications of compact heat exchangers have been used in fuel cell and 

microturbine systems.  The compact heat exchanger is most common of the primary 

surface type.  The thermal efficiency for microturbines is about 20 percent without a 

recuperator and to achieve thermal and electrical efficiency of 30 percent (a 50 percent 

increase), exhaust heat recovery with a recuperator is mandatory.  To achieve thermal 

efficiency of 30 percent, the recuperator effectiveness must be 85 percent or higher.  

Effectiveness values of 90 percent and higher are usually considered for today’s 

standards [26, 28, 29, 30]. 

There is the desire to increase the overall thermal efficiency of the microturbine 

cycle and this can be accomplished by integrating a heat exchanger in to the overall 

power generation system.  There are two common locations for the primary surface 

recuperators used in conjuncture with microturbines; the recuperator can either be an 
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annular wrap-around recuperator that is around the microturbine’s rotating machinery, 

Figure 2.4, or the recuperator is installed behind, above or alongside the microturbine’s 

rotating machinery giving the option for the recuperator to be bypassed. With the annular 

wrap-around recuperator, the recuperator is closely coupled with the microturbine; this is 

common with Capstone® microturbines [31, 2].  The advantages of an annular wrap-

around recuperator are quality aerodynamic gas flow paths that result in low or non-

existent pressure loses, a lower acoustic signature, built in rotor burst shield, and the 

elimination of the need for external duct work and thermal expansion devises [31].  The 

core of the heat exchanger is modeled as a primary surface recuperator (PSR) with a gas-

to-gas counter-flow arrangement where the hot turbine exhaust gas passes by the cooler 

compressed air leaving the compressor.  The cooler stream recovers (recuperates) heat 

from the hotter stream.  This recovery is done in an indirect method since the contact 

between the hot and cold fluids is done via a heat transfer surface such as a wall or plate 

[32]. 

The requirements for a gas-to-gas recuperator are compact size and weight (small 

hydraulic diameter), high effectiveness (ε ≥ 85%), minimal pressure drops (ΔP < 5%), 

and high reliability with low maintenance cost and long operational life [26, 28, 29, 30, 

33, 34].  Additional factors are a primary surface characterized by a single sheet between 

two fluids, minimal number of moving parts, near 100 percent utilization of the material, 

welded construction to maintain leak-tight seal on the side edges, an automated, high-

volume manufacturing process, a core fabricated in an annular or box type construction, 

and ease of installation, removal, and replacement of the core [26, 34]. 
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  To achieve the requirement of compact size and weight, there are no secondary 

surface fin efficiency effects.  Secondary fins may add weight and cost to the recuperator 

core without any visible increase in overall heat exchanger effectiveness.  The core is 

made of a very thin (0.1mm) material that assists in keeping the core volume and weight 

to a minimum. High effectiveness is essential, but to further increase the effectiveness 

would require dramatic growth of the heat transfer surface, and this would lead to forced 

growth of the recuperator core [33].  Growth in the recuperator core increases the cost of 

the recuperator.  Efforts are being made to design of compact and low cost heat 

exchangers, able to minimize pressure drops and maximize effectiveness [30].  To 

minimize the cost of the recuperator core without any loss to performance, the primary 

surface heat exchanger without brazing, i.e., soldering using high temperature alloys to 

join high temperature metals is desired.  

 The PSR core is created from Type 347 stainless steel; this material is used 

because it meets requirements for low cost, excellent oxidation resistance needed due to 

the presence of water from the combustion process in the exhaust gas, and relatively high 

heat tolerances.  The temperature limit for primary surface recuperator core created from 

Type 347 stainless steel is 750ºC (1845°R) with typical operating temperatures at or 

below 650 ºC (1661°R) [33].  The maximum use temperature of the steel is 816ºC 

(1963.8°R) [35].  

High turbine inlet temperature and high effectiveness of the recuperator are the 

two parameters that will allow for a possibility of microturbine efficiency increase.  Both 

these parameters impact the recuperator design.  With an increase in turbine inlet 

temperature, the recuperator hot exhaust gas inlet temperature will increase, causing a 
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necessity for high cost super alloys.  Designing a surface area that is able to absorb the 

required amount of heat and also be able to handle the thermal shock due to temperature 

gradient is a major challenge especially given the size restrictions of a microturbine.   

 A primary surface design reduces heat exchange stress by maintaining a constant 

surface area. Traditional compact recuperators have one of the following four types of 

heat transfer surfaces: plate-fine type, cross-corrugated (CC), corrugated-undulated (CU) 

or cross-wavy (CW) [30].  A constant surface area is created by alternating layers of thin 

metal sheets, Type 347 stainless steel 0.1mm in thickness, fin folded into a corrugated 

pattern forming narrow passages and giving the required surface area. The Laboratory of 

Chemical Process and Plant Design in Thessaloniki, Greece have analyzed compact heat 

exchanger passages using low Reynolds number CFD methodology [36].  Sheet A and 

Sheet B in Figure 2.5 are welded together along the perimeter to form an air cell.  This is 

pressure checked before each air cell is welded together with spacers along the perimeter 

to form the annular recuperator core.  The sides are sealed to form the flow passages and 

spacer bars are inserted to assist with stability of the air cells.  The PSR core used by 

Solar Turbines, Caterpiller and Capstone® contains 169 individual air cells [2, 26, 36, 37, 

38, 39, 40].   

 The creation of the PSR is described by McDonald [41]. Fabrication of primary 

surface recuperator begins with a single part, a spool of thin foil, i.e., AISI 347 stainless 

steel. This stock is stamped and fin-folded in a to and fro manner to produce the matrix 

that is then externally welded to form an air-tight flow path.  The compressed air and 

exhaust gas streams enter and leave from opposite sides of the core; this gives a 

counterflow arrangement in the core of the heat exchanger.  The ends are welded shut and 
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the fluids flow through the top and the bottom of the matrix.  The corrugated form 

extends the full length of the unit.  Cross corrugation of the two foils over the full length 

allows for many primary surface contact points that support the structure and prevents 

surface nesting during operation.  The formed herringbone corrugation or cross 

corrugation has a sine curve form to it and also provides the counter flow of the fluids.  

When the foil is stamped and folded it is then compressed and forced into an annular 

core.  This annular design causes an involute structure.  The fin folding and counter flow 

pattern can be seen in Figures 2.6 and 2.7 respectfully. 

 Sizing of a heat exchanger is dependent on the flow arrangement, the materials 

and the physical type of heat exchanger to meet requirements on the heat transfer rate and 

pressure drops.  When flow, material and physical type are selected, the remaining 

problem is to determine physical size, i.e., length, width, height and surface areas on both 

the hot and cold flow sides of the heat exchanger.  For microturbine applications, the 

cross sectional area of the flow channels, i.e. the hydraulic diameter must be small.  A 

hydraulic diameter less than 1mm leads to very compact technology.  Compactness or 

surface compactness is defined as the ratio of heat transfer surface area to enclosed 

volume (m2/m3 or ft2/ft3).  A compact heat exchanger is defined by having a core with 

compactness of 700 m2/m3 (~213 ft2/ft3) or higher [32].  It is common to have hydraulic 

diameters ranging from 0.6-2mm with even larger values (5mm) for industrial 

applications [29, 33, 34]. 

 The hydraulic diameter is a design variable that has the greatest impact on the 

recuperator core volume.  A small hydraulic diameter gives a small volume, but too small 

will lead to fouling and shape distortion under mechanical and thermal stresses.  The 
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length of the flow channels should be a low as possible.  Values between 75 and 150 mm 

(approximately 3 to 4 inches) are practical for today’s industry standards [30]. 

 Reynolds numbers are very low through the air flow channels, roughly 400 < Re < 

2000.  The hydraulic diameter is given by Dh = 4Ax/P where Ax is the cross sectional area 

and P is the wetted perimeter.  Depending on the Reynolds number, three flow regimes 

exist: laminar (Re ≤ 2300), transitional (2300 ≤ Re ≤ 10000) or turbulent (Re ≥ 10000).  

At low Reynolds numbers, wavy geometries provide little advantage over straight 

channels, but maximum advantage at transitional Reynolds numbers. For wavy ducts, the 

transition to turbulent occurs at Re ≈ 1200.   

 A higher volume flow rate is seen on the exhaust (hot) side which leads to a 

higher pressure drop. This is balanced by having a larger hydraulic diameter which will 

decrease the velocity on the exhaust side.  To reduce the volume of the recuperator core, 

allow for a larger total pressure drop over the heat transfer core or decrease the size of the 

core passages.  The cross wavy (CW) and especially the cross-corrugated (CC) surfaces 

have shown superior performance over others given a small volume and weight.  The CC 

surface, see Figure 2.8, is well documented in literature and easier to manufacture with 

the small passage dimensions that are essential to the small size and weight required for a 

primary surface recuperator [29]. 
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Figure 2.4: Schematic of Microturbine Generator 

 
Figure 2.5: Typical Primary Surface Recuperator Air Cell Construction 
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Figure 2.6: Stamped and Fin-Folded Type 347 Stainless Steel 

 
Figure 2.7: Flow Path for Counter Flow Air and Exhaust Gas 
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Figure 2.8: Cross-Corrugated Heat Transfer Surface 
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CHAPTER 3: MTG DESCRIPTION AND LOCATION DESIGNATIONS 

  

 This chapter focuses on the trends behind the locations and labeling of the 

microturbine generator in the 1-Dimensional stand alone model and the hybrid-

microturbine generator in the 0-Dimensional hybrid and 1-Dimensional zooming hybrid 

generation models developed in the MATLAB/Simulink® environment.  The sizing of the 

recuperator core is described in Section 3.5 of this chapter. 

 

3.1 Brayton Cycle  

Microturbine generators are still considered gas turbine engines and are designed 

based on the Brayton cycle.  Figures 3.1a is an illustration of a simple gas turbine with air 

entering at Stage 2, natural gas as the fuel into the combustor, and the products from the 

combustion process leaving the turbine at Stage 5 at or near atmospheric pressure with an 

elevated temperature.  Figure 3.1b is the Temperature-entropy or T-s diagram and Figure 

3.1c is the Pressure-specific volume or P-v diagram for the simple gas turbine cycle 

(Brayton cycle) seen in Figure 3.1a.  Compression is seen from Stage 2 – 3, combustion 

from Stage 3 – 4, and expansion from Stage 4 – 5.  The dashed line seen from Stage 5 – 2 

represents an open cycle.  If the Brayton cycle was closed, then an element such as a heat 

exchanger would need to be present to complete the close cycle. 
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For the case involving the microturbine generator, it is desired to increase the 

efficiency of the cycle.  This is done by adding regeneration in the form of a heat 

exchanger to the Brayton cycle.  The heat exchanger used is called a recuperator; due to 

the cooler stream recovering (recuperating) heat from the hotter stream [32].  Figure 3.2a 

gives a representation of this cycle and Figure 3.2b portrays the T-s diagram of the 

Brayton cycle with regeneration.  The turbine exhaust temperature is typically well above 

the ambient temperature of the surroundings that it is entering.  With this elevated 

temperature, the exhaust has high potential for use that would normally be lost to the 

environment.   

Adding the recuperator to the system allows for the high pressure air exiting the 

compressor to be preheated before entering the combustor.  With the interaction of the 

two streams, energy is taken out of the hotter exhaust and placed into the compressed air 

entering the combustor.  This allows for the amount of fuel entering the combustor to be 

decreased thus raising the efficiency of the system. The combustor then only has to work 

enough to raise the temperature of the system from Stage 3 to 3’, rather then from Stage 3 

to 4.  Since there is less heat added to the cycle without the net work being affected by 

the addition of the recuperator, the overall thermal efficiency of the gas turbine cycle 

increases. 

 Analysis of the simple gas turbine cycle as an air-standard Brayton cycle would 

see air as the working fluid throughout the entire system and the temperature increase due 

to the combustion process would be replaced with a heat exchanger or other element 

bringing in heat from an outside source to be added to the working fluid. The hybrid 

power generation system uses the exhaust energy from the molten carbonate fuel cell 
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(MCFC) via a shell-and-tube heat exchanger to increase the temperature of the working 

fluid to the desired turbine inlet temperature Tt4. If enough heat is added, the turbine will 

be able to extract energy from the working fluid to produce net power. The air standard 

Brayton cycle is seen in Figure 3.3.  The air leaving Stage 7 at an elevated temperature is 

given to the oxidizer to help the oxidizer convert any carbon monoxide (CO) from the 

fuel cell anode to carbon dioxide (CO2), and any remaining unreacted methane (CH4) to 

water.  The T-s diagram of the air standard Brayton cycle in Figure 3.3 is similar to that 

seen in Figure 3.1b.  The pressure loss in the microturbine inlet is a very small percentage 

of the atmospheric pressure, so it will be assumed Pt2 ≈ Pt1.  Although the pressure loss in 

the diffuser is not represented in Figure 3.1b, it will be accounted for in the 

Matlab/Simulink® modeling of the hybrid and the stand alone power generation systems. 
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Figure 3.1a: Simple Gas Turbine Open to Atmosphere 

 

Figure 3.1b: T-s Diagram of Simple Gas Turbine Open to Atmosphere: +Stages 1 
and 6 are represented in Figure 3.3, Air Standard Brayton Cycle 
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Figure 3.1c: P-v Diagram of Simple Gas Turbine Open to Atmosphere: +Stages 1 

and 6 are represented in Figure 3.3, Air Standard Brayton Cycle 
 

 

Figure 3.2a: Simple Gas Turbine Open to Atmosphere with Regeneration 
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Figure 3.2b: T-s Diagram of Simple Gas Turbine Open to Atmosphere with 
Regeneration 

 

 

Figure 3.3: Air-Standard Brayton Cycle for Hybrid Power Generation 
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3.2 Centrifugal Compressor 

 Small engines, typically those with power output under 200kW, are more likely to 

have centrifugal (radial) compressors and radial turbines.  A centrifugal compressor can 

be designed to have a much larger head or enthalpy rise per stage than is possible for 

axial-flow machines.  This gives centrifugal compressors the advantage when the desire 

is to minimize the number of stages for any given purpose.  For small sizes where the 

Reynolds number will be low and relative blade shroud clearance will be high, 

centrifugal compressors have advantages over multistage axial machines when is comes 

to cost and efficiency.  For any feasible size, centrifugal or radial-flow machines cost less 

to manufacture than equivalent multistage axial turbomachinery.  Instances where both 

radial and axial technologies can be effectively applied the efficiency of radial-flow 

machines generally will be less than that for axial machines. 

 For relatively small radial-flow machines, including compressors or turbines, 

more work per stage, i.e., a larger head rise or larger pressure ratio can be seen than for 

an equally small size axial-flow stage.  This can be contributed to the “centrifugal effect” 

or the radial pressure gradient caused by the mass of the fluid that is rotated by the 

impeller.  Temperature rise and therefore enthalpy rise is determined by the result of the 

torque given by the impeller to accelerate the fluid [42]. In other words, the amount of 

work it takes to move a given mass of fluid is determined from the torque of the 

compressor and the shaft speed of the compressor, where the shaft speed is determined 

from the compressor’s rotor tip speed. 
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 Most centrifugal compressors have mixed flow, where the flow enters in the axial 

direction and exits radially.  The relative flow angle at the tip, β1t, has a high absolute 

velocity and a swirl angle of 60 – 70 degrees from the radial direction.  Although the 

pressure rise is primarily due to the centrifugal effects, high kinetic energy can be seen 

leaving the rotor which can only be recovered by diffusion.  Diffusion takes place in the 

stator blades or a vaneless diffuser or volute [43].  The rotor vanes can be designed with 

backward-curved, radial-flow, or forward-curved exit angles, Figure 3.4.  The forward-

curved blades yield the highest increase in pressure but give the highest absolute velocity 

at the rotor exit and are seldom used [44].     

 For stress-related reasons, centrifugal compressors with relatively high pressure 

ratios (around 4:1 and higher) tend to have rotor blades that are radial.  The cross-

sectional view of a centrifugal compressor with radial rotor vanes is represented in Figure 

3.5.    The flow enters the compressor through the annulus between r1t and r1h at Station 1 

then through to the inducer section of the rotor.  The purpose of the inducer is to keep the 

flow in the axial direction before the rotor begins its large radius change from r1h to r2r 

[45].  Fluid leaves the rotor at Station 2 through a cylindrical area of radius r2r and width 

b.  Flow passes through the diffuser, where it is slowed then enters the collector scroll at 

Station 3.  The diffuser entrance angle must be approximately the same angle as the 

absolute flow direction, α2.  The rotor tip velocity is limited to 2000 to 2200 ft/s (610 to 

670 m/s) due to material stresses [44]. 

 The velocity diagrams, representing the entrance and exit of the rotor section, are 

shown in Figure 3.6.  Inlet flow is assumed axial and of uniform flow u1.  The relative 

flow angle of the flow increase from hub to tip, β1h to β1t giving the twist of the inlet to 
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the inducer section of the rotor.  The flow leaves the rotor with a radial component of 

velocity w2 that is approximately equal to u1.  A tangential or swirl velocity is seen 

exiting the rotor v2 that is roughly 90 percent of the absolute rotor tip velocity U2t.  The 

absolute velocity exiting the diffuser, V3 (not shown) is nominally 300 ft/s (90 m/s) [46]. 

 The total temperature and pressure entering the compressor is giving the notation 

Tt2 and Pt2 respectfully.  This corresponds with the Stage numbering seen in Figure 3.2a.  

The 1-Dimensional mean-line analysis is done within the compressor from Station 1 to 

Station 3.  The properties at Station 1 of the compressor are identical to the properties at 

Stage 2.  Properties at Station 3 of the compressor are identical to Stage 3.  The 

calculations done at Stage 2 and 3 are considered core calculations and are critical to 

analyzing the Brayton cycle.  The mean-line calculations are critical to 1-D analysis of 

the centrifugal compressor. 
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Figure 3.4: Rotor Blade Exit Angles, (a) Backward-curved, (b) Radial-flow, (c) 

Forward-curved 
 

 
Figure 3.5: Centrifugal Compressor with Station Numbering 

 
Figure 3.6: Velocity Diagram for Centrifugal Compressor with Radial Rotor Vanes 
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3.3 Radial Inflow Turbine 

 The hot gas expansion turbine is the power producing component of the 

microturbine generator.  As the hot gas is allowed to expand rapidly through the blades of 

the turbine, work is extracted from this process.  The goal of designing a turbine is to 

control the rate at which this expansion occurs.  This is done by controlling the cross-

section of the turbine casing, the turbine wheel diameter and vane angles.  The hot gas 

needs to be slowed, cooled and expanded at an optimal rate to allow for as much energy 

as possible to be drawn out of the gas as it passes from one blade to another.  Of the 

power extracted from the expansion process, approximately one-third is used to drive the 

generator to produce electricity; the remaining amount is used to drive the compressor 

[1].  

 In comparison to radial flow compressors and fans, radial-flow turbines produce 

lower head or enthalpy drops per stage at efficiencies that are higher than what is possible 

for axial-flow turbines operating at the same peripheral speeds and rotor diameter.  This 

is seen primarily in turbomachinery of smaller sizes.  Radial-flow turbines are seen 

essentially in applications where the lower cost of manufacturing small single-stage 

radial turbines is the prevailing factor; such as is seen for fuel cell hybrid systems.     

 The blades of a hot gas expansion turbine are nearly always radial at the periphery 

to minimize the blade bending stress.  Figure 3.7 is of a radial inflow turbine and station 

numbering is shown.  The flow through the stators of the radial inflow turbine is 

accelerated and the tangential velocity is increased.  The rotor then decreases the 

tangential velocity as the flow is expanded and energy is removed producing work.  The 
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flow that exits the rotor is predominantly axial although some tangential velocity or swirl 

may still be present [46]. 

 A velocity diagram depicting the direction and magnitude of the flow entering the 

rotor of a radial-inflow turbine can be seen in Figure 3.8.  The exit flow angle, α2, is 

habitually chosen to be 70 degrees and this is given relative to the axial direction.  The 

blade angle, β3, can be determined from using trigonometry on the velocity diagram. The 

only indefinite is the direction, α2R, of the relative flow, V2R, at the inlet. The relative 

velocity of flow entering the rotor is designed to be radial to obtain zero incidence [47], 

w2 = V2R.  With this being said the tangential velocity at station 2, v2, is then equal to the 

rotor tip speed U2t.  The rotor tip speed squared is directly proportional to the temperature 

drop through the radial inflow turbine and is limited to between 1148 and 1640 ft/s (360 

and 500 m/s) [46].  

In the stator of an axial turbine, the fluid is accelerated and the tangential velocity 

is increased in the direction of rotation.  The rotor decreases the tangential velocity in the 

direction of rotation causing the flow to exert tangential force on the rotor blades.  This 

produces a torque on the output shaft.  The flow leaving the rotor is sent into the next 

stage of the turbine consisting of another pair of stators and rotors.  Flow is expanded and 

accelerated through each blade row.  The static pressures are dropping across both the 

stator and rotor and separation can then be avoided.  

 Comparing the magnitude of the absolute velocity V2, Figure 3.8, with the 

magnitude of the absolute velocity V2 for an axial turbine stage, Figure 3.9, it can be seen 

why more work per stage is achieved for a radial inflow turbine.  Although the 

magnitudes of the velocity vectors seen in Figures 3.8 and 3.9 are not literal 
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representations of the velocities, it is still shown that the absolute velocity of a radial 

turbine is three times as large as that of the axial turbine.  There is more flow through a 

single radial turbine compared to a single stage axial turbine of the same size.  With more 

flow comes more torque on the shaft producing energy.  This then demonstrates how 

more work per stage can be seen with a radial turbine than an axial turbine when 

compared at small sizes.  In reference to “small size,” the size being considered is on the 

scale of 3.6 inches in diameter (91.5 mm).   

 The total temperature and pressure entering the turbine is giving the notation Tt4 

and Pt4 respectfully.  This corresponds with the Stage numbering seen in Figure 3.2a.  

The 1-Dimensional mean-line analysis is done within the turbine from Station 2 to 

Station 3.  The total properties (temperature and pressure) at Station 1 are equal to the 

total properties at Station 2 of the turbine.  All of the properties at Station 2 are identical 

to the properties at Stage 4.  Properties at Station 3 of the turbine are identical to Stage 5.  

The calculations done at Stage 4 and 5 are considered core calculations and are critical to 

analyzing the Brayton cycle.  The analysis of the turbine’s diffuser is done separately.  

Station 4 corresponds to Stage 6 in Figure 3.2a.   The mean-line calculations are critical 

to 1-D analysis of the radial inflow turbine. 
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Figure 3.7: Radial Inflow Turbine with Station Numbering 

 
Figure 3.8: Velocity Diagram for Radial Inflow Turbine with Radial Rotor Vanes 

 
Figure 3.9: Single Stage Axial Turbine with Station Numbering  
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3.4 Reverse Flow Annular Combustor 

 Combustion is the process in which some material or fuel is burned.  Whether it 

involves striking a match or firing a jet engine, the products of combustion are similar.  

Heat input to the gas turbine Brayton cycle is provided by a combustor.  The combustor 

receives pressurized air from the compressor and delivers it at an elevated temperature to 

the turbine.  Ideally this is done with minimal or no pressure loss.  There are three major 

types of combustors, tubular, tubo-annular and annular.  Tubular are single can designs 

and tend to be very large.  Tubo-annular or can-annular combustors are the most common 

type of combustors used in gas turbines.  Annular combustors are primarily used in 

applications where frontal area is important.  Since less cooling air is need than for tubo-

annular types, annular combustors are growing in importance for high-temperature 

applications, i.e., microturbines.  Annular type combustors are used by Capstone Turbine 

Corporation and Solar Turbines Incorporated [48, 49]. 

 The combustor inlet temperature depends on whether or not the engine is 

regenerative or nonregenerative.  Nonregenerative, Figure 3.1a, inlet temperatures vary 

from 709 to 1419 R (394 to 788 K).  Regenerative, Figure 3.2a, inlet temperatures range 

from 1159 to 1559 R (644 to 866 K).  Combustor outlet temperatures range from 1919 to 

2769 R (1066 to 1538 K) for small engines.  Combustor pressures for a full-load 

operation vary from 45 psia for small engines to as much as 370 psia for complex engines 

[48]. 

 The annular combustor is of reverse flow design and uses natural gas as the fuel.  

The natural gas is modeled as primarily methane (CH4).  The chemical energy present in 
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the combustion reactants is transferred to the gas stream during the combustion process.  

The chemical reaction equation for the combustion process is 

CH4 + 2O2 + 7.52N2→CO2 + 7.52N2 + 2H2O + Heat  (3.1) 

 From Equation 3.1, the stoichiometric fuel/air ratio is determined to be 

( ) ( )
( )( ) ( )( ) 05828.0

14252.71622
14121

=
+
+

=stoichf     (3.2) 

The chemical energy is measured in terms of enthalpy and is converted to mechanical 

work by expansion of the gas through the turbine [15].   

 Equation 3.1 represents the chemical reaction seen in the combustion chamber 

and Table 3.1 has the mass fractions of the chemical reaction.  From this, it can be 

determined that since the mass fraction of the unreacted nitrogen (N2) is much higher 

than the mass fraction of the carbon dioxide (CO2) and the water (H2O), then the fluid 

used to transport energy in the turbine can be modeled as air and the other products of the 

chemical reaction can be neglected. 

 A reverse flow combustor is desired because they are ideal for small engines.  

Small engines run at high shaft speeds and to prevent shaft whirling problems the 

compressor and turbine need to be closely coupled.  The reverse flow combustor takes 

advantage of short shaft length, efficient utilization of available combustion volume and 

easy accessibility of the fuel injectors [50].  The annular combustor with compressed air 

and exhaust gas flow directions can be seen in Figure 2.4. 

 The inlet total temperature and pressure for the combustion chamber are denoted 

Tt3’ and Pt3’ respectfully.  Since there is recuperation in the gas turbine Brayton cycle, the 

compressed air is flowing through the primary surface recuperator before entering the 

combustor.  The total temperature and pressure exiting the combustion chamber are 
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denoted Tt4 and Pt4 respectfully.  The inlet and exit locations can be seen in the Brayton 

cycle representation, Figure 3.2a. 
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3.5 Annular Wrap-Around Primary Surface Recuperator 

The core of the heat exchanger will be modeled as a primary surface recuperator 

(PSR) after the heat exchanger core used by Capstone®, with a gas-to-gas counter-flow 

arrangement where the hot exhaust gas passes by the cooler compressed air leaving the 

compressor, Figure 3.2a.  For convenience, Tt3 and Tt3’ the temperature of the compressed 

air into and exiting the recuperator core will be designated Tci and Tco, respectfully.  The 

temperature of the exhaust gas inlet and exit, Tt6 and Tt7 will be designated Thi and Tho, 

respectfully.  

 Sizing a heat exchanger is quite a challenge.  The recuperator core used by 

Capstone® has 169 individual air cells.  Each of these air cells is created by the fin folded 

347 stainless steel.  The fin folding creates air channels for the hot and cold fluids.  The 

geometry of the flow channels, i.e., the hydraulic diameter Dh, and the depth of the 

recuperator core determines the number of flow channels per air cell.  The actual 

geometry of a flow channel that is used for this paper is much simpler than what is seen 

in Figure 2.5. The geometry of the air (cold) flow channel and of the exhaust (hot) flow 

channel are represented as two isosceles trapezoids inverted one over the other, Figure 

3.10.  A higher volume flow rate is seen on the exhaust side which leads to a higher 

pressure drop. This is balanced by having a larger hydraulic diameter which will decrease 

the velocity on the exhaust side.  The hydraulic diameter is the variable having the 

greatest impact on the recuperator core volume.  A small hydraulic diameter will give a 

small recuperator volume [29].  

 The hydraulic diameter is determined by the following equation: 

P
A

D x
h 4=         (3.3) 
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Where Ax is the cross-sectional area and P is the wetted perimeter of the flow channel 

geometry.  The cross-sectional area of a trapezoid is 

( )212
1 bbhAx +=        (3.4) 

Where h is the height of the trapezoid and b1 and b2 are the respective bases of the 

trapezoid.  For the flow geometry seen in Figure 3.10, the cross-sectional area is twice the 

cross-sectional area calculated by Equation 3.4, therefore the Ax of the cold flow 

geometry is 

( )21 bbhAx +=        (3.5) 

The same is seen for the hot flow geometry where b1 and b2 are replaced by b3 and b4 in 

equation 3.5.  The wetted perimeter Pc,in, of the cold flow geometry in Figure 3.10 is 

determined from 

( ) 2
2

21, 2
4
14 bbbP inc +−=       (3.6) 

Replacing b1 and b2 with b3 and b4 in Equation 3.6 gives the wetted perimeter Phot, of the 

hot flow geometry.   

 The one other wetted perimeter that needs to be calculated is the outside wetted 

perimeter Pc,out of the cold flow geometry.  This is done by increasing the flow geometry 

of the cold side by the thickness of the Type 347 stainless steel.  In essence, this approach 

is similar to finding the outer diameter of a pipe if the inner diameter and the thickness of 

the material of the pipe are known. 

 The calculated hydraulic diameter and wetted perimeters for the cold and hot flow 

channels along with corresponding geometry sizes can be seen in Table 3.2. 
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 Once the hydraulic diameter of the flow channel has been decided, the next step is 

to determine the length and depth of the recuperator core. To reduce the volume of the 

recuperator core, allow for a larger total pressure drop over the heat transfer matrix or 

decrease the size of the matrix passages.  The cross-corrugated is well documented in 

literature and easier to manufacture with the small passage dimensions that are essential 

to the small size and weight required for a primary surface recuperator.  The length and 

depth are determined based on the heat exchanger effectiveness, ε and the pressure drop, 

ΔP of the hot and cold flows.  Figure 3.11 represents the pressure drop on the hot and 

cold side for a given recuperator core length versus depth of the recuperator core.  Figure 

3.12 portrays the heat exchanger effectiveness for a given recuperator core length versus 

depth of the recuperator core.  As stated in Section 2.3.3, the effectiveness should be as 

high as possible (ε ≥ 85%), and the pressure drop should be as small as possible (ΔP < 

5%).  For the purpose of this paper, the effectiveness will need to be ε ≥ 75%, and the 

pressure drop on the hot side will be allowable to ΔP < 7%.   

 For Figure 3.11, any length and depth above the red line on the cold side (ΔP < 

5%), and above the blue line on the hot side, ΔP < 7% is eliminated.  The only length and 

depth that will be considered in Figure 3.12 are those above the red line signifying ε ≥ 

75%.  From inspection of the data in Figures 3.11 and 3.12, there is only one possibility 

for the length and corresponding depth of the recuperator core that match the 

requirements stated above, these parameters are listed in Table 3.3. 

 From Table 3.3 the length of the recuperator core will be 9.8 inches (250 mm) and 

the depth of the recuperator core will be 12 inches (305 mm). These sizing parameters 

will be used to calculate the overall heat transfer coefficient based on outer surface area, 
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UoAo.  The overall heat transfer coefficient will be used in conjecture with the ε-NTU 

method to determine the heat exchanger effectiveness.  The ε-NTU method will be 

discussed in Section 4.1.4.  

 Based on the flow channel geometry, Table 3.2, and the recuperator core depth 

established in Table 3.3, the total number of flow channels in one air cell is calculated to 

be 122.  For 169 air cells, the total number of air flow channels, NFC, in the recuperator 

core is 20,618 channels. The number of flow channels can be compared to the number of 

tubes that might be in a shell-and-tube heat exchanger with the hot flow channels being 

similar to the shell of a shell-and-tube heat exchanger.  

 The calculations done in Table 3.3 are at the design point of the microturbine 

generator.  The 1-Dimensional model will be analyzed on the actual microturbine 

operating line.  The heat exchanger effectiveness is averaged on the ideal operating line, 

running from 40-110 percent of the design speed. The effectiveness is 0.9328 to 0.7584 

and this averages out to be 0.8320.  The average heat exchanger effectiveness, εavg will be 

held constant for all calculations.   
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Table 3.2: Air Cell Channel Flow Geometry 

 Value Units Value Units 
h 0.01969 in 0.5 mm 
b1 0.07874 in 2.0 mm 
b2 0.00394 in 0.1 mm 
b3 0.09843 in 2.5 mm 
b4 0.01969 in 0.5 mm 
t 0.00394 in 0.1 mm 

Dh,cold 0.03679 in 0.9345 mm 
Dh,hot 0.04299 in 1.0920 mm 
Pc,in 0.17688 in 4.3336 mm 
Phot 0.21540 in 5.2773 mm 
Pc,out 0.17688 in 4.3336 mm 

 

Table 3.3: Matching Design Requirements for Recuperator Core 

Length Depth ε ΔP cold ΔP hot 
in (mm) in (mm) - % % 
7.9 (200) 12 (305) 0.7744 0.8359 6.6900 

   
   

 

Figure 3.10: Air Cell Channel Flow Geometry 
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Figure 3.11: Pressure Drop on Hot and Cold Side for Given Heat Exchanger Length 

 

Figure 3.12: Heat Exchanger Effectiveness for Given Heat Exchanger Length
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CHAPTER 4: METHODOLOGY OF STAND ALONE POWER GENERATION 
SYSTEM 

 
  

 There will be a total of three different MATLAB/Simulink® models developed, 

each with a separate Simulink Graphical User Interface (GUI) model and MATLAB m-

file controller and variable files. The stand alone power generation system will be 

analyzed using 1-Dimensional approach to determine the feasibility of the mathematical 

model that will be applied to the 0-Dimensional and 1-Dimensional analysis of the hybrid 

power generation system in Chapter 5.  Through 1-D analysis, the parameters produced 

by the 0-D approach can be validated.  Further validation of the 1-D stand alone model 

will be accomplished through the use of Engineering Equation Solver (EES) a product of 

F-Chart Software.  A thermodynamic cycle analysis of the stand alone system will be 

discussed in Chapter 6.  The verification of the 0-Dimensional hybrid model will be used 

to justify the performance maps used for the centrifugal compressor and radial inflow 

turbine.  The results and comparisons will be discussed in Chapter 6. 

 For 0-Dimensional analysis, a lumped approach is used to create each module.  

The centrifugal compressor and radial turbine on the microturbine generator have
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multiple stations created by the geometry of the rotating machinery.  These stations are 

simulated as a single component for the 0-D analysis.  When using performance maps, 

the number of stages or stations being modeled in the compressor and turbine are 

irrelevant for the reason that performance maps are created from rig tests performed on 

the compressor and turbine.  The 0-D approach is transient and incorporates 1st order 

ordinary differential equations (O.D.E).  Equation 4.1 is an example of a 1st O.D.E.   

t
dt
dv

dt
du 51+=+        (4.1) 

 1-Dimensional mean-line analysis is done along a streamline through the 

compressor or turbine.  At each of the stations, a single calculation of pressure, 

temperature, Mach number, velocity, etc. is made relative to the flow and this is related to 

the absolute flow through the component.  1-D analysis is used when zooming is required 

to analyze areas in the component that experience more drastic changes in properties 

(turbine rotor tip) without incorporating computational fluid dynamics (CFD) techniques.  

The 1-D approach incorporates algebraic equations for steady state calculations and 1st 

order partial differential equations (P.D.E) for transient behavior.  The 1-D approach used 

for the MTG is for steady state conditions only.  Equation 4.2 is an example of an 

algebraic expression.  An algebraic expression incorporates signs and symbols that 

represent algebra and the expression represents one number or one quantity.  Since 

transient modeling is not observed, a generic example of a 1-D transient 1st order P.D.E 

can be seen in Equation 4.3 below and is known as the 1-D transient Laplace equation. 

 ce

cc
γ

γ

πτ
1−

=         (4.2) 

0=
∂
∂

+
∂
∂

x
u

t
u         (4.3) 
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 2-Dimensional analysis is used when further fidelity of a model is required and 

visualization of actual flow characteristics, turbulence, vortex shedding, etc., are essential 

to the analysis of the component behavior.  This analysis incorporates computational 

fluid dynamics (CFD) techniques.  2-D analysis can be at steady-state conditions or 

demonstrate transient behavior and this is done by using a 2nd order P.D.E. An example 

of a 2-D steady-state 2nd order P.D.E is the Laplace equation, Equation 4.4.  A 2-D 

transient 2nd order P.D.E. would be the Wave equation, Equation 4.5. 

02

2

2

2

=
∂
∂

+
∂
∂

y
u

x
u        (4.4) 
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 3-Dimensional analysis increases the visualization of the flow characteristics.  

This CFD approach incorporates higher fidelity and is much more difficult to solve.  3-D 

analysis can be done at steady-state but it is more commonly carried out with transient 

modeling.  A 3rd order P.D.E is used with 3-D modeling.  The Wave equation is seen as a 

3rd order P.D.E in Equation 4.6. 
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x
uc

t
u       (4.6) 

Figure 4.1 gives a visual representation of the 0-D, 1-D, 2-D, and 3-D modeling 

approaches.   
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4.1 1 – Dimensional 

 The 1-D simulation of the stand alone model is initiated by loading the MATLAB 

m-file controller.  This will load the thermodynamic property tables and run additional m-

files that provide individual component parameters that are required by Simulink into the 

MATLAB workspace and executes the Simulink Graphical User Interface (GUI).  The 

flow diagram to execute the 1-D modeling and simulation is in Figure 4.2. 

 The 1-D model executes algebraically so the variables are solved linearly.  The 

solver type employed by Simulink® uses a variable time step and is discrete with no 

continuous states.  This negates the need for a controller to be present in the system.  A 

desired engine speed is given as the input and the resulting compressor operating line 

values are determined.  Each module represents the set of equations needed to solve for 

the performance parameters of each component.  The top level Simulink model is shown 

in Figure 5.3 and the computer flow diagram is represented in Figure 5.4.  Since the 

variables are determined in a linear manner, the solution path of the core variables is 

shown in Figure 5.5.  The results of the mean-line calculations will be discussed in 

Chapter 6. 

 The mathematical modeling of the centrifugal compressor, radial inflow turbine, 

annular combustor and primary surface recuperator Sections 4.1.1 to 4.1.4, give the core 

calculations required to analyze the Brayton cycle and a brief description of the 1-D 

mean-line calculations.  The calculations are carried out using the English unit system.  

All values have corresponding SI values and units.  For the English unit system, the unit 

of force is derived from Newton’s second law of motion and relates force to mass, length, 
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and time with constant of proportionality being 1/gc.  This is derived in Mattingly [46].  

In English units the value of gc is given as 

217.32
slbf

lbmftgc ⋅
⋅

=     

 Several assumptions were made with the creation of the MATLAB/Simulink® 

model of the microturbine generator.  The assumptions for each of the core components, 

i.e., the compressor, combustor, and turbine are a generic representation of Capstone’s 

Model 330 and C30 microturbines [51] and the scaling of the rotor size for the 

compressor and the turbine was done through suggestions from literature.   

For a simple constant-area-flow engine or MTG, the performance; which is the 

pressure ratio and the mass flow rate of the compressor, depends on the power from the 

turbine and the inlet conditions of the compressor.  The performance varies with the inlet 

conditions and the power determined by throttle setting and is limited by the MTG 

control system.  For an aircraft engine, the pilot controls the operation of the engine 

directly through the throttle and indirectly by changing the flight conditions.  Looking at 

the interaction of the compressor-combustor-turbine combination; know as the pumping 

characteristics of the gas generator [46] the MTG performance can be obtained.  Sea-

level-static (SLS) is the normal reference condition for the values of the microturbine 

generator variables. 

The microturbine generator 1-Dimensional mathematical model begins by 

determining at what throttle setting the model will run.  The performance of the model is 

given from 40 percent of throttle to 110 percent of throttle.  The design point of the MTG 

will be located at 100 percent of the throttle position or full throttle with a maximum 

throttle of 110 percent.  At 100 percent of the throttle, the model will be operating at the 
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design shaft speed.  The common method for portraying the performance characteristics, 

often called performance mapping is with a plot of speed lines, efficiency, pressure ratio, 

and corrected mass flow rate, Figure 4.6.   

 Since the 1-D model is run on a single operating line with no off-design 

capabilities, the performance characteristics of the compressor are portrayed by 1-D look-

up tables in the MATLAB/Simulink® environment with either corrected mass flow, cm0&  

or pressure ratio, πc versus the throttle position input as a percentage.  The desired throttle 

setting is the control for the 1-D model.  The operating design point parameters are 

displayed in Table 4.1.  Due to the linear nature of the mathematical modeling and 

variable calculation, these values will be used to portray the microturbine generator 

model at steady state conditions.   

 

Table 4.1: Design Point Parameters 

 Value  Units Value Units 
Tt2 550.8 °R 306 °K 
Pt2 14.696 psia 101.3 kPa 
πc 3.5 - 3.5 - 

cm0&  1.664 lbm/s 0.7548 kg/s 
Pt5 18.5 psia 127.6 kPa 
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Figure 4.2: Flow Diagram to Execute 1-D Modeling and Simulation of Stand Alone 
Power Generation System 

 



 

62 

 

Fi
gu

re
 4

.3
: T

op
 L

ev
el

 1
-D

 S
ta

nd
 A

lo
ne

 P
ow

er
 G

en
er

at
io

n 
M

od
el

 



 

63 

 

Fi
gu

re
 4

.4
: C

om
pu

te
r 

Fl
ow

 D
ia

gr
am

 fo
r 

T
op

 L
ev

el
 1

-D
 S

ta
nd

 A
lo

ne
 M

od
el

 



 

64 

 

 

Fi
gu

re
 4

.5
: 1

-D
 C

or
e 

V
ar

ia
bl

es
 S

ol
ut

io
n 

Pa
th

 



 

65 

 

Fi
gu

re
 4

.6
: T

he
or

et
ic

al
 C

om
pr

es
so

r 
Pe

rf
or

m
an

ce
 M

ap
 



 

66 

4.1.1 Centrifugal Compressor 

 The microturbine generator inlet conditions are used to calculate the parameters at 

the compressor inlet, Pt2 and Tt2.  Using isentropic relations and the known freestream 

Mach number, static pressure and static temperature at the inlet, M0, Ps1, and Ts1 the total 

properties in the MTG inlet can be determined from, 

2
0

1

1

2
11 M

T
T

s

t −
+=
γ        (4.7) 

and 

γ
γ 1

1

1

1

1

−
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s

t

s

t

T
T

P
P

       (4.8) 

Since the power generation system is stationary, the upstream Mach number is zero.  The 

inlet is assumed adiabatic, therefore Pt2 ≈ Pt1 and Tt2 ≈ Tt1.  The total pressure and 

temperature at the compressor inlet establish the operating properties, specific heat at 

constant pressure and volume and density of the flow through the compressor.  

 The assumptions applied to the centrifugal compressor are listed below and the 

values pertaining to the assumptions are listed in tabular form in Table 4.2: 

• The MTG inlet is adiabatic 

• The inlet static pressure and temperature are held constant, Ps1 and Ts1 

• The upstream Mach number M0 is zero 

• The area at the entrance to the inducer, Station 1 and entrance and exit to the 

compressor rotor, Station 2 and 3 are calculated at the design point and then held 

constant, A1, A2 and A3 respectfully 

• The number of rotor vanes n on the compressor is held constant 



 

67 

• The polytropic efficiency ec of the compressor is held constant 

• The compressor corrected mass flow rate cm0&  is found by applying the desired 

throttle setting to the operating line 

• The compressor total pressure ratio πc is found by applying the desired throttle 

setting to the operating line 

 To calculate the actual mass flow rate in the compressor, 0m&  the total properties 

of pressure and temperature must be normalized (nondimensionalized) to sea-level-static 

(SLS) conditions in the following manner: 

ref

t

P
P

=δ         (4.9) 

ref

t

T
T

=θ         (4.10) 

Where δ is the normalized pressure and θ is the normalized temperature.  The reference 

pressure and temperature at SLS conditions are Pref = 14.696 psia (101.3 kPa) and Tref = 

518.69ºR (288.2ºK) respectfully.  Normalization identifies parameters that are associated 

with the microturbine generator’s surroundings or environment and can be used to allow 

one set of data taken at a given set of conditions to be applied to that same set of data at 

other given set of conditions.  These parameters are very useful since it is often 

unrealistic to gather experimental data for the seemingly infinite number of operating 

conditions that can be available, and it may not be feasible to obtain certain operating 

conditions in the laboratory.   

 Corrected mass flow rate for the compressor is defined as  

c

c
c

m
m

δ
θ0

0

&
& =         (4.11) 
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From Equation 4.11, the actual mass flow rate through the compressor 0m&  is determined.  

With the compressor inlet pressure Pt2 and compressor pressure ratio πc known, the total 

pressure at the outlet of the compressor can be found from 

2

3

t

t
c P

P
=π         (4.12) 

The total temperature at the outlet of the compressor is found using an isentropic 

relationship between pressure and temperature ratios 

( )
c

c

e
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t

t
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γ
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2

3
−

==       (4.13) 

The polytropic efficiency ec is assumed constant, and γ is the specific heat ratio.  Once 

the total temperature ratio has been established, the isentropic efficiency of the 

compressor can be determined from 

1
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c
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γ
γ

        (4.14) 

Applying the Euler equation for turbomachinery to the flow through the centrifugal 

compressor, the compressor rotor tip speed, U2t is calculated by 

pcc

t
tt Cg

U
TT

2
2

23
σ

=−        (4.15) 

Where the slip factor, σ is related to the number of vanes on the rotor, n.  As the number 

of vanes increases, the slip factor approaches 1.  Selecting the number of vanes is a 

balance between high slip factor and reasonable friction loss.  A slip factor of around 0.9 

is very reasonable.  The correlation between slip factor and number of vanes is  

n
21−=σ         (4.16) 
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The rotor tip speed U2t is a tangential velocity and can be determined from the angular 

velocity, ω and the diameter of the rotor, d2. 

ω22 dU t =         (4.17) 

Compressor shaft speed, Nc is related to the angular velocity, ω by the following 

π
ω

2
60

=cN         (4.18) 

Solving for ω in Equation 4.18 and substituting into Equation 4.17 gives an equation for 

determining the shaft speed Nc with the tip speed U2t and diameter of the rotor d2 known. 

60
2

22
c

t
N

dU
π

=        (4.19) 

To ensure component matching, the shaft speed established in Equation 4.19 will be used 

to determine the turbine rotor tip speed and subsequently the turbine inlet temperature Tt4 

in Section 4.1.2.  Energy rate balance is applied to the compressor parameters to 

determine the thermodynamic power or ideal power, Equation 4.20a, required to operate 

the compressor.  The thermodynamic power is defined as the rate of mechanical energy 

input to the flowing fluid stream [65]. 

( )230, ttpcthc TTCmP −= &        (4.20a) 

Where Cpc is the specific heat at constant pressure and is determined at the compressor 

inlet temperature Tt2.  The mechanical power produced by turbomachinery, Equation 

4.20b, is defined as the rate of work done on the rotor of the piece of turbomachinery 

[65].  This is considered the actual power required to operate the compressor and is 

calculated using enthalpy which is found individually at the entrance and exit 

temperatures of the compressor. 

( )230, hhmP mc −= &        (4.20b) 
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 The 1-D mean-line calculations are completed station by station through the 

centrifugal compressor.  A visual representation of this method is seen in Figure 4.7.  The 

following parameters are calculated at each station: total and static temperature, total and 

static pressure, Mach number, absolute and relative velocity and all components of 

velocity, absolute and relative flow angles and the areas are calculated from the design 

point conditions.  Calculations are based on trigonometry being applied to the velocity 

diagram in Figure 3.6, the rotor tip speed established in Equation 4.19, and isentropic 

relationships.  Equations 4.21 through 4.24 demonstrate the application of trigonometry 

and isentropic relationships to the compressor stations.  The compressor’s stations can be 

reference in Figures 3.5 and 3.6 and an example of the 1-D Simulink model for Station 1 

calculations is in Figure 4.8. 
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In Equation 4.21, V1 is the absolute velocity, u1 is the axial component of absolute 

velocity, M1 is the Mach number, and Tt1 is the total temperature.  For Equations 4.22 

through 4.24, v1Rh is the radial component of the relative velocity at the inducer hub, d1h 

is the diameter of the inducer hub, d2 is the diameter of the rotor, V1Rh is the relative 

velocity at the inducer hub, and β1h is the relative flow angle at the inducer hub.  All 1-D 
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mean-line calculations listed in the above equations are located at Station 1 in the 

centrifugal compressor, see Figure 3.5.  A similar approach is used to find the properties 

at Stations 2 and 3 in the compressor. 

 

Table 4.2: Centrifugal Compressor Assumptions and Values 

 Value  Units Value Units 
Pref 14.696 psia 101325 Pa 
Tref 518.67 ºR 288.2 ºK 
Ps0 14.696 psia 101.3 kPa 
Ts0 550.8 ºR 303.15 ºK 
M0 0 - 0 - 
A2 0.008273 ft2 0.000769 m2 
A3 0.348 ft2 0.3233 m2 
n 18 - 18 - 
ec 0.87 - 0.87 - 
d1h 0.0925 ft 0.02819 m 
d1t 0.0185 ft 0.0056 m 
d2r 0.2846 ft 0.0867 m 
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4.1.2 Radial Inflow Turbine 

 Component matching is used to begin the mathematical analysis on the single-

stage radial inflow turbine.  The centrifugal compressor and radial inflow turbine are 

mounted on a single shaft that is closely coupled; this requires that the shaft speed of the 

turbine be equal to the shaft speed of the compressor.  

NNN tc ==         (4.25) 

The additional assumptions applied to the turbine are listed below and the values 

pertaining to the assumptions are listed in tabular form in Table 4.3: 

• The total pressure at the exit to the turbine Pt5 is held constant 

• The working fluid in the turbine is air 

• The turbine isentropic efficiency, ηt is held constant 

• The turbine polytropic efficiency et is assumed constant, from isentropic 

efficiency calculations 

• The stator blade exit angle (absolute flow angle) α2 is held constant 

• The turbine hub/tip ratio rh/rt at Station 3 is held constant 

• The areas entering and exiting the turbine rotor, Station 2 and 3 and exiting the 

turbine diffuser, Station 4 are calculated at the design point and held constant, A2, 

A3, and A4 respectfully 

• The turbine diffuser efficiency ηd is held constant 

• The turbine diffuser is adiabatic 

The tip speed of the turbine rotor, U2t can be found from applying Equation 4.19 to the 

turbine  
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60
2

22
t

rt
N

dU
π

=        (4.26) 

Where d2r is the diameter of the turbine rotor and U2t is tip speed of the turbine rotor at 

Station 2.  As the microturbine generator is driven along the operating line, to ensure that 

no violation of the conservation equations takes place, the total pressure at the exit to the 

turbine rotor Pt5 is held constant.  This allows for the isentropic efficiency ηt to be 

constant and the polytropic efficiency ec ≈ constant. 

 The total properties at Station 1 of the turbine are equal to total properties at 

Station 2.  The total pressure, Pt4 corresponds to the total pressure at Station 2 and has 

been found through the combustion chamber mathematical modeling.  Since the total 

pressure exiting the turbine rotor is held constant, the expansion ratio in the turbine 1/πt is 

calculated by 

5

41
t

t

t P
P=π         (4.27) 

Employing an isentropic relationship, the total temperature ratio in the turbine is  
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1
11 ttt        (4.28) 

The isentropic efficiency ηt is held constant and κ is the specific heat ratio of the air flow 

in the turbine.  Exploiting the Euler equation for turbomachinery, the temperature 

decrease in the radial inflow turbine is directly proportional to the rotor tip speed squared.  

A turbine inlet temperature Tt4 can be found that will satisfy the assumption made in 

Equation 4.25 

( )ttptct TCgU τ−= 14
2
2        (4.29) 
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In Equation 4.29, Cpt is the specific heat at constant pressure of the air flow in the turbine 

taken at Tt4.  The turbine inlet temperature is applied to the combustion chamber 

mathematical modeling to determine the mass flow rate of fuel required during 

combustion to reach the turbine inlet temperature calculated in Equation 4.29.  The 

combustion chamber mathematical modeling is described in Section 4.1.3. 

 The energy rate balance is applied to the turbine flow parameters to determine the 

thermodynamic power produced by the turbine, Equation 4.30.  The mechanical power or 

actual power produced by the turbine is given in Equation 4.31 and is produced through 

determining the actual enthalpy of the entrance and exit states of the turbine. 

( )54, ttptttht TTCmP −= &       (4.30) 

( )54, hhmP tmt −= &        (4.31) 

The net thermodynamic power output of the microturbine generator Pth is the 

thermodynamic power produce by the turbine Pt,th minus the thermodynamic power 

required to run the compressor Pc,th.   The net mechanical power or actual power 

produced by the microturbine generator Pm is Pt,m minus Pc,m.   

The actual power produced will be used to validate the 0-D hybrid power 

generation model and the 1-D zooming of the hybrid power generation model. The net 

thermodynamic power output will be used to determine the thermal efficiency ηth in the 

next section based on the lower heating value LHV and the higher heating value HHV of 

the fuel.  The mass flow rate of the air in the turbine tm& is determined from conservation 

of mass 

ft mmm &&& += 0         (4.32) 
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Where fm& is the mass flow rate of fuel required during combustion to obtain the desired 

turbine inlet temperature Tt4.   

 The 1-D mean-line calculations are completed station by station through the radial 

inflow turbine. A visual representation of this method is seen in Figure 4.9.    As stated 

previously, the total properties at Station 1 are equal to the total properties at Station 2.  

The following parameters are calculated at Stations 2 and 3: total and static temperature, 

total and static pressure, Mach number, absolute and relative velocity and all components 

of velocity, absolute and relative flow angles and the areas are calculated from the design 

point conditions.  Calculations are based on trigonometry being applied to the velocity 

diagram in Figure 3.8, the rotor tip speed established in Equation 4.26, and isentropic 

relationships.  An example of the 1-D Simulink model for Station 2 calculations is in 

Figure 4.10. 

  Equations 4.33 through 4.36 demonstrate the application of trigonometry and isentropic 

relationships to the turbine stations.  The turbine’s stations can be referenced in Figures 

3.7 and 3.8. 

2

2
2 sinα

tU
V =         (4.33) 

( )

1sin2
1

2

2
2

2
2

2
2

−

−
=

t

tptc

U
TCg

M
α

κ      (4.34) 

  
22233 cosαVwVu ===       (4.35) 

  

( )
12

1
2

2
33

3 −
−

=
VTCg

M
tptc

κ       (4.36) 
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At Station 2, Equations 4.33 and 4.34, V2 is the absolute velocity, α2 is the absolute flow 

angle, M2 is the Mach number and Tt2 is the total temperature where Tt2 = Tt4.  For 

Station 3 calculations, Equations 4.35 and 4.36, u3 is the axial component of absolute 

velocity, V3 is the absolute velocity, w2 is the radial component of the absolute velocity at 

Station 2, M3 is the Mach number, and Tt3 is the total temperature where Tt3 = Tt5.   

 The total pressure decrease seen in the turbine diffuser, Station 3 to Station 4 in 

Figure 3.7 and Stage 5 to Stage 6 in Figure 3.2a, is modeled by the following equation: 

( )

1
2
5

2

6

52
5

5

6

2
11

11
21

−

⎥
⎦

⎤
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛ −

−

⎟
⎠
⎞⎜

⎝
⎛ −−

−=
κ

κ
κ

ηκ

M

A
AM

P
P d

t

t      (4.37) 

All of the variables in Equation 4.37 are either held constant or calculated through the 1-

D mean-line mathematical modeling.  The diffuser is assumed adiabatic, therefore Tt5 ≈ 

Tt6 and conservation of mass gives tmmm &&& == 56 . 
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Table 4.3: Radial Inflow Turbine Assumptions and Values 

 Value Units Value  Units 
Pt5 18.5 psia 127.6 kPa 
ηt 0.88 - 0.88 - 
α2 70 º 70 º 
d2r 0.30 ft 0.0914 m 
rh/rt 0.4 - 0.4 - 
A2 0.0113 ft2 0.00105 m2 
A3 0.0565 ft2 0.00525 m2 
A4 0.1876 ft2 0.01743 m2 
ηd 0.9 - 0.9 - 
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4.1.3 Reverse Flow Annular Combustor 

 Combustor performance is measured by efficiency and the static pressure increase 

encountered in the combustor.  The reaction in the combustion chamber is assumed to be 

isentropic; therefore a static pressure increase will give a resulting total pressure 

decrease.  The combustor efficiency is a measure of the combustion completeness.  The 

combustion completeness affects fuel consumption completely, since the heating value or 

lower heat value, LHV of any unburned fuel in not used to increase the turbine inlet 

temperature [48].  If there is less than 100 percent combustion, then total pressure loss 

will be present. 

 Combustion problems, not unlike fluid mechanics, can seldom be linearized.  

Analytical strategies require mathematical tools capable of dealing with non-linearities. It 

is a fact that simple mathematical models that incorporate a minimum of physics can be a 

source of physical insight superior to any other.  When combustion is modeled in one 

dimension with simple chemistry the nonlinear nature of the conservation equations will 

prohibit obtaining exact solutions, but accurate estimations are possible [52]. 

 Since combustion efficiency ηcc and total pressure loss represented by total 

pressure ratio πcc are important to combustor performance, these two parameters are 

assumed to be of known and constant values, Table 4.4.  A design parameter used is the 

maximum combustor exit temperature or turbine inlet temperature, Tt4.  This design 

parameter is critical since the turbine blade material and configuration must be 

determined based on how hot the gases through the turbine will become.  Tt4 along with 

the combustion efficiency ηcc, will determine the mass flow rate of fuel needed to obtain 
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the desired turbine inlet temperature.  Equation 4.38 is used in conjunction with equation 

4.39 to find the fuel/air ratio, f and the mass flow rate of the fuel fm&   

 
0m

m
f f

&

&
=         (4.38) 

( )
LHVf

TCTCf tpcctpt
cc ⋅

−+
=

'
341

η       (4.39) 

The equivalence ratio, φ is utilized to determine whether or not the combustor is running 

lean or rich.  If φ = 1, then the combustor is said to be running stoichiometrically.  For 

lean combustion (desired for low emissions) φ < 1, and for rich combustion φ > 1.  The 

equivalence ratio is the ratio of actual fuel/air ratio to stoichiometric fuel/air ratio. 

stoichf
f

=ϕ         (4.40) 

 In Equation 4.39, Cpt and Cpcc are the specific heat at constant pressure for the air in the 

turbine and the compressed air from the recuperator.  The temperature of the compressed 

air out of the recuperator, Tt3’, is higher than the compressed air directly from the 

compressor, Tt3.  Therefore the specific heat, Cpcc is not the same as Cpc, defined in 

Section 4.1.2.   

 The performance of a system experiencing a power cycle can be expressed in 

terms of the extent to which energy is added by heat  

LHVmQ fLHVin ⋅= &&
_        (4.41a) 

HHVmQ fHHVin ⋅= &&
_        (4.41b) 
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This addition of heat is converted to a net thermodynamic power output of the 

microturbine generator, Pth.  The degree of the energy conversion from heat to power is 

known as the thermal efficiency and can be determined from the LHV and from the HHV 

of the fuel.  The HHV is considered by some to be the true energy content of the fuel 

[57].  The heat addition to the system will be calculated based on the LHV and on the 

HHV of natural gas, Equations 4.41a and 4.41b.  The lower heating value thermal 

efficiency of the Capstone® Model 330 MTG is around 14 percent [16]. 

LHVin

th
LHVth Q

P

_
_ &

=η        (4.42a) 

HHVin

th
HHVth Q

P

_
_ &

=η        (4.42b) 

 

 The lower and higher heating values of natural gas are given in Table 4.4.  The 

pressure entering the combustion chamber Pt3’ from the recuperator is used along with 

the combustion chamber total pressure ratio, held constant, to determine the total pressure 

entering the turbine, Pt4, Equation 4.43. 

1
'3

4 <=
t

t
cc P

P
π         (4.43) 

The parameters determined from the combustor calculations are the fuel mass flow rate 

needed to obtain the desired turbine inlet total temperature and the turbine inlet total 

pressure.   
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Table 4.4: Combustion Chamber Values 

  Value Units Value Units 

πcc 0.987 - 0.987 - 

ηcc 0.98 - 0.98 - 

fstoich 0.05828 - 0.05828 - 
LHV 16381 Btu/lbm 38.1 MJ/kg 
HHV 18273 Btu/lbm 42.5 MJ/kg 
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4.1.4 Annular Wrap-Around Primary Surface Recuperator 

 The primary surface recuperator is modeled as a counter-flow heat exchanger 

with compressed air on the cold side and natural gas exhaust on the hot side.  The hot 

side flow will be modeled as air.  The Simulink model of the 1-D primary surface 

recuperator is represented in Figure 4.11.  The heat transfer surface is a thin sheet of fin 

folded Type 347 stainless steel.  On the cold side, mass flow rate m& , total pressure, and 

total temperature of compressed air are the input values. The same input values are seen 

on the exhaust (hot) side.  The desired output values are the total pressure and total 

temperature of the compressed air and the exhaust.  Parameters that are to be held 

constant can be seen in Table 4.5.  The following equations can be applied to both the hot 

and cold sides of the recuperator core.    

 The inlet temperature is used to determine specific heat Cp, viscosity μ, density ρ, 

and thermal conductivity, k of the fluid.  With these parameters the Prandtl number, Pr is 

determined from 

k
C pμ=Pr          (4.44) 

The Reynolds number of a fluid is used to determined if the flow is laminar (Re ≤ 2300), 

transitional (2300 ≤ Re ≤ 10000) or turbulent (Re ≥ 10000).  The Reynolds number is 

found from 

μ
ρ hVD

=Re         (4.45) 

The velocity of the fluid, V is determined from the mass flow rate, density, and the total 

cross sectional area of the flow geometry.  The total cross sectional area of the flow Axtot, 

both hot and cold, will be derived later in this section.   
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 From the Reynolds number, the Darcy friction factor, ff as described by [36, 53] 

can be obtained.  If the flow is laminar, Re ≤ 2300, then  

Dh

ff
Re

64
=          (4.46) 

For flow with Reynolds and Prandtl numbers of (3000 < ReDh < 106 and 0.5 < Pr < 2000) 

the Darcy friction factor is calculated by 

( ) 264.1Reln79.0 −−=
hDff       (4.47) 

Equation 4.47 applies to internal flow with smooth surfaces [53].  The Nusselt number, 

Nu is the nondimensional convective heat transfer coefficient.  This can be found based 

on the Reynolds number, Prandtl number and the Darcy friction factor.  For laminar flow,  

36.4=Nu         (4.48) 

For Reynolds and Prandtl numbers of (3000 < ReDh < 106 and 0.5 < Pr < 2000) the 

Nusselt number is calculated from 

( )

⎟
⎠
⎞⎜

⎝
⎛ −⎟

⎠
⎞⎜

⎝
⎛+

−⎟
⎠
⎞⎜

⎝
⎛

=

1Pr87.121

Pr1000Re8

3
22

1
ff

ff

Nu
Dh

Dh      (4.49) 

Once the Nusselt number is known, the convective heat transfer coefficient h, Btu/hr-ft2-

R (W/m2-K) can be determined from Equation 4.50. 

k
hD

Nu h
Dh =         (4.50) 

The convective heat transfer coefficient is used for determining the overall heat transfer 

coefficient for the recuperator core.  The overall heat transfer coefficient is based on the 

outer heat transfer surface (hot flow side). 
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hAhA

AU
++++

=
11

1     (4.51) 

In Equation 4.51, Ai is the total inner surface area of the air flow channel geometry and Ao 

is the outside surface area of the air flow channel geometry.  The surface area for both 

inside and outside of one channel geometry is found by multiplying the wetted perimeter 

of one channel by the length of the recuperator core.  The surface area is then multiplied 

by the total number of flow channels to get the total surface area.  This technique is 

analogous with multiplying the circumference of a pipe by its length. 

NFCLPA hxinci ⋅= ,        (4.52) 

NFCLPA hxoutco ⋅= ,        (4.53) 

Where Lhx is the length of the recuperator core, Pc,in is the wetted perimeter of the inside 

of the cold flow channel and NFC is the total number of flow channels.  The parameters 

in Equations 4.52 and 4.53 are from Section 3.5.  Pc,out is the wetted perimeter of the 

outside of the cold flow channel.  The convective heat transfer coefficients of the hot and 

cold flow, ho and hi, respectfully are found from Equation 4.50.   

 Applying a fouling factor or fouling resistance to each side of the heat transfer 

surface will help with design of an heat exchanger where fouling is anticipated.  Fouling 

is the condition where undesirable substances may have accumulated on the heat transfer 

surface.  The fouling resistance for compressed air, Rfi and natural gas exhaust, Rfo are 

given in Table 4.5.  The last variable to be discussed in Equation 4.51 is the wall 

resistance, Rw based on the thickness of the channel material, tss and the thermal 

conductivity, k of the material. 
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o

ss
w kA

t
R =         (4.54) 

 Since the overall heat transfer coefficient has been established, the next step to 

mathematically modeling the recuperator core is to determine the heat capacity rate of 

both the hot and cold fluids.  The fluid that may undergo the maximum temperature 

difference is the fluid with the minimum heat capacity rate.  The heat capacity rates of the 

hot and cold fluids are denoted as Ch and Cc, respectfully.  Where ( )
hotph CmC &= and 

( )
coldpc CmC &= . If Cc < Ch, then Cc = Cmin, else Ch = Cmin.  The number of transfer units, 

NTU is used to determine the heat exchanger effectiveness, ε. 

minC
AU

NTU oo=         (4.55) 

Along with the capacity rate ratio, 
max

min*

C
C

C = , NTU is applied to Equation 4.56, for 

counterflow recuperator configurations. 

( )[ ]
( )[ ]**

*

1exp1
1exp1

CNTUC
CNTU
−−−

−−−
=ε      (4.56) 

 Using the number transfer units and heat exchanger effectiveness to determine the 

heat transfer rate, Q&  is the ε-NTU method.  The heat exchanger effectiveness calculated 

in Equation 4.56 is averaged for the actual operating cycle described in Section 3.5 and is 

held constant.  The averaged heat exchanger effectiveness, εavg is used throughout the rest 

of the recuperator core mathematical modeling; a representation of this mathematical 

modeling can be seen in Figure 4.12. 

 The maximum possible heat transfer rate is expressed as [32]  

( )cihi TTCQ −= minmax
&        (4.57) 
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From Equation 4.57 and εavg, the heat transfer rate in the recuperator core is defined by 

maxQ
Q

avg &

&
=ε         (4.58) 

The heat transfer rate is used in Equation 4.59 to determine the exit temperatures of the 

hot and cold fluids, Tho and Tco which are the only unknowns. 

( )hohih TTCQ −=&  and ( )cicoc TTCQ −=&    (4.59) 

 The pressure drop on both the hot and cold sides is calculated using the Darcy 

friction factor ff, the hydraulic diameter Dh, and the total cross-sectional area Axtot of the 

respective hot and cold flow geometries.  The Darcy friction factors are calculated from 

Equation 4.46 or 4.47, Reynolds number dependent, the hydraulic diameters are given in 

section 3.5, and the total cross-sectional area is given as 

NFCAA xxtot =        (4.60) 

The cross-sectional area Ax multiplied by the total number of flow channels, gives the 

total cross-sectional area.  Equation 4.60 can be applied to the hot and cold flow 

channels.  The pressure drop on the hot and cold side can then be calculated by 

2

2

2 xtoth

hx

c A
m

D
L

g
ffP

ρ
&

=Δ        (4.61) 
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Table 4.5: Recuperator Core Values 

 Value Units Value Units 
Rfi 0.000999 hr-ft2-R/Btu 0.000176 m2-K/W 
Rfo 0.005001 hr-ft2-R/Btu 0.000881 m2-K/W 
εavg 0.8320 - 0.8320 - 

Axtot,c 0.233 ft2 0.021647 m2 
Axtot,h 0.3329 ft2 0.030928 m2 
NFC 20618 - 20618 - 
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CHAPTER 5:  METHODOLOGY OF HYBRID POWER GENERATION 
SYSTEM 

  

 There will be two MATLAB/Simulink® models discussed in this chapter; a 0-

Dimensional analysis where all the components will be 0-Dimensional, and a 0-

Dimensional model with 1-Dimensional zooming on the hybrid microturbine generator.  

Both of these models use the Simulink® variable time-step solver ode23s (stiff/Mod. 

Rosenbrock). The first model has the 0-Dimensional mathematical modeling of the 

hybrid microturbine generator (MTG) given in Section 5.1.1.  The molten carbonate fuel 

cell (MCFC) model will be discussed in Section 5.1.2.  The shell-and-tube heat 

exchanger will be mathematically modeled in Section 5.1.3.  Section 5.1.2 and 5.1.3 are 

not the primary concern of this thesis but are included to provide closure for the 

mathematical modeling of the hybrid power generation system. 

 For the second model discussed, beginning with Section 5.2, the hybrid MTG 

main components, centrifugal compressor and radial inflow turbine, will be modeled with 

the 1-Dimensional approach while the remaining components of the hybrid power 

generation system will stay 0-Dimensional.  This method is called zooming and is used 

when higher fidelity computations are desired for certain components in a system.  The 1-

D zooming of the MTG components will be mathematically modeled in Sections 5.2.1 

and 5.2.2 and the method is analogous to the 1-D modeling of the compressor and turbine 

of the stand alone model simulation described in Sections 4.1.1 and 4.1.2, respectfully. 
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5.1 0 – Dimensional 

 The 0-D simulation is started by loading the MATLAB m-file controller.  There 

are three components to the hybrid power system, the microturbine generator (MTG), the 

shell-and-tube heat exchanger and the molten carbonate fuel cell (MCFC).  With the 

implementation of m-file controller file, the thermodynamic properties and individual 

component parameters of the MTG, the gas properties and sizing parameters of the heat 

exchanger, and the variables for the MCFC and the oxidizer are all loaded into the 

MATLAB workspace.  Once all of the required information has been entered into the 

MATLAB workspace, the Simulink Graphical User Interface (GUI) is opened and the 

hybrid model is displayed. 

The hybrid model operates with two different basis; the MTG and heat exchanger 

are on mass basis and the MCFC is mol basis.  Also present in the model are two 

different unit systems.  The MTG uses English units while the heat exchanger and MCFC 

use SI units.  To compensate for the differences, a subsystem is employed to convert 

from one unit system to the other.  The flow from the compressor into the shell of the 

shell-and-tube heat exchanger is converted from English to SI and then back again before 

it enters the turbine.  The flow from the MTG diffuser is converted from English mass 

basis to SI mol basis before it enters the oxidizer subsystem.  The flow from the oxidizer, 

tube-side flow, is converted from molar flow to mass flow in an internal subsystem 

located in the shell-and-tube heat exchanger model.  This flow is converted back to molar 

flow before it enters the cathode on the MCFC. 

   The top level computer flow diagram to execute the 0-D modeling of the hybrid 

power system is in Figure 5.1.  The top level Simulink model of the hybrid power system 
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can be seen in Figure 5.2 and the corresponding variable flow diagram is in Figure 5.3.  

The computational flow of the three main structures of the hybrid model; the MTG, the 

MCFC and shell-and-tube heat exchanger will be analyzed in Sections 5.1.1, 5.1.2 and 

5.1.3, respectfully. 

 The hybrid Simulink model provides a modular environment with a GUI that 

allows for ease of operation and manipulation of a PID controller attached to the MTG 

subsystem.  The proportional-integral-derivative (PID) controller is a feedback loop used 

to manipulate the power output of the microturbine generator.  The controller takes an 

output value from the model and compares it with the model’s desired output value. The 

difference or error is then used to adjust an input value in order to reach the desired 

output value. The PID controller adjusts the input value based on the rate of change of the 

error giving more accurate and stable control.  The input that is fed to the Simulink model 

from the PID controller is the torque load applied to the shaft of the microturbine 

generator τLOAD.  A model of the PID controller is shown in Figure 5.4.  A controller has 

not been implemented for the MCFC portion of the model.  The fuel flow to the anode of 

the MCFC is seen to be constant.  

 

http://en.wikipedia.org/wiki/Feedback_loop
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Figure 5.1: Computer Flow Diagram to Execute 0-D Modeling and Simulation of 
Hybrid Power Generation System  
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5.1.1 Microturbine Generator (MTG) 

5.1.1.1 Centrifugal Compressor 

 The 0-D centrifugal compressor is modeled using performance maps and 

isentropic relationships.  The compressor inlet total pressure and temperature Pt2 and Tt2 

are determined from the isentropic and adiabatic flow in the MTG inlet.  To determine 

the total pressure and temperature exiting the compressor Pt3 and Tt3, the compressor total 

pressure ratio πc must be determined.  The total pressure ratio along with the corrected 

mass flow rate cm0& , and the isentropic efficiency ηc are seen in the compressor 

performance map portrayed in Figure 4.6.  These three parameters are represented by 2-D 

arrays where the input values are the R-line as the row index input values and N% as the 

column index input values.  Using interpolation-extrapolation of the 2-D look-up tables 

representing the 2-D arrays in the MATLAB/Simulink® environment, the total pressure 

ratio πc, corrected mass flow rate cm0&  and isentropic efficiency ηc can be determined.  A 

representation of the 2-D arrays is presented in Figures 5.5, 5.6, and 5.7.  The tabular and 

plotted data can be seen in Appendix C. 

The compressor R-line is determined through an algebraic constraint that is 

applied to an algebraic loop within the compressor module.  This algebraic constraint 

incorporates the mass flow determined from the compressor maps 0m& , the compressor 

exit pressure Pt3 determined from compressor mapping and from the volume dynamics 

applied to the compressor plenum volume  The corresponding exit temperature Tt3 is 

found after applying isentropic relationships to the pressure.  A means of comparing the 

variables obtained from the compressor mapping to the variables provided through 

volume dynamics was establish.  The mass flow rate, temperatures, and pressures 
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associated with the performance mapping and volume dynamics are compared by using a 

variation on the corrected mass flow equation, i.e.: 
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Where m& is the actual mass flow rate produced by the compressor performance mapping 

and is the same value in Equations 5.1 and 5.2. The difference between Equations 5.1 and 

5.2 is sent to the algebraic constraint as f(z).  An algebraic loop created with this 

constraint can be seen in Figure 5.8.  The R-line is the z that gives f(z) = 0. The algebraic 

constraint block in the Simulink environment is used to determine the R-line that allows 

for the compressor mapping technique to be feasible.  In order for the R-line to converge, 

the difference between Equations 5.1 and 5.2 must be zero. 

 From the total pressure ratio and isentropic efficiency, the total temperature ratio, 

τc is found thus giving the total temperature exiting the compressor Tt3. 

1
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1
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=

−
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c

c η

π
τ

γ
γ

       (5.3) 

The polytropic efficiency is not directly used to calculate total pressure ratio and only the 

isentropic efficiency must be determined.  To ensure that the 0-D simulation is correct 
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and has not been falsified, polytropic efficiency can be found from equation 5.4 and ec 

must be less than one, ec < 1 and should fundamentally be constant. 

ce

cc
γ

γ

πτ
1−

=         (5.4) 

 The thermodynamic properties of enthalpy h, specific heat at constant pressure 

Cpc, and specific heat ratio γ are determined at the entrance and exit to the compressor 

based on the temperatures determined from the MTG inlet, Tt2 and the relationship seen 

in Equation 5.3, Tt3.  The torque that the centrifugal compressor applies to the 

microturbine generator τC is calculated in Equation 5.5 and this will be used to help with 

calculating the net mechanical power produced by the MTG. 

( )
N

hhm
C π

τ
2

60 230 −
=

&
       (5.5) 

 The corrected mass flow rate in the compressor is determined from the 2-D array 

portrayed in Figure 5.5.  The actual mass flow rate 0m&  is determined from the corrected 

mass flow rate equation 

c

c
c

m
m

δ
θ0

0

&
& =         (5.6) 

This mass flow rate will be provided as the downstream flow for the inlet and represents 

the amount or value that is required from the upstream flow.  The isentropic efficiency 

and total pressure ratio are determined by the 2-D array such that the total temperature 

exiting the compressor Tt3 can be used to determine the total pressure exiting the 

compressor Pt3 via the volume dynamics equation.  

 Volume dynamics, also known as the pressure derivative, represents the pressure 

variation due to the differential mass flow rate applied to a control volume on the 



 

104 

compressor.  This control volume has been seen as a plenum volume by Roberts [54] and 

applied to the volume seen between the compressor and the turbine.  For the MTG, the 

plenum volume will be within the control volume placed around the 0-Dimensional 

compressor mathematical modeling space.  The differential pressure calculation is given 

in Equation 5.7. 

( )downup
c

tt mm
RT

dt
dP

&& −
∀

= 33 γ
      (5.7) 

The mass flow rate of fluid upstream of the compressor, from the inlet for the hybrid 

power generation systems is noted by upm& .  The mass flow rate of fluid downstream of 

the compressor, from the turbine in the hybrid power generation system is noted by 

downm& .  The shell-and-tube heat exchanger is downstream from the compressor, but since 

continuity is conserved, the downstream flow from the turbine is allowable.  The plenum 

volume c∀  is a constant, and the value is determined from literature and has been 

optimized based on the results of the simulation.   
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Figure 5.5: Compressor 2-D Array: Corrected Mass Flow Rate vs. Speed Parameter 

 

Figure 5.6: Compressor 2-D Array: Total Pressure Ratio vs. Speed Parameter 
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Figure 5.7: Compressor 2-D Array: Isentropic Efficiency vs. Speed Parameter 
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5.1.1.2 Radial Inflow Turbine  

 Much like the centrifugal compressor, the radial inflow turbine is modeled using 

performance mapping and isentropic relationships.  For the hybrid power generation 

system, Pt4 and Tt4 are determined from the 0-Dimensional mathematical modeling on the 

shell-and-tube heat exchanger described in Section 5.1.3.  Performance mapping of the 

turbine incorporates the corrected mass flow rate tcm&  only.  The isentropic efficiency of 

the turbine ηt is still assumed constant and the expansion ratio
tπ

1 of the turbine is 

determined from Pt4 from the shell-and-tube heat exchanger and Pt5 which is determined 

from applying volume dynamics or the pressure derivative to the plenum volume of the 

0-Dimensional turbine mathematical modeling space. Since the 0-D calculations express 

a change in pressure based on the differential mass flow rate, Pt5 cannot be held constant 

as with the 1-D case. The expansion ratio is not constant since it is dependent on the 

rotational speed of the microturbine generator which varies with the load applied on the 

shaft of the microturbine generator. 

 The 2-D array representing the corrected mass flow rate of the turbine tcm& with 

the expansion ratio as the row index input values and N% as the column index input 

values is seen in Figure 5.9.  The tabular and plotted data can be seen in Appendix D.   

Interpolation-extrapolation is used on the 2-D look-up table representing the 2-D array in 

the MATLAB/Simulink® environment.  The total temperature ratio τt can be determined 

from Equation 5.8.  This will be used to calculate the total temperature exiting the turbine 

Tt5.  The specific heat ratio of the air in the turbine is represented by κ.   

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
⎟
⎠
⎞⎜

⎝
⎛−−=

−
κ

κ

πητ
1

111
t

tt      (5.8) 
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 The torque applied to the microturbine generator by the turbine τT is calculated 

from the power provided by the turbine, hmP tΔ= &  and the rotational speed of the shaft 

N.  The turbine torque is calculated from Equation 5.9 and this torque will be used along 

with the compressor torque to calculate the net mechanical power produce by the MTG.   

( )
N

hhmt
T π

τ
2

60 54 −=
&

       (5.9) 

The actual mass flow rate in the turbine tm&  can be determined from the equation 

representing the corrected mass flow rate in the turbine  

t

tt
tc

m
m

δ
θ&

& =         (5.10) 

Where δt is the normalized pressure ratio in the turbine and θt is normalized temperature 

ratio in the turbine.  This mass flow rate will be provided as the downstream flow for the 

compressor in the hybrid power system and represents the amount or value that is 

required from the upstream flow.  

 The volume dynamics is represented in the same fashion as seen with the 

compressor.  The control volume is place around the turbine 0-D mathematical modeling 

space and is represented by the following equation: 

( )downup
t

tt mm
RT

dt
dP

&& −
∀

= 55 κ
      (5.11) 

The plenum volume of the turbine is constant and determined from literature and 

optimization based on simulation results.  The mass flow rate of fluid upstream of the 

turbine, from the shell-and-tube heat exchanger for the hybrid power system is 

distinguished by upm& .  The mass flow rate of fluid downstream of the turbine, flow from 

the diffuser in the hybrid power system is given downm& . 
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 The final step to mathematically modeling the 0-D compressor and turbine is to 

calculate the rotational speed of the shaft and the power output of the microturbine 

generator.  A turbine shaft is mathematically modeled to mechanically connect the 

compressor and turbine components and determine the speed and net power relationships 

of a microturbine.  The general approach is to sum the torques seen in the system where a 

positive torque balance will increase the rotational speed and a negative torque balance 

will decrease the rotational speed [54]. 

LOSSLOADCt τττττ −−−=Δ       (5.12) 

The torque on the turbine is τT, τC is the torque on the compressor, τLOAD is the load on the 

shaft (generator load used to determine power) and τLOSS is the bearing loss.  The bearing 

loss is to be neglected since the shaft runs on air bearings with no friction [6], therefore 

τLOSS ≈ 0 in Equation 5.12 and is neglected.  Equilibrium or convergence of the torques 

will establish that steady-state operation has been reached.  The shaft balance equation in 

differential form is represented by Equation 5.13. 

( )LOADCTJdt
d τττω

−−=
1       (5.13) 

Where J is the combined compressor and turbine moment of inertia and ω is the angular 

velocity of the shaft.  The combined moment of inertia is calculated by superposition of 

the compressor and turbine moment of inertia  

tc JJJ +=         (5.14) 
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Where 2

2
1

ccc rmJ = and 2

2
1

ttt rmJ = .  The radius of the compressor and turbine are 

given rc and rt, respectfully.  The masses of the compressor and turbine mc and mt are 

roughly based on a 3.4 inch diameter compressor made out of aluminum and a 3.6 inch 

diameter turbine made of steel.  These values can be seen in Table 5.1.  The values of the 

plenum volume for both compressor and turbine will also be represented in Table 5.1.  

All other mentioned constants are the same as seen in the 1-D analysis, Sections 4.1.1 and 

4.1.2.  The relationship between the angular velocity ω and shaft rotational speed N is 

established as 

60
2πω N=         (5.15) 

Substituting Equation 5.15 into Equation 5.13 yields the shaft balance equation in terms 

of shaft rotational speed N. 

( )LOADCTJdt
dN τττ

π
−−=

2
60       (5.16) 

The mechanical power produced by turbomachinery is defined as the rate of work done 

on the rotor of the piece of turbomachinery [56]. The net mechanical power output of the 

microturbine generator is calculated from the torque load applied to the generator τLOAD 

and the angular velocity ω.  The relationship between angular velocity and rotational 

speed N is utilized and the net mechanical power is calculated from Equation 5.17.   

60
2 NP LOADLOADm
πτωτ ==       (5.17) 
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Table 5.1: Compressor and Turbine Values as Applied to the 0-Dimensional 
Analysis 

 
 Value Units Value Units 

mc 2.27070 lbm 1.02998 kg 
mt 6.08470 lbm 2.76000 kg 
Jc 0.02299 lbm-ft2 0.00097 kg-m2 
Jt 0.06850 lbm-ft2 0.00289 kg-m2 
J 0.09144 lbm-ft2 0.00385 kg-m2 
rc 0.14230 ft 0.04337 m 
rt 0.15000 ft 0.04572 m 

c∀  0.00500 ft3 0.00014 m3 
t∀  0.01185 ft3 0.00034 m3 

 

 

Figure 5.9: Turbine 2-D Array: Corrected Mass Flow Rate vs. Speed Parameter 
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5.1.2 Molten Carbonate Fuel Cell (MCFC) 

 Molten carbonate fuel cells (MCFC) that operate at high temperatures are an 

excellent source of clean and reliable power.  These energy plants use fossil fuel in an 

efficient and affordable manner to produce electricity.  The high temperature allows for 

the MCFC to operation on a more abundant array of fuels, such as natural gas, gasified 

coal and biomass derivatives than lower temperature fuel cells and this is done without 

the use of an external reformer.  The high temperature operation also allows for 

cogeneration applications that take advantage of the waste heat generated from the fuel 

cell reactions. 

 The MCFC model is fed a mixture of water and natural gas.  Before the natural 

gas can enter the fuel cell it must be processed.  The natural gas may contain additives 

that are harmful to the fuel cell’s performance.  Sulfur compounds (H2S), halides (HCl), 

and nitrogen compounds (NOx) are undesirable in any concentration in the fuel cell 

operations.  The water is preheated by the cathode off-gas through a series of heat 

exchangers and then fed to the fuel cell with the natural gas at a 2:1 steam to carbon ratio.  

This is done to prevent carbon deposits.   

The MCFC model developed for this hybrid system incorporates internal 

reforming of the natural gas.  Once the natural gas/steam mixture is inside the fuel cell 

model, the mixture is reformed to hydrogen through direct internal reforming (DIR) and 

indirect internal reforming (IIR), Figure 5.10.  The combination of DIR and IIR gives a 

more efficient use of the useful waste heat to drive the reformation reactions.  The IIR 

occurs through the use of a nickel based catalyst placed between every 10 cells of the 

stack [59].  DIR occurs via the water-gas shift reaction that occurs at the high operating 
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temperatures of the MCFC.  The reformation reaction is seen in Equation 5.18 and the 

water-gas shift (WGS) reaction is given in Equation 5.19. 

224 3HCOOHCH +→+       (5.18) 

222 HCOOHCO +→+       (5.19) 

As described by Lukas and Lee [58] there are two additional electrochemical reactions of 

note taking place within the molten carbonate fuel cell.  The hydrogen produced by the 

IIR reaction is introduced to the porous anode.  An oxidant comprised of a mixture of 

oxygen and carbon dioxide is introduced at the porous cathode electrode.  At the cathode, 

the O2 and CO2 in the oxidant stream react with electrons to form carbonate ions, this is 

seen in Equation 5.20. 

=− →++ 322 2
2
1 COeCOO  Cathode    (5.20) 

The carbonate ions migrate to the anode through the molten salt electrolyte.  The 

hydrogen reacts with the carbonate ions to produce water and carbon dioxide, Equation 

5.21. 

−= ++→+ eCOOHCOH 22232  Anode    (5.21) 

The anode and cathode reactions are combined to get the overall chemical reaction of the 

fuel cell.  The carbon dioxide present on both sides of the chemical reaction in Equation 

5.22 does not cancel as is normally seen in chemical equation balancing.  This is because 

the CO2 on the anode side is generated when the anode gas is oxidized. 

( ) ( ) ( ) ( ) POWERHEATCOOHCOOH anodecathodecathodeanode +++→++ 22222 2
1  (5.22) 
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Figure 5.10: MCFC with Structure for Indirect and Direct Internal Reforming  
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5.1.2.1 Anode and Cathode Ideal Gas Equations 

 A complete derivation of all the equations modeling in the MCFC section of the 

0-D hybrid power generation model is not given in this thesis.  The parameters associated 

with the conservation equations, power and voltage will be addressed.  The following 

assumptions derived from Lukas and Lee [58] have been applied to the 0-Dimensional 

modeling of the MCFC in the hybrid power generation model: 

• The model uses lumped-parameter dynamics (0-Dimensional analysis) with no 

concern for geometry 

• All gas mixtures are ideal gas mixtures 

• The thermodynamic properties of the system follow the ideal gas law 

• Exit stream is at fuel cell stack temperature 

• Accumulation of gas phase enthalpy is negligible compared to that of solid 

components 

The principal obstacle to creating the mathematical model of the fuel cell is the reaction 

rate of the reformation reaction, Equation 5.18.  The reformation reaction is the most 

complicated reaction.  The water-gas shift reaction is assumed to be an equilibrium 

reaction and anode and cathode reactions are electrochemical reactions.  Since this is the 

case, if the current density is known, then the reaction rate can be determined. 

 The ideal gas equation 

nRTP =∀         (5.23) 

is used to determine the gas component mole balances for each gas species, i, within the 

anode and cathode.  For Equation 5.23, if 
RT
PC = then ∀C = n.  Integrating n for each 

gas species gives 
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∀      (5.24) 

Where n is the number of moles in a mixture, Ni is the molar flow rate into and out of the 

system and Ri represents the total rate of production of species i.  For a set of μ 

independent reactions, the rate of production can be written as 

∑
=

=
μ

1i
jiji rvR         (5.25) 

For Equation 5.25, vij are the stoichiometric coefficients of species i in reaction j, and rj is 

the rate of reaction of j.  For the fuel cell stack model, there are for reactions rates, r1, r2, 

r3, and r4, these are anodic, water-gas shift, reforming and cathodic reactions.  The anodic 

and cathodic reaction rates are equal (r1 = r4) and proportional to the stack current.  The 

water-gas shift reaction is assumed to be in equilibrium and equilibrium constraints imply 

that r2 can be eliminated when calculating gas component mole balances.   

 To complete the derivation for determining the gas component mole balances, it is 

shown that totii NxN =  where xi are the mole fractions of species i.  This leads to the 

following 

io
i

i
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i
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=
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1

    (5.26) 

When Equation 5.26 is applied to the anode and cathode, respectfully and 
RT
PC = is 

substituted back in, the anode gas component mole balances become 

( ) ai
i

out
aiai

out
ai

in
ai

in
a

ai

s

aa RxRxxN
dt

dx
RT

P
,

1
,,,,

, +−−=
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=

ξ

   (5.27) 

The gas component mole balances for the cathode are: 
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   (5.28) 

All of the variables in Equations 5.27 and 5.28 are for the anode or cathode, respectfully.  

On the left hand side of Equations 5.27 and 5.28, P,∀ , R, Ts and xi are pressure, volume, 

gas constant, stack temperature, and mole fractions of species i, respectfully.  On the right 

hand side of Equations 5.27 and 5.28, N, xi, ξ, and Ri are total molar flow, mole fractions 

of species i, total number of species and total production rate of species i from all 

reactions.  

 

 

5.1.2.2 Conservation of Energy and Nernst Equation 

 The first law of thermodynamics is applied to the MCFC stack model in the 

following form 

WQ
T
E && −=
∂
∂         (5.29) 

Where each of the three terms in Equation 5.29 is described by the following: 

∑
= ∂
∂

∀+
∂
∂

=
∂
∂ ξ

1i

iis
pss t

Ch
t

T
CM

T
E      (5.30) 

( )∑ −−= conv
out
i

s
i

in
i

in
i QNhNhQ&      (5.31) 

dcPW =&         (5.32) 

Where MsCps is the stack solid mass-specific heat, hi are the partial molar enthalpies and 

Pdc is the direct current power produced the fuel cell stack.  In Equation 5.30, the second 

term on the right-hand-side (RHS) is defined as  
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Substituting a modified version of Equation 5.24 in for the term 
t

Ctot

∂
∂

∀ in Equation 5.33, 

Equation 5.30 becomes 
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Combining Equations 5.31, 5.32 and 5.34 yields a single energy conservation equation 

for solving the fuel cell stack temperature.  All of the terms have been categorized for 

anodic or cathodic reactions and can be seen in Equation 5.35.  With Equations 5.27, 5.28 

and 5.35 the reaction rates and fuel cell stack temperature can be determined.  The 

pressure in the anode and cathode of the MCFC is not calculated in this hybrid power 

generation model. 
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 Lukas and Lee [59] express the cell voltage under load current I as  

IzVV concactocell −−−= ηη       (5.36) 

Where Vo is the equilibrium potential, ηact is the activation polarization, ηconc is the 

concentration polarization and z is the cell ohmic impedance.  The activation polarization 

is caused by electrode kinetics while the concentration polarization is cased by 

concentration gradients in the electrode.  The polarization losses in this hybrid model are 

known from empirical observation and the cell voltage, ultimately found from the Nernst 

equation will account of the ohmic and polarization losses.  The equilibrium potential is 
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described by the Nernst equation, Equation 5.37; with this and the empirically determined 

polarization losses, the cell voltage in Equation 5.36 can be determined. 

aCOaOH

cCOcOaH
oo PP

PPP
F

RTEV
,,

,
2

1

,,

22

222ln
2

⋅+=      (5.37) 

5.1.2.3 Catalytic oxidizer 

 The anode off-gas which is commonly composed of unused fuel (CH4), carbon 

dioxide, and water is taken to a catalytic oxidizer where it is oxidized with the air from 

the turbine diffuser; this can be referenced in Figure 3.3.  Utilizing this technique creates 

more valuable heat energy and prepares the gases for the cathode reactions.  Once all of 

the gasses have been oxidized, they are fed through the shell-and-tube heat exchanger 

where the excess heat is used to elevate the temperature of the compressed air before it 

enters the turbine stage of the microturbine generator.  The oxidized gases then complete 

the cycle by entering the cathode where they undergo electrochemical reactions. 

 The chemical reactions that take place within the catalytic oxidizer are 

OHCOOCH

COOCO

OHOH

2224

22

222

22
2
1
2
1

+→+

→+

→+

      (5.38) 

The reactions in Equation 5.38 are considered to be complete and spontaneous with the 

Minimum Theoretical Air (MTA) required to support oxidation and is assumed to be 

always available.  Given this information the reaction rates are written by inspection and 

used to determine the mole balance equations similar to Equations 5.27 and 5.28.  The 

mole balance equations are taken from Lukas and Lee [59] and are listed as follows: 
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Where α1 and α2 are defined as 
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For Equations 5.39 and 5.40 x is the mol fraction of CO2, H2, N2, and O2, respectfully.  

The total molar flow for each of the compounds is defined by N where gas
oxN is the anode 

off-gas and air
oxN is the diffuser air.   

An energy conservation equation to determine the oxidizer temperature is given in 

Equation 5.41 and is developed in a similar fashion to the fuel cell stack temperature 

equation.  The oxidizer pressure is not calculated in this model.  The pressure exiting the 

catalytic oxidizer is assumed to be 98 percent of the pressure entering the oxidizer from 

the radial inflow turbine diffuser. 

( ) ( ) ( )
poxox

oxioxioxairiairi
air
ox

gas
oxi

gas
oxi

gas
oxox

CM
xhNxhNxhN

dt
dT ,,,,,, ⋅−⋅+⋅

=   (5.41) 

In Equation 5.41, air
ox

gas
ox NN , and Nox are the total molar flows of the anode off-gas, air, 

and the oxidizer exhaust, respectfully.  gas
oxih , , hi,air and hi,ox are the molar enthalpy of the 

anode off-gas, air and oxidizer exhaust for each species i.  Similarly xi is the respective 

compositions of the anode off-gas, air and the oxidizer exhaust.  The 
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MATLAB/Simulink® 0-D model of the MCFC is represented in Figures 5.11 and 5.12.  

The total molar flow rates at anode and cathode, fuel cell stack temperature and fuel cell 

voltage can be seen. 
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5.1.3 Shell-and-Tube Heat Exchanger 

 Shell-and-tube heat exchangers are the most versatile type of heat exchanger.  

They provide large ratios of heat transfer area to volume and weight.  Shell-and-tube heat 

exchangers are built of round tubes mounted in a cylindrical shell with the tubes running 

parallel to the shell, Figure 5.13.  Fluid from the oxidizer flows in the tubes, while the 

other fluid, the compressed air from the microturbine generator, flows across and along 

the axis of the heat exchanger.  The major components of this type of heat exchanger are 

the tubes, with tube bundle type of square pitch, shell, front- and rear-end head, baffles 

and tube sheets [32].  The shell-and-tube heat exchanger described in the following 

sections was sized based on results from CHEMCAD a product of Chemstations, Inc.  

The shell-and-tube heat exchanger has 305 tubes of length 0.5578 ft (1.83 m).  There are 

three baffles with 0.1067 ft (0.35 m) between the baffles.  The geometric parameters and 

constant values can be seen in Table 5.2.  
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Figure 5.13: Shell-and-Tube Heat Exchanger 
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5.1.3.1 1st Law of Thermodynamics  

 The overall heat transfer coefficient of the shell-and-tube heat exchanger is 

determined in the same manner as for the primary surface recuperator, Section 4.1.4.  

This method will be described briefly below.  For heat exchanger purposes, the overall 

heat transfer coefficient is typically based on the outer area.  For known hot side (tube-

side) and cold side (shell-side) heat transfer coefficients, fouling resistances (described in 

Section 4.2.4), and proper geometric parameters, the overall heat transfer coefficient of 

the shell-and-tube heat exchanger is distinguish by Equation 5.42. 
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++++

=
11

1     (5.42) 

Where Uo is the overall heat transfer coefficient based on the outer area, Ao is the surface 

area of the outside of the tube, ho is the heat transfer coefficient of the fluid in the shell, 

and Rfo is the fouling for the compressed air.  The heat transfer is through the tube 

material from the hot flow in the tubes to the cold flow in the shell.  Rw is the material 

wall resistance of the tubes, Ai is the surface area of the inside of the tube, hi is the heat 

transfer coefficient of the fluid in the tubes, and Rfi is the fouling of the exhaust flow from 

the oxidizer. 

  0-Dimensional analysis of the shell-and-tube heat exchanger incorporates an 

average of the hot flow temperatures and a separate average of the cold flow 

temperatures.  This averaging can be seen as transient behavior and integration is not 

occurring over a length scale but over a time scale.  The average is taken of the hot and 

cold flows, respectfully and utilized to calculate the heat transfer rate, Q& .  
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=        (5.43) 

2,
cico

avgc
TT

T
+

=                   (5.44) 

Thi and Tho represent the flow into and out of the hot side (tube-side) of the heat 

exchanger and Tci and Tco represent the flow into and out of the cold side (shell-side) of 

the heat exchanger.  The centrifugal compressor from the microturbine generator 

provides the compressed air flow, Tci for the shell-side of the heat exchanger.  This flow 

is heated and fed to the radial inflow turbine section where the flow is expanded and 

energy is extracted for additional power generation.  The flow out of the oxidizer is sent 

through the tubes of the heat exchanger.  This flow is cooled before it goes to the cathode 

of the molten carbonate fuel cell (MCFC).  The heat transfer rate for the shell-and-tube 

heat exchanger is characterized by 

( )avgcavghoo TTAUQ ,, −=&       (5.45) 

 The first law of thermodynamics [53] is given by Equation 5.46, 

stoutin EQEE &&&& =−−        (5.46) 

It is used to determine the unknown temperatures exiting both the hot and cold sides of 

the shell-and-tube heat exchanger.  The energy into the control volume of the system is 

defined as  

inpin TCmE && =          (5.47) 

The energy exiting the control volume of the system is identified by 

outpout TCmE && =         (5.48) 

  The rate of change of energy stored in the control volume 
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dt
dE

E st
st =&          (5.49) 

is equal to the rate of change of internal energy stored in the control volume 

dt
dU

dt
dEst =          (5.50) 

Where    

TCU v)( ∀= ρ&         (5.51) 

The quantity ( ∀ρ ) is the density (lbm/ft3 or kg/m3) multiplied by the volume (ft3 or m3), 

this yields mass m and Cv is the specific heat at constant volume of the fluid in the heat 

exchanger.  This value is dependent on the type of gas or liquid present in the system.  

Replacing the terms in Equation 5.46 by Equations 5.47 through Equations 5.51 yields 

the following  

)( outvoutpinp TmC
dt
dQTCmTCm =−− &&&     (5.52) 

Applying Equation 5.52 to the cold and hot sides of the heat exchanger, the flow out of 

the hot and cold sides, Tho and Tco, respectfully can be determined from Equations 5.53 

and 5.54. 

( ) ( ) QTTCm
dt

dT
mCHotSide hohihp

ho
v

&& +−=:     (5.53) 

( ) ( ) QTTCm
dt

dT
mCColdSide cocicp

co
v

&& −−=:    (5.54) 

The quantities ( )
hpCm&  and ( )

cpCm& are the heat capacity rates of the hot and cold sides, 

respectfully.  The Simulink model of the 0-D shell-and-tube heat exchanger heat transfer, 

energy, and pressure drop calculations is represented in Figure 5.14. 
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5.1.3.2 Tube-Side Pressure Drop 

 The pressure drop on the tube-side of a shell-and-tube heat exchanger can be 

found through knowing the number of tube passes and the length, Lhx of the heat 

exchanger.  For modeling purposes, the number of tube passes is equal to the number of 

heat exchanger sections.  One pass of the tube bundle would be equivalent to one heat 

exchanger section, designated by the variable NS.  The pressure drop in the tube-side is 

given by Equation 5.55 taken from Kakaç et al [32] 

ρ2

2
t

i

hx
t

G
D

NSL
ffP

⋅
=Δ        (5.55) 

Where ff is the Darcy friction factor, Di is the inner diameter of a single tube, and Gt is 

the mass velocity of the fluid on the tube-side.  The mass velocity can be calculated by 

either mt uG ρ=  where um is the mean fluid velocity and ρ is the fluid density, or by 

i

t
t A

mG
&

= where m& is the mass flow rate of the fluid on the tube-side and Ai is the inner 

cross-sectional area of the tube.   

 

5.1.3.3 Shell-Side Pressure Drop 

 Determining the shell side-pressure drop is a more elaborate process and therefore 

not as straightforward as calculating the tube-side pressure drop.  The shell-side analysis 

combines cross-flow and baffle window flow as well as baffle-shell and bundle-shell 

bypass streams [32].  Due to the intricacies of the shell-side flow, the Bell-Delaware 

method is used and it is considered the most reliable method for the shell-side analysis.  

In addition to the pressure drop on the main stream of the exchanger, pressure drop is 

also observed with bypass and leakage streams.  The total nozzle-to-nozzle pressure drop 
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on the shell-side of the heat exchange, determined by the Bell-Delaware method is found 

to be 

ewcs PPPP Δ+Δ+Δ=Δ       (5.56) 

 The first term on the right hand side (RHS) of Equation 5.56 is the combined 

pressure drop in the entire interior cross-flow section  

( ) blbbic RRNPP 1−Δ=Δ       (5.57) 

Where ΔPbi is the pressure drop of an ideal tube bank in one baffle compartment of the 

central baffle spacing, Nb is the number of baffles, Rl is the correlation factor for the 

baffle leakage effects, and Rb is the correlation factor for the bypass flow.  The typical 

range for the correlation factors are Rl = 0.4 to 0.5 and Rb = 0.5 to 0.8, respectfully [32].  

The pressure drop in the central baffle compartment can be determined from Equation 

5.58, 

2

2

c

Sm

s
bi

N
A
m

ffP
ρ

ρ ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=Δ

&
      (5.58) 

Where ASm is the flow area at the middle of the central baffle compartment, Nc is the 

number of tube rows crossed during flow through one cross flow in the exchanger, and 

sm& is the mass flow rate of the fluid in the shell-side.  The mass velocity of the fluid in 

the shell-side
Sm

s
s A

m
G

&
= , therefore Equation 5.58 can be reduced to 

2
cs

bi
NG

ffP
ρ

=Δ        (5.59) 

 The second term on the RHS of Equation 5.56 is the pressure drop for the entire 

window in the arrangement 
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lbwiw RNPP Δ=Δ        (5.60) 

 The pressure drop in the window is affected by leakage but not by bypass.   The term 

ΔPwi is the pressure drop of an ideal tube bank in one baffle window section 

( )
SwSm

cws
wi AA

Nm
P

ρ2
6.022 +

=Δ
&

      (5.61) 

Where Ncw is the number of tube rows crossed in each baffle window, and ASw is the area 

for flow through the window. 

 The final term on the RHS of Equation 5.56 is the combined pressure drop for the 

entrance and exit sections of the heat exchanger and is determined by 

sb
c

cwc
bie RR

N
NN

PP
+

Δ=Δ 2       (5.62) 

The only new variable in Equation 5.62, is Rs; the correlation factor for the entrance and 

exit sections.  Combining Equations 5.57 through 5.62 yields the total pressure drop over 

the shell-side of the shell-and-tube heat exchanger 

( )[ ] ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ +
Δ+Δ+Δ−=Δ

c

cwc
sbbiwibbbibls N

NN
RRPPNRPNRP 21  (5.63) 
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Table 5.2: Shell-and-Tube Heat Exchanger Values 

  Value Units Value Units 

Rfo 0.0009991 ft2-R-hr/Btu 0.000176 m2-K/W 
Rfi 0.009997 ft2-R-hr/Btu 0.001761 m2-K/W 
Rw 5.596E-06 ft2-R-hr/Btu 9.858E-07 m2-K/W 
Nt 305 - 305 - 
NS 1 - 1 - 
Ncw 4 - 4 - 
Nb 3 - 3 - 
Nc 10 - 10 - 
Rs 1 - 1 - 
Rb 0.8541 - 0.8541 - 
Rl 0.4751 - 0.4751 - 
Lhx 6.0039 ft 1.8300 m 
Di 0.0515 ft 0.0157 m 
Do 0.0627 ft 0.0191 m 
Ds 1.6076 ft 0.4900 m 
Lb 1.1483 ft 0.3500 m 
tb 0.0105 ft 0.0032 m 
Ai 0.6351 ft2 0.0590 m2 
Ao 1.0893 ft2 0.1012 m2 
ASm 0.4090 ft2 0.0380 m2 
ASw 0.2228 ft2 0.0207 m2 
∀  1.8328 ft3 0.0519 m3 
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5.2 1-Dimensional Zooming of Microturbine Generator 

 While the molten carbonate fuel cell (MCFC) model and the shell-and-tube heat 

exchanger model remains 0-Dimensional, the microturbine generator model will 

demonstrate the 1-D zooming technique.  The 1-D zooming simulation is initiated by 

loading the m-file controller.  This will load the thermodynamic property tables and run 

additional m-files that will provide the individual component parameters required by 

Simulink into the MATLAB workspace and the Simulink GUI will then execute.  The 

computer flow diagram of this simulation is seen in Figure 5.15. 

 Each module in the 1-D zooming section represents the set of equations required 

to solve for the performance parameters of each component.  The top level Simulink 

model is seen in Figure 5.16 and the corresponding variable flow diagram is represented 

in Figure 5.17.  The variable flow diagram shows that the variables are solved in a one-

by-one manner and no algebraic loops are present with the calculation of the compressor 

and turbine variables.  The shell-and-tube heat exchanger model is between the 

compressor and the turbine and remains 0-Dimensional.  The zooming takes place in the 

following manner; 1-D → 0-D → 1-D → 0-D or compressor with inlet → shell-and-tube 

heat exchanger → turbine with diffuser → oxidizer.   

 The variables calculated by the heat exchanger model exhibit transient behavior 

and even though the turbine model portrays steady, 1-D calculations the turbine variables 

will show the transient behavior.  This will be discussed further in Chapter 6.  All of the 

compressor calculations are strictly steady, 1-D behavior.  The mathematical modeling of 

the compressor and turbine will be discussed in Sections 5.2.1 and 5.2.2, respectfully and 

will reference Sections 4.1.1 and 4.1.2. 
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Figure 5.15: Computer Flow Diagram to Execute 1-D Zooming, Modeling and 
Simulation of MTG in a Hybrid Power Generation System  
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5.2.1 Centrifugal Compressor 

 The 1-D zooming model is run on a single operating line with no off-design 

capabilities.  The desired shaft speed or throttle control, in percent of the design speed, is 

used to determine the corrected mass flow rate of air in the compressor, ocm&  and the total 

pressure ratio, πc.  The throttle control acts as the controller for the 1-D system model.  

The isentropic efficiency ηc is calculated from the total pressure ratio and total 

temperature ratio, Equation 4.14. 

 The core and mean-line variables calculated for the centrifugal compressor in the 

1-D zooming model, are found in the exact same manner portrayed in Section 4.1.1.  The 

assumptions listed for the 1-Dimensional stand alone power generation model can be 

applied to the 1-D zooming model.  These assumptions are listed in tabular form in Table 

4.2 of this thesis.  The 1-D mean-line calculations are completed station by station 

through the centrifugal compressor.  A visual representation of the mean-line calculations 

in Station 1 of the centrifugal compressor is given in Figure 5.18. 
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5.2.2 Radial Inflow Turbine 

 Component matching is still required for the 1-D zooming of the radial inflow 

turbine.  The shaft speed of the compressor must equal the shaft speed of the turbine, 

Figure 5.19.  The only adjustment to the assumptions made in Section 4.2 is that the total 

pressure exiting the turbine Pt4 is not held constant.  All other assumptions can be found 

in Table 4.3 is still valid for the 1-D zooming model. 

When the core variable solution path of the 1-D zooming is compared to the 1-D 

stand alone model, the total temperature entering the turbine Tt4 is not calculated in the 

same manner.  In the stand alone model, the turbine temperature is calculated directly 

from the rotor tip speed U2t and the total temperature ratio τt, where the total temperature 

ratio is a function of the known total pressure ratio πt.  With the incorporation of the 0-

Dimensional shell-and-tube heat exchanger in the hybrid system, the turbine inlet 

temperature is provided to the 1-D zooming model.  With the steady, algebraic 

calculations, this can be represented as a known value.  The total pressure entering the 

turbine Pt4 is also provided by the shell-and-tube heat exchanger.   

 Instead of calculating Tt4 in Equation 4.29, with modification this equation is used 

to calculate Tt5 and becomes 

( )54
2
2 ttptct TTCgU −=       (5.64) 

Once the total temperatures associated with the turbine are calculated the total 

temperature ratio τt is calculated.  The total pressure ratio in the zooming hybrid turbine πt 

is a function of the total temperature ratio.  The temperature and pressure ratios are 

represented by isentropic relationships and as long as one is know the other can be found.  

The total pressure exiting the turbine Pt5 is not held as a constant for the 1-D hybrid 
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zooming and is calculated from the pre-determined total pressure entering the turbine and 

the total pressure ratio.  The variable solution path can be seen in Figure 5.19.  A visual 

representation of the mean-line calculations in Station 2 of the radial inflow turbine is 

given in Figure 5.20. 
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CHAPTER 6: ANALYSIS AND RESULTS 

 

6.1 Stand Alone Power Generation Model Development 

6.1.1 1-Dimensional with EES Verification 

 All the tabular data correlating to Figures 6.1 to 6.5 and Figures 6.8 to 6.12 can be 

found in Appendix A.  The tabular data corresponding to the 1-Dimensional zooming of 

the microturbine generator in the hybrid power generation system can be found in 

Appendix B.  The three 2-D arrays discussed in Section 5.1.1.1 will be portrayed as two 

figures, total pressure ratio versus corrected mass flow as a function of shaft speed and 

isentropic efficiency versus corrected mass flow as a function of shaft speed.  This will be 

seen along with the corresponding tabular data in Appendix C.  The 2-D array discussed 

in Section 5.1.1.2 will be seen as a figure of expansion ratio versus corrected mass flow 

as a function of shaft speed in Appendix D.   

 The linearity of the 1-Dimensional calculations is defined as the ability of the 

graphically represented data to enable a curve fit that is linear in nature, i.e. a straight line 

representation of the data.  Figure C.1 in Appendix C has the ideal operating line of the 

centrifugal compressor represented as a straight line.  If the graphical data representing 

variables along the actual operating line of the microturbine generator has trends that do 

not allow for a straight line fit, the data analyzed will be determined to be non-linear in 

nature.
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6.1.1.1 Operating Line Calculations 

 The 1-D MATLAB/Simulink® model calculates the core variables and mean-line 

variables for the actual MTG operating line based on the ideal compressor operating line.  

The calculations run from 40 percent to 110 percent of the ideal compressor operating 

line.  The MATLAB/Simulink® model has been validated by using EES (Engineering 

Equation Solver) software.  The EES model calculates all variables based on the ideal 

compressor operating line independent parameters, ocm&  and πc.  With these two 

parameters, the actual operating line of the MTG is established.   All of the following 

figures are for the actual operating line of the MTG, and a reference to the ideal 

compressor operating line will be used for some descriptions.  Table 6.1 gives the ideal 

operating speed at 40-110 percent of the design speed and the actual operating speed that 

translates into 48-105 percent of the design speed.  The design speed is the same for both 

the ideal and actual operating lines, Ndes = 92400 rpm. 

Figure 6.1 gives the total temperature exiting the compressor Tt3 and the power 

required Pc.  The error observed between the Simulink model and EES model for the total 

temperature exiting the compressor was averaged to be 0.04 percent and the error with 

the compressor power was 0.07 percent.   

 The total temperature calculated by the turbine model Tt4 is in Figure 6.2.  At the 

lowest operational speed given in Figure 6.2, the total temperature entering the turbine is 

phenomenally high, suggesting an error in the calculations of the model.  At this speed, 

48 percent actual and 40 percent ideal, the Simulink model calculates Tt4 to be 3667 R 

and the EES model gives 4036 R, with no cooling effects in the turbine, which is above 

the melting point of titanium, 3480 R (1933 K) [55].  
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 The Euler equation for turbomachinery states that the rotor blade tip speed 

squared is directly proportional to the change in enthalpy or temperature through the 

entire turbine caused by the expansion process and the compressor and turbine are on the 

same shaft so the shaft rotational speed must be the same.  With the engine operating at 

an actual 48 percent, the shaft rotational speed is quite low resulting in low rotor tip 

speeds.  From Chapter 4, the turbine rotor blade tip speed is determined from the shaft 

speed and the turbine inlet total temperature Tt4 is determined from Equation 4.29.  Since 

U2t is small, Equation 4.29 yields a very high Tt4. 

( )ttptct TCgU τ−= 14
2
2        (4.29) 

 The variables in the EES and Simulink models are calculated one at a time with 

no multi-equation dependencies.  At an actual 48 percent of the design speed, the error 

between the two models observed with the variable Tt4 is 10 percent.  The power 

provided by the turbine Pt shows errors of less than 1 percent.   If Tt4 at an ideal 40 

percent is very high and does not follow the trend established by the subsequent 

calculations from 45-110 percent of the ideal design speed, then it will be assumed that 

the microturbine generator is not capable of operating at the ideal 40 percent speed and 

this point will be dropped from further calculations and comparisons.   

With the models calculating each variable with no multi-equation dependencies, 

then linearity can be assumed.  From Figure 6.2, linearity is observed from 74 percent of 

the actual design shaft speed.  This suggests that the microturbine cannot feasible run 

below this 74 percent of the design speed on the actual operating line. 

 The mass flow rate of fuel fm&  is dependent on the turbine inlet temperature Tt4, 

Figure 6.3.  The operating line begins with a higher temperature at 56 percent and 
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linearity is seen from 74 percent to 105 percent on the actual operating line.  The higher 

temperatures seen at slower speeds are again referenced back to Equation 4.29.   

 The degree of energy conversion from heat to power is the thermal efficiency and 

can be determined from the LHV and from the HHV of the fuel.  As the power production 

increases with the shaft speed increase, a corresponding increase in the thermal efficiency 

of the system is observed. Figure 6.4 has the microturbine generator system efficiency in 

terms of LHV and HHV of natural gas. The LHV thermal efficiency of the Capstone® 

Model 330 MTG is around 14 percent [16].  At the design point for the microturbine 

generator, the LHV efficiency is 13.6 percent and the HHV efficiency is 12.2 percent.  

This demonstrates the feasibility of the 1-D stand alone power generation model. 

 Thermodynamic power is the ideal amount of power that can be produced from 

the microturbine based on the ideal Brayton cycle.  Mechanical power is the actual power 

produced by the shaft of the microturbine.  Figure 6.5 represents the thermodynamic and 

mechanical power calculated along the actual MTG operating line.  

It has already been mentioned that the model does not demonstrate linearity until 

around 74 percent on the operating line.  Looking at Figure 6.5, the actual power of the 

MTG is greater than the ideal power when the model is run below the 69 percent mark or 

63400 rpm.  This demonstrates that the ideal cycle does not map the actual cycle 

accurately below 69 percent of the actual operating line. 
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Table 6.1: Ideal and Actual MTG Operating Line Shaft Speed 

Ideal - EES Actual - MATLAB Actual - EES 
Speed N% Speed N% Speed N% 
rpm - rpm - rpm - 

36900 0.400 44200 0.479 44300 0.479 
41600 0.450 51900 0.562 51900 0.562 
46200 0.500 58100 0.629 59200 0.629 
50800 0.550 63400 0.686 63400 0.686 
55400 0.600 68000 0.736 68000 0.736 
60000 0.650 72000 0.780 72100 0.780 
64700 0.700 75700 0.819 75700 0.820 
69300 0.750 79000 0.855 79100 0.856 
73900 0.800 82100 0.888 82100 0.889 
78500 0.850 84900 0.919 85000 0.920 
83100 0.900 87500 0.947 87600 0.948 
87800 0.950 90000 0.974 90100 0.975 
92400 1.000 92300 0.999 92400 1.000 
97000 1.050 94500 1.023 94600 1.023 
101600 1.100 96600 1.045 96600 1.046 
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Figure 6.1: Temperature Profile for Centrifugal Compressor 
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Figure 6.2:  Temperature Profile for Radial Inflow Turbine 
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Figure 6.3: Mass Flow of Fuel Required to Attain the Desired Turbine Inlet 

Temperature 
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Figure 6.4: Microturbine Generator System Efficiency  
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Figure 6.5 Microturbine Generator Power Generation – Thermodynamic and 

Mechanical 
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6.1.1.2 Brayton Cycle Thermodynamic Analysis 

 The T-s and P-v diagrams shown in Figures 3.1b and 3.1c are for ideal gas turbine 

cycles.  In an ideal cycle, the flow in the inlet is adiabatic and reversible (isentropic) and 

the same is seen in the turbine and diffuser.  The combustion chamber experiences no 

total pressure loss and 100 percent combustion.  The entropy s on the T-s diagram is the 

same from Stage 2-3 and Stage 4-5.  On the P-v diagram, there is no pressure loss from 

Stage 3-4, combustion, and the cycle from Stage 5-2 is open; this is typical ideal cycle 

behavior.  Real or actual cycle behavior is also adiabatic but it is not reversible and 

polytropic efficiency is introduced.  Total pressure loss is observed in the combustion 

chamber and combustion is less than 100 percent.   

 The T-s diagram in Figure 6.6 portrays the actual behavior of the Brayton cycle 

with regeneration.  From Stage 2-3 ideal behavior is not observed since the entropy is not 

constant, and the same is seen from Stage 4-5.  For the P-v diagram in Figure 6.7, total 

pressure loss is observed through the combustion stage and total pressure loss is also 

present in the regeneration stage.  The total pressure loss in combustion is around 2 

percent and total pressure loss on the cold side of the recuperator is approximately 1 

percent.  On the hot side of the recuperator, total pressure loss is calculated to be 6.7 

percent.  This is still within the allowable range set in Chapter 3. 
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Figure 6.6: T-s Diagram of Actual Brayton Cycle with Regeneration 

 
 

0x100 5x100 101 101 2x101 2x101 3x101
101

2x101

3x101

4x101

5x101

6x101

v [ft3/lbm]

P 
[p

si
a]

 490 R  1400 R 

Air - Brayton Cycle with Regeneration

1,2

3 3'
4

5,6
7

 
Figure 6.7: P-v Diagram of Actual Brayton Cycle with Regeneration 
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6.1.1.3 Reynolds Number Dependent Recuperator Flow  

 The pressure drop seen in the recuperator, on both the hot and cold sides, is 

related to the Reynolds numbers of the hot and cold flows, respectfully.  The equation for 

determining Reynolds number, Equation 4.45 can be used in terms of mass flow rate 

instead of velocity by substituting m& for V.  Mass flow rate is defined as density ρ times 

velocity V times area A, or VAm ρ=& , with this substitution the Reynolds number 

calculation becomes 

μA
Dm h&

=Re         (6.1) 

Pressure loss on the cold and hot side Pt3’ and Pt7, respectfully, can now be compared 

with Reynolds number.   

 As the Reynolds number increases with the increase in the mass flow rate on the 

cold flow side, the pressure drop also increases in a linear fashion, Figure 6.8.  The flow 

entering the cold side Pt3 is represented in blue and the flow exiting the cold side Pt3’ is 

represented in red.  Pressure loss is seen to increase with Reynolds number but the 

increase is done very slightly, from 0.5 percent total pressure loss to 0.9 percent total 

pressure loss. 

 The pressure drop on the hot side of the primary surface recuperator does not 

portray linearity with Reynolds number increase, Figure 6.9.  The pressure entering the 

hot side Pt6 does so in a fairly linear manner.  The pressure exiting the hot-side of the 

recuperator does not exhibit linear behavior with the scale size on the y-axis.  With 

pressure entering at an almost consistent 18.5 psia, the exiting pressures stay between 17 

and 17.5 psia.  The pressure loss calculations give a consistent average of around 6 

percent.   
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 The temperature profile on the cold-side of the recuperator is shown in Figure 

6.10.  The temperatures entering and exiting the recuperator are plotted versus the 

number of transfer units (NTU) to represent the ε-NTU method described in Section 4.1.4.  

For this method, the heat exchanger effectiveness ε is constant for all calculation along 

the actual operating line.  The temperature entering the cold-side is linear throughout the 

entire operating cycle and the resulting calculations for the exiting temperature do not 

give linearity until around 4 NTU which translates to 69 percent on the actual MTG 

operating line.  For the hot-side temperature profiles, Figure 6.11, non-linearity is seen 

for the entire operating cycle and linearity can be observed if the NTU parameter is less 

than 4. 

 The primary surface recuperator operates in a counterflow arrangement.  The total 

temperatures for the hot-side and cold-side flow are represented along the length of the 

recuperator in Figure 6.12.  The counterflow profile does not represent the change in 

temperatures over the length of the recuperator, but the temperatures entering and exiting 

the recuperator based on the ε-NTU method and the 1-Dimensional calculations.  
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Figure 6.8: Pressure Loss on Cold Side of Primary Surface Recuperator 
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Figure 6.9: Pressure Loss on Hot Side of Primary Surface Recuperator 
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Figure 6.10 Temperature Profile for Cold Side of Primary Surface Recuperator 
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Figure 6.11: Temperature Profile for Hot Side of Primary Surface Recuperator 
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Figure 6.12 Primary Surface Recuperator Counter-Flow Temperature Responses at 

MTG Design Point 
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6.1.1.4 Mean-line Calculations 

 The mean-line calculations for the centrifugal compressor described in Section 

4.1.1 are seen in Table 6.2. The 1-D mean-line calculations are completed station by 

station through the centrifugal compressor and the following parameters are calculated at 

each station: total and static temperature, total and static pressure, Mach number, absolute 

and relative velocity and all components of velocity and absolute and relative flow angles 

at the design point conditions.  Calculations are based on trigonometry being applied to 

the velocity diagram in Figure 3.6, the rotor tip speed established in Equation 4.19, and 

isentropic relationships.  The following limitations are applied to the mean-line 

calculations for the centrifugal compressor and are described in detail in Section 3.2: 

• Rotor tip velocity U2t is limited to 2000-2200 ft/s (610 to 670 m/s) 

• relative flow angle at the tip, β1t has swirl angle of 60 – 70 degrees from radial 

direction 

• The tangential or swirl velocity v2 is roughly 90 percent of rotor tip velocity U2t 

• Absolute velocity exiting compressor diffuser V3 is nominally 300 ft/s (90 m/s) 

With these limitations and the before mentioned trigonometry and isentropic relations, 

the viability of the 1-D mean-line calculations can be determined.   

 The rotor tip velocity U2t is calculated to be 1376 ft/s.  This is below the limited 

range of 2000-2200 ft/s.  The relative flow angle at the tip, β1t is calculated to be 61.36 

degrees, within the nominal range.  The tangential or swirl velocity v2 is 1223 ft/s.  This 

calculates to be 89 percent of the rotor tip velocity.  The final constraint to match is the 

absolute velocity exiting the compressor diffuser; V3 is calculated to be 298.1 ft/s.  These 

variables are represented in bold in Table 6.2. 
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 The mean-line calculations for the radial inflow turbine are given in Table 6.3.  

As with the centrifugal compressor, the 1-D mean-line calculations are completed station 

by station through the radial inflow turbine.  Since Station 1 is equal to Station 2, the 

following parameters are calculated at Stations 2, 3m and 3: total and static temperature, 

total and static pressure, Mach number, absolute and relative velocity and all components 

of velocity and absolute and relative flow angles from the design point conditions.  

Calculations are based on trigonometry being applied to the velocity diagram in Figure 

3.8, the rotor tip speed established in Equation 4.26, and isentropic relationships.  The 

limitations on the radial inflow turbine are given below and described in detail in Section 

3.3: 

• The exit flow angle, α2, is habitually chosen to be 70 degrees relative to the axial 

direction 

• The rotor tip velocity U2t is limited to between 1148 and 1640 ft/s (360 and 500 

m/s) 

• The tangential velocity v2 is equal to U2t 

The rotor tip velocity U2t for the radial inflow turbine is calculated to be 1450 ft/s and the 

exit flow angle is set to 70 degrees.  These variables are shown in bold in Table 6.3. 
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Table 6.2: Centrifugal Compressor Mean-Line Calculations at 100 Percent of MTG 
Design Speed for Stand Alone Power Generation System 

 
Compressor Results – Ideal Throttle at 100%     

Station Units 1 1Rh 1Rt 2 3 
Tt [R] 550.8 567.4 617.3 830.8 830.8 
T [R] 530.9 530.9 530.9 686.4 816.3 
Pt [psia] 14.69 16.31 21.91 56.48 51.44 
P [psia] 12.92 12.92 12.92 28.94 48.37 
M [-] 0.4332 0.587 0.9028 1.026 0.2111 
V [ft/s] 489 662.6 1019 1317 298.1 

u/w [ft/s] 489 489 489 489 489 
v [ft/s] 0 447.1 894.1 1223 - 

radius [ft] - 0.0462 0.0925 0.1423 - 
α [deg] 0 - - 21.81 - 
β [deg] - 42.46 61.36 - - 

 

 

Table 6.3: Radial Inflow Turbine Mean-Line Calculations at 100 Percent of MTG 
Design Speed for Stand Alone Power Generation System 

 
Turbine Results – Ideal and Actual Throttle at 100%    
Station Units 1 2 3Rm 3 

Tt [R] 1575 1575 1316 1264 
T [R] - 1326 1244 1244 
Pt [psia] 50.34 50.34 27.89 18.5 
P [psia] - 48.19 20.99 20.99 
M [-] - 0.8605 0.6636 0.3122 
V [ft/s] - 1543 1122 527.8 

u/w [ft/s] - 527.8 527.8 527.8 
v [ft/s] 0 1450 990.2 0 

radius [ft] - 0.15 0.1024 - 
α [deg] 0 70 - 0 
β [deg] - - 61.94 - 
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6.2 Hybrid Power Generation Model Development 

6.2.1 0-Dimensional 

 The 0-D hybrid power generation model is manipulated through the PID 

(Proportional Integral Derivative) controller placed on the microturbine generator portion 

of the hybrid model.  The PID controller allows for the mechanical (actual) power 

generation from the MTG to be controlled through applying a torque load τLOAD to the 

shaft.  This loading of the shaft will result in increased power generation and decreased 

shaft speed.  If desired the PID controller will allow for power generation at a consistent 

22126 ft-lbf/s (30 kW) which is a design variable for the system.  Figure 6.13 shows the 

torque load being applied and the resulting shaft speed to maintain MTG power 

generation of 30 kW.  The unit system used in the results will be based on the data being 

portrayed.  To analyze the hybrid model, power generation, LHV and HHV efficiency, 

temperature, and pressure responses throughout the model will be observed.   

 

6.2.1.1 Power Generation 

 The hybrid model calculates all transients from initial conditions; the model does 

not have start up capabilities.  The transient behavior is seen from 0-10,000 seconds 

where steady state operating conditions or numerical convergence is reached.  This can 

be seen Figure 6.14 with the MTG shaft speed response.  The power generation for the 

MTG is at a steady 30 kW to demonstrate the transient response and numerical 

convergence of the hybrid model. 

 To evaluate the responses of the hybrid model, the MTG power generation is 

executed at 0 kW until steady state operation seen at 10,000 seconds is reached and then 
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the power is ramped to 30 kW.  This ramping is accomplished at six different time 

intervals by varying the slope of the ramp.  The ramping is taken from a slope of 0.5, for 

a very long time constant, to a slope of 3.0 a quick time constant.  The power generation 

ramping can be seen in Figure 6.15.  All of the simulations are run to 80,000 seconds for 

consistency.   

Since the molten carbonate fuel cell (MCFC) power generation is dependent on 

the voltage emitted by the fuel cell, Figure 6.16 shows the transient response of the 

voltage for the MTG power ramping.  The unique behavior in Figure 6.16 is due to the 

fuel cell model not reaching steady operating conditions as fast as the MTG model.  For a 

ramp slope of 3.0, the power increase begins at 10,000 seconds and is done by 20,000 

seconds.  The voltage response decreases between this interval and then increases until 

steady operating conditions are reached approximately 10,000 seconds later.  This is 

observed for all the MTG power ramping conditions of Figure 6.15.   

From this voltage response, the corresponding MCFC power generation response 

and the overall hybrid system power generation response is shown in Figure 6.17.  The 

fuel cell is not excessively responsive to the MTG power ramping since the fuel cell’s 

power calculation is not overly influenced by the MTG or the shell-and-tube heat 

exchanger. The overall hybrid power generation is increased by the MTG power ramping 

from 0 – 30 kW. 

 The hybrid system efficiency response is shown in Figure 6.18.  The calculations 

for the LHV and HHV of natural gas are dependent on the hybrid power generation.  The 

responses in Figure 6.18 are due to the responsive nature of the PID controller on the 

MTG power generation.  The LHV efficiency at steady operating conditions is 
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approximately 44 percent and the HHV efficiency at steady operating conditions is 

approximately 40 percent.  Hybrid power systems are capable of 60 percent LHV 

efficiency, this system’s efficiency is low because the power requirement is for 250 kW 

and the model is capable of producing higher power.  Higher power generation would 

give greater LHV and HHV efficiencies.  Loading the MTG to produce 60 kW gives 

hybrid power of 290 kW.  The LHV efficiency becomes 48 percent and HHV efficiency 

becomes 43 percent. 
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Figure 6.13: Shaft Speed Response to Controlled MTG Power Generation of 30 kW 
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Figure 6.14: Microturbine Generator Shaft Speed Response for Power at 30 kW 
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Figure 6.15: Microturbine Generator Forced Ramping Power Response 
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Figure 6.16: Molten Carbonate Fuel Cell Voltage Response 
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Figure 6.17: Power Response of MCFC and Hybrid Power Generation System 
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Figure 6.18: Hybrid Power Generation System Efficiency Response 
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6.2.1.2 Temperature Responses from MTG Power Ramping 

 Referring to Figure 5.3, the temperature of the flow from the anode, at stack 

temperature, is sent to the oxidizer along with the temperature of the flow from the 

turbine diffuser.  These two temperatures are combined through enthalpy and then 

integrated to determine the temperature of the flow exiting the oxidizer.  The temperature 

of the flow exiting the oxidizer is sent to the shell-and-tube heat exchanger where it is 

used to heat the flow from the compressor, shell-side, before it enters the turbine.  Once 

the oxidizer flow, tube-side, is cooled it is sent to the cathode where combined with the 

anode temperature, which is constant, the MCFC stack temperature is calculated. 

The temperature entering the shell-side of the heat exchanger is directly from the 

compressor.  As the MTG power is increased through applying a ramp to the PID 

controller a subsequent decrease in shaft speed is seen. The shaft speed is used to 

determine the total pressure ratio πc from the compressor mapping and this is used to find 

the compressor exit temperature.  A direct correlation between shaft speed and 

compressor temperature can be seen in Figure 6.19 (labeled “Temperature In – Shell 

Side”).  As the shell-side temperature is calculated through the heat exchanger at different 

ramping conditions, the response of the heat exchanger is slow due to the increased time 

constant and the inability of the temperature calculations on the shell-side to respond 

quickly.  The temperature exiting the shell-side is sent to the turbine where energy is 

extracted and the flow is cooled before it enters the diffuser, where it is slowed before 

being fed to the oxidizer. 

The temperature into the tube-side of the heat exchanger is from the oxidizer 

which is calculated from the diffuser temperature and the anode temperature, at stack 
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temperature.  Since the temperature from the diffuser is dependent on the shaft speed and 

the MTG shaft speed is changing as the load is changing, this phenomenon drives the 

responses seen in the oxidizer, Figure 6.20 (“Temperature In – Tube Side”) and Figure 

6.23.  As with the temperature calculations on the shell-side, the tube-side temperature 

responses are slow through the heat exchanger.  The temperature exiting the tube-side is 

sent to the fuel cell cathode. 

Determining the fuel cell stack temperature is accomplished through integrating 

the anode inlet temperature and the cathode inlet temperature.  The cathode and anode 

exit temperatures are at the fuel cell stack temperature.  The fuel cell stack temperature 

response is seen in Figure 6.21.  With the anode inlet temperature held constant, the stack 

temperature response is driven only by the cathode inlet temperature, from the tube-side 

of the heat exchanger.  Since this is the case, the response is slow compared to the 

compressor or diffuser responses. 

 The final temperature response for the hybrid system is within the 

oxidizer. Figure 6.22 portrays the temperatures entering the oxidizer; the MCFC stack 

temperature and the diffuser temperature.  The oxidizer temperature response is quicker 

than the response through the heat exchanger, both tube- and shell-side.  This response is 

shown in Figure 6.23 and is driven by the diffuser temperature. 

All of the temperatures are interwoven except for the anode inlet temperature, 

which is constant.  Model responses can be seen through each of the hybrid components.  

The slowest responses, which have the longest time constant is with the temperature 

responses on the hot- and cold-sides of the shell-and-tube heat exchanger.  All of the 
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temperatures are ultimately driven by the shaft speed except for the constant anode inlet 

temperature. 
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Figure 6.19: Transient Temperature Response Shell – Side of Shell-and-Tube Heat 

Exchanger 
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Figure 6.20: Transient Temperature Response Tube – Side of Shell-and-Tube Heat 

Exchanger 
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Figure 6.21: Integrated MCFC Stack Temperature Response 
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Figure 6.22: Transient Temperature Responses Entering Catalytic Oxidizer 
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Figure 6.23: Transient Temperature Response of Catalytic Oxidizer 
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6.2.1.3 Heat Exchanger Pressure Responses from MTG Power Ramping 

 As the transient hybrid model is run for different MTG power ramping, the 

pressure loss through the shell-and-tube heat exchanger is shown in Figures 6.24 and 6.25 

for the shell-side and tube-side, respectfully.  The shell-side pressure loss, in percent, is 

approximately 2.7 percent before the MTG power ramping is initiated.  As the pressure 

into the shell-side decreases while the load on the shaft is applied, the pressure loss seen 

in the heat exchanger increases to approximately 2.9 percent at steady operating 

conditions. 

 The tube-side pressure loss is at approximately 0.77 percent before the power 

ramping is initiated.  As the MTG shaft is loaded, the pressure loss for the tube-side 

increases to approximately 1.02 percent when steady operating conditions are reached.  

The pressure loss response, once ramping is initiated until steady operating conditions, 

through both sides of the heat exchanger are linear in nature and the pressure integrators 

react much faster than what was seen with the temperature responses through the heat 

exchanger. 



 

 175

1 2 3 4 5 6 7 8
x 104

2.5

2.55

2.6

2.65

2.7

2.75

2.8

2.85

2.9

2.95

3

time (s)

P
er

ce
nt

 (
%

)

Shell-Side Percent of Pressure Loss Response

 

 

slope = 0.5
slope = 1.0
slope = 1.5
slope = 2.0
slope = 2.5
slope = 3.0

 
Figure 6.24: Transient Pressure Response Shell – Side of Shell-and-Tube Heat 

Exchanger 
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Figure 6.25: Transient Pressure Response Tube – Side of Shell-and-Tube Heat 

Exchanger 
 



 

 176

6.2.1.4 Additional PID Controller on MCFC Power Response 

 To further analyze the controllability of the hybrid power generation system, an 

additional PID controller was placed on the MCFC power generation response.  The two 

control systems, one with a PID only on the MTG power generation and the other with 

PID controllers on the MTG power generation and MCFC power generation are 

compared.  The power control for the microturbine generator is the torque load applied to 

the shaft.  For the MCFC it is the current density.  Figure 6.26 gives the voltage response 

to a controlled current density allowing for the MCFC power generation to remain 

consistent. To compare the MCFC power generation with the two models, the desired 

MCFC power generation was set to 225 kW.  The models are compared at two ramping 

conditions, slopes of 1.0 and 1.5.   

 The temperature responses through both the tube- and shell- sides of the heat 

exchanger were observed.  Figure 6.27 has the transient response of the temperature 

entering the shell-side.  The response is seen with only the PID controller on the MTG 

power generation and with a PID controller on both the MTG power generation and the 

MCFC power generation.  The error once steady state operating conditions are reached is 

0.08 percent and the transient behavior before the MTG power ramping is introduced at 

10,000 seconds is greater for the system with the two PID controllers in place.  Transient 

temperature responses exiting the shell-side are shown in Figure 6.28.  The transient 

response is greater for the system with the two PID controllers and the steady state error 

is seen to be 0.7 percent. 

 For the transient temperature responses entering on the tube-side, the error 

between the two control systems is seen to be 0.9 percent at steady operating conditions, 
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Figure 6.29.  The transient response for the system with two PID controllers is consistent 

with the shell-side responses.  The temperature responses exiting the tube-side of the heat 

exchanger is given in Figure 6.30.  At steady operating conditions the error between the 

two systems is 0.5 percent.  A large transient response on the two-PID controller system 

is consistent with the heat exchanger temperature responses shown in this section. 
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Figure 6.26: MCFC Voltage Response to Controlled MCFC Power Generation of 

225 kW 
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Figure 6.27: Transient Temperature Response (With Error) Entering Shell – Side 

with Additional PID Controller on MCFC Current Density Input I 
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Figure 6.28: Transient Temperature Response (With Error) Exiting Shell – Side 

with Additional PID Controller on MCFC Current Density Input I 
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Figure 6.29: Transient Temperature Response (With Error) Entering Tube – Side 

with Additional PID Controller on MCFC Current Density Input I 
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Figure 6.30: Transient Temperature Response (With Error) Exiting Tube – Side 

with Additional PID Controller on MCFC Current Density Input I 
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6.2.2 1-Dimensional Zooming 

 All of the data correlating to Figures 6.31 through 6.35 is given in Appendix B.  

The 1-D zooming of the hybrid microturbine generator portion, consisting of a 

centrifugal compressor and radial inflow turbine, in the hybrid power generation model 

has been validated through comparing data with that given in the 1-D stand alone analysis 

represented in Section 6.1.  Linear determination of the data represented in Figures 6.31 

though 6.35 will be analyzed in the same manner as in Section 6.1. 

 

6.2.2.1 1-D Zooming Operating Line Calculations 

 The 1-D zooming MATLAB/Simulink® model calculates the core variables and 

mean-line variables for the actual hybrid MTG operating line based on the ideal 

compressor operating line.  The calculations are from 40 percent to 110 percent of the 

ideal compressor operating line.  The MATLAB/Simulink® model calculates all variables 

based on the ideal compressor operating line independent parameters, ocm&  and πc.  With 

these two parameters, the actual operating line of the MTG is established.   All of the 

following figures are for the actual operating line of the MTG.  Table 6.4 gives the ideal 

operating speed at 40-110 percent of the design speed and the actual operating speed that 

translates into 47-103 percent of the design speed.  The total temperature entering the 

turbine for the hybrid model is less than that of the stand alone model.  Since the shaft 

speed is a function of temperature, the design shaft speed for the hybrid model is slightly 

higher than that of the stand alone model.  The design speed for the hybrid model is Ndes 

= 93500 rpm for the ideal and actual operating cycles. 
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 The shape of the compressor total temperature curve, Figure 6.31 is identical to 

that for the stand alone model in Figure 6.1.  The compressor in the hybrid model does 

not have transient behavior since calculations through the compressor are analyzed 1-

Dimensionally from the compressor operating line.  As the flow exits the compressor, it 

enters the shell-side of the shell-and-tube heat exchanger where 0-Dimensional 

calculations occur.  The flow exiting the shell-side is transported to the turbine where 

calculations through the turbine are done 1-Dimensionally.  

 The 1-D hybrid zooming model is allowed to calculate until the transients still 

present in the model have reached steady operating conditions.  The data featured in 

Figures 6.31 to 6.35 is taken after the transients have been allowed to reach steady 

conditions.  The transient sub-systems in the 1-D hybrid zooming model reach steady 

operating conditions at 3,000 seconds.  This is faster than the 0-D hybrid model which 

reaches steady conditions at 10,000 seconds.  The 0-D hybrid model has additional 

transients with the microturbine generator shaft speed and power calculations; these are 

replaced with simple calculations in the 1-D hybrid zooming model. 

 The turbine temperature calculations in Figure 6.32 do not portray the same curve 

fit as with the stand alone model in Figure 6.2.  This is due to the transient conditions 

entering the turbine from the 0-D heat exchanger model.  The transient entering 

temperature Tt4 and the 1-D calculated exiting temperature Tt5 of the hybrid model does 

not reach linearity as the design point is approached but the curve of the hybrid model 

demonstrates better ideal cycle matching to actual cycle than with the purely 1-

Dimensional model in Figure 6.2. 
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 The hybrid system efficiency for both LHV and HHV of natural gas is given in 

Figure 6.33.  These efficiencies are perfectly linear proving the claim that the ideal cycle 

may in fact accurately map the actual cycle of the microturbine generator.  Figure 6.34 

has the thermodynamic (ideal) and mechanical (actual) power generation by the 

microturbine generator.  The actual power generated does not cross the ideal power 

curve, but comes within 99 percent.  Since the actual power is not greater than the ideal 

power, this shows that the ideal cycle does map the actual cycle for the entire actual 

operating line of the microturbine generator.  The general shape of the data in Figures 6.5 

and 6.34 are similar in appearance.  This strengthens the validation of the 1-D zooming of 

the hybrid power generation model. 

 As the flow exits the turbine and diffuser, it combines in the oxidizer with the 

flow leaving the fuel cell anode, at stack temperature.  The fuel cell temperature 

calculations are completed fully 0-Dimensionally.  The flow from the diffuser is created 

with the 1-D zooming technique.  The cathode inlet flow is from the tube-side of the heat 

exchanger, 0-D calculations.  The oxidizer temperature, calculated from diffuser and 

anode exit temperature, is fed to the tube-side of the heat exchanger.  All four of these 

temperatures are interdependent.  In Figure 6.35, the diffuser temperature, represented in 

yellow, has a more dramatic response to the calculations done along the actual operating 

line.  The stack temperature (anode exit temperature) in red has a more mild reaction.  

The stack temperature is calculated from the anode inlet temperature which is constant, 

and the cathode inlet temperature which comes directly from the heat exchanger.  

It was established in Section 6.2.1 that the oxidizer temperature is driven by the 

diffuser temperature.  This is seen by the shape of the data in Figure 6.35 represented in 
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green.  The transient temperature responses through the heat exchanger, represented as 

the cathode inlet temperature in blue in Figure 6.35, drive the responses of the stack 

temperature.  Even though the microturbine generator can function at all points along the 

operating line, the fuel cell does not operate above 1000 K.  From Figure 6.35, the actual 

cycle for the hybrid model should not operate below 68 percent of the actual microturbine 

operating line. 
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Table 6.4: Ideal and Actual Hybrid MTG Operating Line Shaft Speed 

Ideal - EES Actual - MATLAB
Speed N% Speed N% 
rpm - rpm - 

37400 0.400 44200 0.473 
42100 0.450 51900 0.555 
46700 0.500 58100 0.622 
51400 0.550 63400 0.678 
56100 0.600 68000 0.727 
60800 0.650 72000 0.770 
65400 0.700 75700 0.810 
70100 0.750 79000 0.845 
74800 0.800 82100 0.878 
79500 0.850 84900 0.908 
84100 0.900 87500 0.936 
88800 0.950 90000 0.963 
93500 1.000 92300 0.987 
98200 1.050 94500 1.011 
102800 1.100 96600 1.033 

 

 

1 2 3 4 5 6 7 8 9 10 11
x 104

500

550

600

650

700

750

800

850

900

Power (ft-lbf/s)

T
em

pe
ra

tu
re

 (
R

)

1-D Zooming Compressor Temperature Response

 

 

Tt3

Tt2

 
Figure 6.31: Temperature Profile for 1-D Zooming Centrifugal Compressor 
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Figure 6.32: Temperature Profile for 1-D Zooming Radial Inflow Turbine 
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Figure 6.33: 1-D Zooming Hybrid Power Generation System Efficiency  
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Figure 6.34: 1-D Zooming Microturbine Generator Power Generation for Actual 

Shaft Speed – Thermodynamic and Mechanical 
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Figure 6.35: Temperature Responses of MCFC and Catalytic Oxidizer for 1-D 

Analysis Along MTG Operating Line 
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6.2.2.2 1-D Zooming Brayton Cycle Thermodynamic Analysis 

 Thermodynamic analysis of the microturbine generator in the hybrid power 

generation model is represented in Figures 6.36 and 6.37.  The T-s diagram in Figure 6.36 

bears the same shape as that in Figure 6.6.  Compression occurs from Stage 2-3, and 

actual behavior is observed.  For the Brayton cycle with regeneration in Figure 6.6, a 

primary surface recuperator is seen from Stage 3-3’ and then combustion occurs from 

Stage 3’-4.  This whole process is replaced by an outside heat source, the shell-and-tube 

heat exchanger in Figure 6.36.  The shell-and-tube heat exchanger is large enough to 

successfully heat the air entering the turbine such that enough enthalpy is removed from 

the flow, Stage 4-5, to produce the required power to operate the compressor and have 

additional power generation of 30 kW.  Stage 5-6 is the diffuser and Stage 6-1 represents 

the open cycle. 

 The P-v diagram in Figure 6.37 is almost an exact representation of the P-v 

diagram in Figure 6.7 representing the Brayton cycle with regeneration.  The pressure 

loss through the shell-side of the shell-and-tube heat exchanger in the hybrid model, 

Figure 6.37, matches the total pressure loss seen through the primary surface recuperator 

and the combustion chamber in the stand alone power generation model, Figure 6.7.  

With the comparisons of the thermodynamic cycle analysis of the two models, the hybrid 

model has been validated with the stand alone model. 
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Figure 6.36: T-s Diagram of Actual Brayton Cycle with Outside Heat Source 
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Figure 6.37: P-v Diagram of Actual Brayton Cycle with Outside Heat Source 
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6.2.2.3 1-D Zooming Mean-Line Calculations 

 The mean-line calculations in the hybrid model are obtained in the same manner 

as the stand alone model.  The limitations given in Section 6.1.4 apply to the hybrid 

model and the calculations are based on trigonometry applied to the velocity diagrams in 

Figures 3.6 and 3.8 and isentropic relationships described in Chapter 4.  Table 6.5 gives 

the 1-D mean-line calculations through the centrifugal compressor.  To match the 

limitations placed on centrifugal compressor calculations, the rotor tip velocity U2t in the 

hybrid model is calculated to be 1376 ft/s.  This is below the limited range. The relative 

flow angle at the tip, β1t is calculated to be 59.94 degrees.  The tangential or swirl 

velocity v2 is 1223 ft/s.  This calculates to be 89 percent of the rotor tip velocity.  The 

final constraint to match is the absolute velocity exiting the compressor diffuser; V3 is 

calculated to be 299.5 ft/s.  These variables are represented in bold in Table 6.5. 

 The mean-line calculations for the radial inflow turbine in the hybrid model are 

seen in Table 6.6. The rotor tip velocity U2t for the radial inflow turbine is calculated to 

be 1450 ft/s and the exit flow angle is set to 70 degrees.  These variables are shown in 

bold in Table 6.6.  Comparing the rest of the variables seen in Tables 6.5 and 6.6 to those 

in Tables 6.2 an 6.3, the velocity and Mach number calculations at all the stations are 

higher for the hybrid model than the stand alone model.  This is because the mass flow 

rate for the hybrid model calculated higher than the mass flow rate through the stand 

alone model. 
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Table 6.5: Centrifugal Compressor Mean-Line Calculations at 100 Percent of MTG 
Design Speed for 1-D Zooming of Hybrid Power Generation System 

 
Compressor Results – Ideal and Actual Throttle at 100%      
Station Units 1 1Rh 1Rt 2 3 

Tt [R] 550.8 567.4 617.3 830.8 830.8 
T [R] 528.5 528.5 528.5 684 816.1 
Pt [psia] 14.7 16.31 21.91 56.48 51.44 
P [psia] 12.71 12.71 12.71 28.58 48.32 
M [-] 0.4601 0.6077 0.9176 1.037 0.2121 
V [ft/s] 518.1 684.3 1033 1328 299.5 

u/w [ft/s] 518.1 518.1 518.1 518.1 518.1 
v [ft/s] 0 447.1 894.1 1223 - 

radius [ft] - 0.0462 0.0925 0.1423 - 
α [deg] 0 - - 22.98 - 
β [deg] - 40.81 59.94 - - 

 
 
 
 

Table 6.6: Radial Inflow Turbine Mean-Line Calculations at 100 Percent of MTG 
Design Speed for 1-D Zooming of Hybrid Power Generation System 

 
Turbine Results – Ideal and Actual Throttle at 100%     

Station Units 1 2 3Rm 3 
Tt [R] 1474 1474 1209 1156 
T [R] - 1222 1134 1134 
Pt [psia] 50.14 50.14 25.99 16.98 
P [psia] - 47.75 19.06 19.06 
M [-] - 0.8903 0.6914 0.3252 
V [ft/s] - 1543 1122 527.8 

u/w [ft/s] - 527.8 527.8 527.8 
v [ft/s] 0 1450 990.2 0 

radius [ft] - 0.15 0.1024 - 
α [deg] 0 70 - 0 
β [deg] - - 61.94 - 
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CHAPTER 7: CONCULSIONS AND RECOMMENDATIONS 

 

7.1 Conclusions 

The background information on fuel cells and hybrid fuel cell technologies with 

corresponding power generation has been given.  The background and design of a 

microturbine generator has been discussed in detail.  A summary of the different 

modeling techniques currently in use was provided in Chapter 2.  The three 

MATLAB/Simulink® models presented provide an initial design methodology for 

modeling and simulation of a hybrid power generation system. 

 

7.1.1 1-Dimensional Stand Alone Power Generation Model 

 A 1-Dimensional model was created using MATLAB/Simulink® as a possible 

generic representation of the Capstone® Model 330 microturbine generator for stand 

alone power generation.  The 1-Dimensional model successfully demonstrated the ability 

to calculate along a mean-line through a centrifugal compressor, radial inflow turbine, 

primary surface recuperator with limited geometry and a reverse flow annular combustor 

using the ideal compressor operating line as the input parameters. The model 

development is for validating the 0-Dimensional and 1-Dimensional hybrid power 

generation model developed in conjecture with a molten carbonate fuel cell model and 

the shell-and-tube heat exchanger model. 
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The ideal operating cycle of the microturbine generator did not map the actual 

operating cycle below 69 percent of the actual cycle suggesting model inoperability 

below this point.  At the design point the mean-line calculations met all requirements of 

each component.  The desired power generation for the MTG was for 22126 ft-lbf/s (30 

kW). The ideal or thermodynamic power generation was found to be 22349 ft-lbf/s (30.3 

kW).  The actual or mechanical power produced from applying a load on the shaft was 

calculated to be 18403 ft-lbf/s (24.6 kW).  With this power generation the efficiency of 

the microturbine generator is 81 percent.   

 

7.1.2 0-Dimensional Hybrid Power Generation Model 

 The 0-Dimensional hybrid power generation model has three complex 

components modeled individually: a hybrid microturbine generator consisting of a 

centrifugal compressor and radial inflow turbine, a shell-and-tube heat exchanger and a 

molten carbonate fuel cell with catalytic oxidizer.  The 0-D model was controlled through 

placing a PID controller on the torque load applied to the shaft of the microturbine 

generator.  As the load was applied, response analysis was done on the temperatures 

through the complex components of the hybrid model.   As the power is ramped from a 

time constant giving a slope of 0.5 to 3, the temperature responses through the shell- and 

tube-side of the heat exchanger are slow allowing for the conclusion that the temperature 

calculations cannot respond quick enough for a corresponding increase of microturbine 

power. 

 The fuel cell stack temperature response is driven by the cathode inlet temperature 

taken directly from the tube-side of the heat exchanger enabling the same response 



 

 194

characteristics as the tube-side temperature response.  The catalytic oxidizer is dependent 

on the fuel cell stack temperature and the diffuser temperature from the microturbine 

generator.  The diffuser temperature has a more robust response, driving the oxidizer 

temperature response. 

 The actual power generation of the microturbine generator is equal to the desired 

power generation.  The PID controller on the system assures consistent power generation 

at the desired amount.  With the actual power generation at 30 kW, with the same design 

conditions the thermodynamic power generation is still higher than the actual at 34.5 kW.  

The hybrid microturbine generator efficiency is 87 percent.  The desired hybrid power 

generation for the system is 250 kW.  The fuel cell has the ability to generate up to 240 

kW of power without exceeding the fuel cell stack temperature operating limit of 1000 K.  

The hybrid power generation is 256 kW at the microturbine design point operating 

conditions. 

 The 0-D model can operate with a second PID controller placed on the current 

density input which drives the natural gas flow and the voltage of the fuel cell.  This PID 

controller is completely separate from the PID controller on the microturbine generator. 

 

7.1.3 1-D Zooming of the Hybrid Power Generation Model 

 The 1-D hybrid zooming model is verified through comparing calculations with 

those done in the 1-D stand alone model at design point and along the actual operating 

line.  When the models are compared, the 1-D stand alone model cannot operate below 

69 percent of the actual operating line and the zooming model below 68 percent.  The 

compressor temperature responses along the operating line are identical for the two 
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models.  The turbine temperature ranges roughly match after 70 percent on the operating 

line but the shape of the responses for each model do not match.   

Higher turbine inlet temperature at the design point is achieved for the stand alone 

model then for the zooming model.  This is due to the presence of the combustion 

chamber in the stand alone model.  The turbine inlet temperature in the zooming model is 

calculated from the shell-and-tube heat exchanger still operating with 0-Dimensional 

calculations.  This drives the different shape seen with the turbine temperature responses 

of the two models.  The mean-line calculations match the limitations and requirements set 

by the 1-D stand alone model thereby verifying the 1-D hybrid zooming model. 

 

7.2 Recommendations for Future Model Development 

 Develop a 0-Dimensional model of the stand alone power generation system with 

fuel flow control based on the 1-Dimensional stand alone system.  A 0-D stand alone 

model will enable improved validation of the 0-D hybrid model that is the focus of this 

study.  Initiating start-up capabilities on the 0-D hybrid model to simulate the full 

operating cycle of start-up, load following and shut-down of the hybrid system.  Apply 

balance-of-plant to the full operating cycle of the hybrid system.  Analysis of real-time 

operation to include climate changes simulating over-night operation.  Additional 

simulation of higher fidelity models applied to the zooming technique on the hybrid 

system will be essential to improving the validity of the hybrid power generation model.  
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Appendix A 

Actual Microturbine Generator Operating Line Calculations 
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Table A.1: Compressor Calculations – MATLAB/Simulink 

Ideal 0m&  ηc Tt3 Pt3 Pc Pc πc Tt2 
[%] [lbm/s] [-] [R] [psia] [W] [ft-lbf/s] [-] [R] 
40 0.6579 0.86 615.1 20.57 10709 7899 1.400 550.8 
45 0.7402 0.86 639.3 23.15 16591 12237 1.580 550.8 
50 0.8224 0.86 661.8 25.72 23115 17049 1.750 550.8 
55 0.9047 0.86 682.8 28.29 30244 22307 1.925 550.8 
60 0.9869 0.85 702.6 30.86 37932 27977 2.100 550.8 
65 1.0690 0.85 721.3 33.43 46165 34049 2.275 550.8 
70 1.1520 0.85 739.0 36.01 54903 40491 2.450 550.8 
75 1.2330 0.85 755.9 38.85 64072 47257 2.625 550.8 
80 1.3160 0.85 772.1 41.15 73747 54393 2.800 550.8 
85 1.3980 0.85 787.6 43.72 83861 61853 2.975 550.8 
90 1.4810 0.85 802.5 46.29 943985 69625 3.150 550.8 
95 1.5620 0.85 816.9 48.86 105277 77648 3.325 550.8 
100 1.6450 0.85 830.8 51.44 116608 86006 3.500 550.8 
105 1.7270 0.84 844.2 54.01 128319 94643 3.675 550.8 
110 1.8100 0.84 857.2 56.58 140396 103551 3.850 550.8 

 
 

Table A.2: Compressor Calculations – EES 
Ideal  0m&  ηc Tt3 Pt3 Pc Pc  πc Tt2 
[%] [lbm/s] [-] [R] [psia] [W] [ft-lbf/s]  [-] [R] 
40 0.6577 0.8637 615.2 20.57 10717 7904  1.400 550.8 
45 0.7399 0.8614 639.4 23.14 16602 12245  1.575 550.8 
50 0.8221 0.8594 661.9 25.71 23132 17062  1.750 550.8 
55 0.9043 0.8575 683.0 28.28 30265 22322  1.925 550.8 
60 0.9865 0.8558 702.8 30.85 37962 27999  2.100 550.8 
65 1.0690 0.8542 721.5 33.42 46190 34068  2.275 550.8 
70 1.1510 0.8528 739.3 35.99 54924 40510  2.450 550.8 
75 1.2330 0.8514 756.2 38.56 64137 47305  2.625 550.8 
80 1.3150 0.8501 772.4 41.13 73807 54438  2.800 550.8 
85 1.3980 0.8489 787.9 43.70 83917 61894  2.975 550.8 
90 1.4800 0.8477 802.9 46.27 94448 69661  3.150 550.8 
95 1.5620 0.8466 817.2 48.84 105383 77727  3.325 550.8 
100 1.6440 0.8456 831.1 51.42 116710 86081  3.500 550.8 
105 1.7260 0.8446 844.6 53.99 128414 94713  3.675 550.8 
110 1.8090 0.8436 857.6 56.56 140483 103615  3.850 550.8 
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Table A.3: Turbine Calculations – MATLAB/Simulink 

Ideal Tt4 Tt5 Pt5 Pt6  tm&  Pt Pt 
[%] [R] [R] [psia] [psia] [lbm/s] [W] [ft-lbf/s] 
40 3667 3596 18.5 18.49 0.661 13455 9924 
45 2198 2099 18.5 18.48 0.744 20856 15382 
50 1848 1725 18.5 18.47 0.827 29061 21434 
55 1703 1557 18.5 18.46 0.910 38029 28049 
60 1631 1463 18.5 18.45 0.993 47706 35187 
65 1592 1403 18.5 18.44 1.076 58072 42832 
70 1571 1362 18.5 18.43 1.159 69080 50951 
75 1561 1333 18.5 18.43 1.242 80634 59473 
80 1557 1312 18.5 18.42 1.325 92831 68468 
85 1558 1295 18.5 18.41 1.408 105586 77876 
90 1562 1282 18.5 18.41 1.492 118879 87680 
95 1568 1272 18.5 18.40 1.574 132606 97805 
100 1575 1264 18.5 18.40 1.658 146910 108355 
105 1583 1258 18.5 18.39 1.741 161696 119261 
110 1592 1252 18.5 18.39 1.825 176950 130512 

 
Table A.4: Turbine Calculations – EES 

Ideal Tt4 Tt5 Pt5 Pt6  tm&  Pt Pt 
[%] [R] [R] [psia] [psia] [lbm/s] [W] [ft-lbf/s] 
40 4036 3965 18.5 18.49 0.661 13469 9935 
45 2276 2178 18.5 18.48 0.744 20870 15393 
50 1886 1763 18.5 18.47 0.827 29083 21451 
55 1727 1581 18.5 18.46 0.910 38057 28069 
60 1648 1479 18.5 18.45 0.993 47744 35214 
65 1605 1415 18.5 18.44 1.075 58106 42857 
70 1581 1372 18.5 18.43 1.158 69107 50971 
75 1569 1341 18.5 18.43 1.242 80717 59534 
80 1563 1318 18.5 18.42 1.325 92909 68526 
85 1563 1300 18.5 18.41 1.408 105657 77929 
90 1566 1286 18.5 18.41 1.491 118942 87727 
95 1571 1275 18.5 18.40 1.574 132742 97905 
100 1577 1266 18.5 18.40 1.657 147039 108450 
105 1585 1259 18.5 18.39 1.740 161817 119350 
110 1594 1254 18.5 18.39 1.824 177061 130593 
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Table A.5: Combustion Chamber Calculations – MATLAB/Simulink 

Ideal f  fm&  Pt4 φ 
[%] [-] [lbm/s] [psia] [-] 
40 0.003773 0.003309 20.20 0.08631 
45 0.004231 0.004148 22.72 0.09615 
50 0.004331 0.004710 25.24 0.09827 
55 0.004465 0.005339 27.75 0.10130 
60 0.004618 0.006023 30.27 0.10470 
65 0.004778 0.006751 32.78 0.10830 
70 0.004948 0.007529 35.29 0.11210 
75 0.005119 0.008340 37.80 0.11600 
80 0.005289 0.009193 40.31 0.11990 
85 0.005457 0.010080 42.82 0.12370 
90 0.005622 0.011000 45.33 0.12740 
95 0.005784 0.011940 47.83 0.13110 
100 0.005942 0.012910 50.34 0.13470 
105 0.006098 0.013910 52.84 0.13820 
110 0.006249 0.014940 55.35 0.14170 

 
Table A.6: Combustion Chamber Calculations – EES 

Ideal f fm&   Pt4 φ 
[%] [-] [lbm/s] [psia] [-] 
40 0.004078 0.003581 20.04 0.06474 
45 0.004252 0.004169 22.56 0.07259 
50 0.004357 0.004738 25.08 0.07431 
55 0.004485 0.005361 27.60 0.07662 
60 0.004634 0.006041 30.13 0.07924 
65 0.004795 0.006771 32.65 0.08199 
70 0.004962 0.007545 35.17 0.08490 
75 0.005131 0.008359 37.70 0.08783 
80 0.005300 0.009209 40.22 0.09075 
85 0.005467 0.01009 42.74 0.09363 
90 0.005631 0.01101 45.27 0.09646 
95 0.005792 0.01195 47.79 0.09924 
100 0.005950 0.01292 50.32 0.10200 
105 0.006104 0.01392 52.84 0.10460 
110 0.006255 0.01495 55.37 0.10720 
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Table A.7: Primary Surface Recuperator Calculations – MATLAB/Simulink 
Ideal ε Pt3' Pt7 Tt3' Tt7 NTU ReDh-cold ReDh-hot 
[%] [-] [psia] [psia] [R] [R] [-] [-] [-] 
40 0.832 20.47 15.12 3095 1640 7.400 629.8 167.4 
45 0.832 23.02 17.21 1854 1056 6.212 688.9 260.8 
50 0.832 25.57 17.44 1546 940 5.485 746.5 326.2 
55 0.832 28.12 17.50 1410 899 4.952 803.0 382.3 
60 0.832 30.67 17.51 1335 884 4.534 858.1 433.7 
65 0.832 33.21 17.49 1288 880 4.191 912.7 482.5 
70 0.832 35.76 17.45 1258 881 3.903 966.2 529.6 
75 0.832 38.30 17.41 1236 886 3.660 1018 575.0 
80 0.832 40.84 17.37 1221 892 3.444 1070 620.0 
85 0.832 43.38 17.32 1210 899 3.256 1122 664.3 
90 0.832 45.92 17.27 1202 907 3.088 1172 708.2 
95 0.832 48.46 17.21 1196 915 2.940 1222 751.1 
100 0.832 51.00 17.16 1191 923 2.805 1272 794.1 
105 0.832 53.54 17.10 1188 932 2.683 1321 836.9 
110 0.832 56.08 17.04 1186 941 2.571 1369 879.3 

 
Table A.8: Primary Surface Recuperator – EES 

Ideal ε Pt3' Pt7 Tt3' Tt7 NTU ReDh-cold ReDh-hot

[%] [-] [psia] [psia] [R] [R] [-] [-] [-] 
40 0.832 20.31 15.36 3402 1501 7.476 629.4 162.8 
45 0.832 22.86 17.05 1919 1047 6.282 688.3 255.1 
50 0.832 25.41 17.33 1578 954 5.545 745.9 321.7 
55 0.832 27.97 17.41 1430 921 5.008 802.2 378.5 
60 0.832 30.52 17.43 1349 909 4.587 857.5 430.4 
65 0.832 33.08 17.43 1299 905 4.244 911.7 479.5 
70 0.832 35.64 17.40 1265 907 3.956 965.1 526.8 
75 0.832 38.19 17.37 1242 911 3.710 1018 572.8 
80 0.832 40.75 17.33 1226 917 3.497 1069 617.9 
85 0.832 43.31 17.29 1214 924 3.310 1121 662.4 
90 0.832 45.86 17.25 1205 931 3.143 1171 706.2 
95 0.832 48.42 17.20 1198 939 2.995 1221 749.7 
100 0.832 50.98 17.15 1193 947 2.861 1270 792.8 
105 0.832 53.54 17.10 1190 955 2.739 1319 835.6 
110 0.832 56.10 17.05 1187 963 2.629 1368 878.1 
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Table A.9: Stand Alone Power Generation System Calculations – 
MATLAB/Simulink 

Ideal Ptherm Ptherm N ηLHV ηHHV Pm Pm 
[%] [W] [ft-lbf/s] [rpm] [-] [-] [W] [ft-lbf/s] 
40 2745 2025 44233 0.0480 0.0430 3619 2669 
45 4265 3145 51906 0.0595 0.0533 5144 3794 
50 5945 4385 58126 0.0730 0.0655 6199 4572 
55 7785 5742 63391 0.0844 0.0756 7456 5499 
60 9774 7209 67972 0.0939 0.0842 8943 6596 
65 11908 8783 72036 0.1021 0.0915 10529 7766 
70 14177 10456 75694 0.1090 0.0977 12201 8999 
75 16562 12216 79022 0.1149 0.1030 13995 10322 
80 19084 14076 82078 0.1201 0.1077 15938 11755 
85 21725 16023 84906 0.1247 0.1118 18028 13297 
90 24480 18056 87537 0.1288 0.1155 20246 14933 
95 27329 20157 90000 0.1325 0.1188 22535 16621 
100 30301 22349 92314 0.1358 0.1217 24951 18403 
105 33378 24618 94498 0.1388 0.1244 27474 20264 
110 36554 26961 96566 0.1416 0.1269 30072 22180 

 
Table A.10: Stand Alone Power Generation System Calculations – EES 
Ideal Ptherm Ptherm N ηLHV ηHHV Pm Pm 
[%] [W] [ft-lbf/s] [rpm] [-] [-] [W] [ft-lbf/s] 
40 2753 2030 44258 0.0445 0.0399 4275 3153 
45 4268 3148 51935 0.0592 0.0531 5114 3772 
50 5951 4389 58159 0.0727 0.0652 6187 4563 
55 7792 5747 63428 0.0841 0.0754 7454 5498 
60 9783 7215 68012 0.0937 0.0840 8886 6554 
65 11915 8788 72079 0.1018 0.0913 10461 7716 
70 14183 10461 75739 0.1088 0.0975 12168 8975 
75 16580 12229 79070 0.1148 0.1029 13996 10323 
80 19101 14088 82129 0.1200 0.1076 15940 11757 
85 21740 16035 84958 0.1246 0.1117 17993 13271 
90 24494 18066 87592 0.1288 0.1154 20153 14864 
95 27358 20178 90056 0.1325 0.1187 22414 16532 
100 30329 22370 92373 0.1358 0.1217 24775 18273 
105 33403 24637 94559 0.1388 0.1245 27232 20085 
110 36578 26979 96629 0.1416 0.1269 29782 21966 
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Appendix B: 

 1-D Zooming of Actual MTG Operating Line 
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Table B.1: Compressor Calculations –MATLAB/Simulink 
Ideal 0m&   ηc Tt3 Pt3 Pc Pc πc Tt2 
[%] [lbm/s] [-] [R] [psia] [W] [ft-lbf/s] [-] [R] 
40 0.697 0.86 615.1 20.57 11348 8370 1.40 550.8 
45 0.784 0.86 639.3 23.15 17578 12965 1.58 550.8 
50 0.871 0.86 661.8 25.72 24493 18065 1.75 550.8 
55 0.959 0.86 682.8 28.29 32044 23634 1.93 550.8 
60 1.046 0.86 702.6 30.86 40208 29656 2.10 550.8 
65 1.132 0.85 721.3 33.43 48888 36058 2.27 550.8 
70 1.220 0.85 739.0 36.01 58141 42882 2.45 550.8 
75 1.307 0.85 755.9 38.58 67903 50083 2.63 550.8 
80 1.394 0.85 772.1 41.15 78152 57642 2.80 550.8 
85 1.482 0.85 787.6 43.72 88866 65544 2.98 550.8 
90 1.568 0.85 802.5 46.29 99966 73731 3.15 550.8 
95 1.656 0.85 816.9 48.86 111554 82278 3.33 550.8 
100 1.743 0.85 830.8 51.44 123557 91131 3.50 550.8 
105 1.830 0.84 844.2 54.01 135960 100279 3.67 550.8 
110 1.918 0.84 857.2 56.58 148752 109714 3.85 550.8 

 
 

Table B.2: Turbine Calculations – MATLAB/Simulink  
Ideal Tt4 Tt5 Pt4 Pt5 Pt6 tm&   Pt Pt 
[%] [R] [R] [psia] [psia] [psia] [lbm/s] [W] [ft-lbf/s] 
40 2461 2394 20.32 17.81 17.8 0.697 14185 10462 
45 2311 2217 22.68 18.66 18.65 0.784 21974 16207 
50 2180 2062 25.10 19.32 19.3 0.871 30613 22582 
55 2065 1923 27.55 19.79 19.76 0.959 40056 29544 
60 1965 1800 30.03 20.06 20.01 1.046 50261 37071 
65 1877 1691 32.52 20.13 20.08 1.132 61112 46074 
70 1799 1591 35.02 20.06 19.99 1.220 72678 53605 
75 1729 1502 37.53 19.82 19.75 1.307 84882 62606 
80 1667 1420 40.05 19.43 19.35 1.394 97693 72055 
85 1611 1345 42.57 18.93 18.85 1.482 111087 81933 
90 1561 1277 45.09 18.37 18.28 1.568 124932 92167 
95 1516 1214 47.51 17.71 17.61 1.656 139447 102851 
100 1474 1156 50.14 16.98 16.87 1.743 154451 113917 
105 1437 1101 52.66 16.19 16.08 1.830 169957 125353 
110 1402 1051 55.19 15.35 15.24 1.918 185946 137147 
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Appendix C 

Centrifugal Compressor 0-D Performance Mapping 
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Appendix D 

Radial Inflow Turbine 0-D Performance Mapping 
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