20,810 research outputs found

    Overlay networks for smart grids

    Get PDF

    Software Defined Networks based Smart Grid Communication: A Comprehensive Survey

    Get PDF
    The current power grid is no longer a feasible solution due to ever-increasing user demand of electricity, old infrastructure, and reliability issues and thus require transformation to a better grid a.k.a., smart grid (SG). The key features that distinguish SG from the conventional electrical power grid are its capability to perform two-way communication, demand side management, and real time pricing. Despite all these advantages that SG will bring, there are certain issues which are specific to SG communication system. For instance, network management of current SG systems is complex, time consuming, and done manually. Moreover, SG communication (SGC) system is built on different vendor specific devices and protocols. Therefore, the current SG systems are not protocol independent, thus leading to interoperability issue. Software defined network (SDN) has been proposed to monitor and manage the communication networks globally. This article serves as a comprehensive survey on SDN-based SGC. In this article, we first discuss taxonomy of advantages of SDNbased SGC.We then discuss SDN-based SGC architectures, along with case studies. Our article provides an in-depth discussion on routing schemes for SDN-based SGC. We also provide detailed survey of security and privacy schemes applied to SDN-based SGC. We furthermore present challenges, open issues, and future research directions related to SDN-based SGC.Comment: Accepte

    Secure Transmission To Remote Cooperative Groups With Minimized Communication Overhead

    Get PDF
    In Wireless Mesh networks there is a need to Multicast to a remote cooperative group using encrypted transmission. The existing paradigms failed to provide better efficiency and security in these kind of transmissions. A major challenge in devising such a system involves in achieving efficient usage of Bandwidth and Reducing the number of unintended receivers. In this paper we circumvent these obstacles and close this gap by involving a sender based algorithm .This new paradigm is a hybrid of traditional Multicasting, shortest path techniques and group key management. In such a system, for every source destination pair the protocol adaptively calculates the mean delays along all the utilized paths and avoid the paths with greater or equal mean delays. Which eventually reduces the usage of unwanted paths and also results in reducing the number of unintended receivers at a considerable rate. This approach efficiently deals with the computation overhead and usage of network resources. Further more our scheme provides better security by reducing the number of unintended receivers.

    Internet of Things-aided Smart Grid: Technologies, Architectures, Applications, Prototypes, and Future Research Directions

    Full text link
    Traditional power grids are being transformed into Smart Grids (SGs) to address the issues in existing power system due to uni-directional information flow, energy wastage, growing energy demand, reliability and security. SGs offer bi-directional energy flow between service providers and consumers, involving power generation, transmission, distribution and utilization systems. SGs employ various devices for the monitoring, analysis and control of the grid, deployed at power plants, distribution centers and in consumers' premises in a very large number. Hence, an SG requires connectivity, automation and the tracking of such devices. This is achieved with the help of Internet of Things (IoT). IoT helps SG systems to support various network functions throughout the generation, transmission, distribution and consumption of energy by incorporating IoT devices (such as sensors, actuators and smart meters), as well as by providing the connectivity, automation and tracking for such devices. In this paper, we provide a comprehensive survey on IoT-aided SG systems, which includes the existing architectures, applications and prototypes of IoT-aided SG systems. This survey also highlights the open issues, challenges and future research directions for IoT-aided SG systems

    DRFSD: Directed Restricted Flooding For Secure Data-Aggregation In Wireless Sensor Networks

    Get PDF
    Secured Data Transmission is a major issue in Wireless Sensor Networks (WSNs). In this paper we have proposed Directed Restricted Flooding Protocol (DRFSD) in WSNs. This protocol is better than H-SPREAD (Hybrid Security Protocol for REliable dAta Delivery). In DRFSD, alternate multipaths are selected based on the sensor node, that are placed at 180? direction with the Base Station (BS). This scheme is ef?cient in sending the Data Packets to the Base Station in shorter duration than the H-SPREAD. Simulation Results show that our algorithm approach performs well with respect to latency in comparison with earlier algorithm

    Backscatter from the Data Plane --- Threats to Stability and Security in Information-Centric Networking

    Full text link
    Information-centric networking proposals attract much attention in the ongoing search for a future communication paradigm of the Internet. Replacing the host-to-host connectivity by a data-oriented publish/subscribe service eases content distribution and authentication by concept, while eliminating threats from unwanted traffic at an end host as are common in today's Internet. However, current approaches to content routing heavily rely on data-driven protocol events and thereby introduce a strong coupling of the control to the data plane in the underlying routing infrastructure. In this paper, threats to the stability and security of the content distribution system are analyzed in theory and practical experiments. We derive relations between state resources and the performance of routers and demonstrate how this coupling can be misused in practice. We discuss new attack vectors present in its current state of development, as well as possibilities and limitations to mitigate them.Comment: 15 page
    • …
    corecore