7,517 research outputs found

    Multi-objective Compositions for Collision-Free Connectivity Maintenance in Teams of Mobile Robots

    Get PDF
    Compositional barrier functions are proposed in this paper to systematically compose multiple objectives for teams of mobile robots. The objectives are first encoded as barrier functions, and then composed using AND and OR logical operators. The advantage of this approach is that compositional barrier functions can provably guarantee the simultaneous satisfaction of all composed objectives. The compositional barrier functions are applied to the example of ensuring collision avoidance and static/dynamical graph connectivity of teams of mobile robots. The resulting composite safety and connectivity barrier certificates are verified experimentally on a team of four mobile robots.Comment: To appear in 55th IEEE Conference on Decision and Control, December 12-14, 2016, Las Vegas, NV, US

    Safety Barrier Certificates for Heterogeneous Multi-Robot Systems

    Get PDF
    This paper presents a formal framework for collision avoidance in multi-robot systems, wherein an existing controller is modified in a minimally invasive fashion to ensure safety. We build this framework through the use of control barrier functions (CBFs) which guarantee forward invariance of a safe set; these yield safety barrier certificates in the context of heterogeneous robot dynamics subject to acceleration bounds. Moreover, safety barrier certificates are extended to a distributed control framework, wherein neighboring agent dynamics are unknown, through local parameter identification. The end result is an optimization-based controller that formally guarantees collision free behavior in heterogeneous multi-agent systems by minimally modifying the desired controller via safety barrier constraints. This formal result is verified in simulation on a multi-robot system consisting of both cumbersome and agile robots, is demonstrated experimentally on a system with a Magellan Pro robot and three Khepera III robots.Comment: 8 pages version of 2016ACC conference paper, experimental results adde

    Bounded Distributed Flocking Control of Nonholonomic Mobile Robots

    Full text link
    There have been numerous studies on the problem of flocking control for multiagent systems whose simplified models are presented in terms of point-mass elements. Meanwhile, full dynamic models pose some challenging problems in addressing the flocking control problem of mobile robots due to their nonholonomic dynamic properties. Taking practical constraints into consideration, we propose a novel approach to distributed flocking control of nonholonomic mobile robots by bounded feedback. The flocking control objectives consist of velocity consensus, collision avoidance, and cohesion maintenance among mobile robots. A flocking control protocol which is based on the information of neighbor mobile robots is constructed. The theoretical analysis is conducted with the help of a Lyapunov-like function and graph theory. Simulation results are shown to demonstrate the efficacy of the proposed distributed flocking control scheme

    A Dynamic Localized Adjustable Force Field Method for Real-time Assistive Non-holonomic Mobile Robotics

    Get PDF
    Providing an assistive navigation system that augments rather than usurps user control of a powered wheelchair represents a significant technical challenge. This paper evaluates an assistive collision avoidance method for a powered wheelchair that allows the user to navigate safely whilst maintaining their overall governance of the platform motion. The paper shows that by shaping, switching and adjusting localized potential fields we are able to negotiate different obstacles by generating a more intuitively natural trajectory, one that does not deviate significantly from the operator in the loop desired-trajectory. It can also be seen that this method does not suffer from the local minima problem, or narrow corridor and proximity oscillation, which are common problems that occur when using potential fields. Furthermore this localized method enables the robotic platform to pass very close to obstacles, such as when negotiating a narrow passage or doorway

    Supervised Autonomous Locomotion and Manipulation for Disaster Response with a Centaur-like Robot

    Full text link
    Mobile manipulation tasks are one of the key challenges in the field of search and rescue (SAR) robotics requiring robots with flexible locomotion and manipulation abilities. Since the tasks are mostly unknown in advance, the robot has to adapt to a wide variety of terrains and workspaces during a mission. The centaur-like robot Centauro has a hybrid legged-wheeled base and an anthropomorphic upper body to carry out complex tasks in environments too dangerous for humans. Due to its high number of degrees of freedom, controlling the robot with direct teleoperation approaches is challenging and exhausting. Supervised autonomy approaches are promising to increase quality and speed of control while keeping the flexibility to solve unknown tasks. We developed a set of operator assistance functionalities with different levels of autonomy to control the robot for challenging locomotion and manipulation tasks. The integrated system was evaluated in disaster response scenarios and showed promising performance.Comment: In Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Madrid, Spain, October 201
    corecore