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Abstract

Providing an assistive navigation system that augments
rather than usurps user control of a powered wheelchair
represents a significant technical challenge. This paper
evaluates an assistive collision avoidance method for a
powered wheelchair that allows the user to navigate safely
whilst maintaining their overall governance of the platform
motion. The paper shows that by shaping, switching and
adjusting localized potential fields we are able to negotiate
different obstacles by generating a more intuitively natural
trajectory, one that does not deviate significantly from the
operator in the loop desired-trajectory. It can also be seen
that this method does not suffer from the local minima
problem, or narrow corridor and proximity oscillation,
which are common problems that occur when using
potential fields. Furthermore this localized method enables
the robotic platform to pass very close to obstacles, such as
when negotiating a narrow passage or doorway.

Keywords Smart Assistive Powered Wheelchair, Mobile
Robotics, Real-time Navigation, Dynamic, Localized
Adjustable Potential Force Fields

1. Introduction

Navigation in the robotic arena can be described as the
guidance of a robot towards a goal whilst avoiding obsta‐
cles;  however,  those  tasks  must  be  undertaken  with
consideration to the platform kinematic constraints and
dynamic behaviours. When we consider assistive, or semi-
autonomous, robotics with the human in the loop — such
as robotic wheelchairs and remote tele-operated platforms
— we need to remove the autonomous high-level func‐
tions that perform tasks such as high-level path planning
and targeting, or goal seeking [1]. The reason is that in reality,
a  conflict  of  interests  may well  occur;  for  example,  the
platform system takes its trajectory from the user’s desire
for something, possibly, as a result, causing some injury or
damage (or at best apprehension) when using the system [2].

For many users, the operation of powered wheelchairs in
enclosed environments, such as buildings, proves prob‐
lematic. An important need is to be able to drive in such
environments with minimal collisions. For those users with
significant physical disabilities, accurate control of the
chair is a major challenge. The inability to avoid colliding
with objects or other persons can deter the user from
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driving or may even cause the removal of the option of
independent powered control because it presents an
unacceptable risk to the user, to others and to the environ‐
ment.

Developing intelligent assistive systems is, therefore, a
significant challenge for the research community. Finding
solutions that assist the user with collision avoidance and
assisted navigation are two requirements that would help
to maintain the independent mobility of the PWC user.

Assistive systems need to operate safely in the dynamic
human environment. For example, the system must only
operate positive action when the operator is in the feedback
and feed-forward control loop. Furthermore, any assistive
trajectory must be smooth and locally acting to damp over-
action whilst remaining adjustable. For example, the user
may wish to manoeuvre close to a bed or desk, making
deliberate and gentle contact with those obstacles not
affected by the assistive robotic system.

A review of robotic control architectures and their effec‐
tiveness in 2011 [3] identified that reactive architectures
performed significantly better than deliberate ones in an
uncertain and dynamic environment; however, in order to
achieve comprehensive navigation, a reactive robot would
require real-world representation, perception and deci‐
sion-making. By combining the Deliberative Control
Architecture and the Subsumption Architecture, Arkin
formed the Hybrid Control Architecture in 1989 [4]. This
allows the top-down directives to provide the higher level
dictates, such as real-world navigation and decision-
making, and the lower level reactive architecture to deal
with real-time collision avoidance, passing control back to
the upper layers when it is unable to resolve the situation
locally. Nakhaeinia [3] reports that this combined hybrid
architecture provides a much better solution to autono‐
mous robotic navigation than either method individually.

By taking the network concept for providing a better
interconnected Subsumption Architecture [5], combining
this with the Hybrid Control Architecture [4] and then
introducing a human into the network, it is proposed that
a more robust architecture for assistive mobile robotic
control can be described than the one represented in Fig 1.
This new human-in-the-loop Assistive Control Architec‐
ture (ACA) for assistive mobility devices provides a full
interconnection between the higher layers and lower
layers, in a top-down and bottom-up directive, unlike the
previous architectures.

The ACA prevents the higher levels from subsuming the
lower layers if the lower levels are still active. For example,
the collision avoidance layer will not be overridden by the
assistive trajectory level if there is an unpredicted inter‐
ruption or undetected obstacle. Instead, the collision
avoidance layer overrides the assistive trajectory layer, or
alters the trajectory in a complementary fashion, whilst
informing the user and higher levels. This new method
allows the human to be the decision-maker whilst the ACA
provides assistance.

Following on from this proposal, we have developed a new
collision avoidance method based on using a potential force
field as a moderating input on the desired trajectory. The
repulsion generated by the nearest obstacle in each region
of interest or zone is used to dampen the input to the drive
motors. Therefore, the user has to deliberately drive the
platform towards obstacles, for example, if should they
wish to make contact with that obstacle. When the platform
velocity input is used to adjust the damping co-efficient, the
platform motion can be made to match the natural human
trajectory, and a sudden jerk of the joystick or excessive
joystick motion has no effect on the platform motion.

Our localized potential force field is then used as a dynamic
workspace, travelling with the platform and acting upon
the nearest obstacle rather than on all obstacles, as is
conventional. We treat the platform not as a point mass but
as a novel, geometrically shaped workspace that better
represents the kinematic constraints and dimensions of the
platform.
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Figure 1. Human-in-the-loop Assistive Control Architecture for assistive
mobility devices

In the next section, we define the problems we faced when
developing human-assistive mobile robotics. The research
background and state-of-the-art of the smart powered
wheelchair follows. Next, we present our collision avoid‐
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ance method that improves upon existing technology. We
confirm this through experimentation using a test platform
and finally conclude that the dynamic localized adjustable
force field method (DLAFF) is compatible with the require‐
ments for human-assistive wheelchair navigation.

2. Description of Human-assistive Robotics Problems

Assistive technology developments, such as smart electric
wheelchairs, are mobile robotic interactions that are
traditionally bound to carefully controlled workspaces,
increasingly towards uncertain and complex human
environments. Seamless crossovers between human-
defined desired trajectories and traditional, autonomous
system-aided trajectories are required. Human-assistive
systems place the intelligent user in the loop [1, 6] and,
according to Matuszek et al. [7], this requires a stochastic
and semantics-based workspace. Methods commonly
employed in the Euclidean geometric domain, such as
covariance ellipses indicating location and object uncer‐
tainty, now for assistive technologies may require weight‐
ed nuances, with obstacles and targets having a spectrum
of importance.

Some of the main considerations for human-in-the-loop
assistive mobile robotic platform development, according
to the literature [1, 8-10], can be listed as follows:

1. possible injury to pedestrians,

2. possible damage to infrastructure,

3. learning to drive the PWC safely,

4. manoeuvring in tight spaces,

5. inability of users to see behind or to the side,

6. potential of tipping over,

7. reliability of equipment and

8. adjustability and adaptability of system/equipment to
changing needs.

We considered solving problems 1-4 in this paper by
developing a method to:

• help correct the user trajectory, even with a small
clearance gap between the doorway and the platform,

• provide lane following or keeping to one side of the
corridor so that people and other platforms have the
room to pass without collision,

• allow docking or close proximity with an object without
a harsh collision,

• vary the collision avoidance assistance according to the
user’s needs,

• allow movement in confined spaces while providing
collision avoidance and

• make the system easily adjustable and configurable.

3. State-of-the-art for Smart Powered Wheelchairs

An extensive review of intelligent and assistive wheelchair
literature was undertaken by Simpson in 2005 [11]; another
independent review of the literature was undertaken by
Faria in 2014 [12]. Some of the research projects mentioned
in 2005 have continued to influence research [13-16], while
other new platforms have emerged [17-19] and some 4,018
papers have been published between 2005 and 2013.
Despite this significant research, little has been done to
bring smart PWCs to the end-users, according to Garcia et
al. [14]. They argue that most research is carried out in the
lab without recourse to the stakeholders, in particular, to
the users.

A collaborative control method (2010) [20, 21] was devel‐
oped over a number of years at Imperial College London
by Tom Carlson; their model, called DLOA, uses local
obstacles detected in the vicinity of the user’s intended
direction (obtained from the joystick) and the system-
shaped trajectory in order to avoid the obstacle or to pass
through a doorway. If the collaborative controller deter‐
mines a mismatch between the approach path and a
system-generated path, then the system takes control. Their
system uses a layered approach: beneath this trajectory
assistance, they employ a virtual bumper using sonar-
ranging sensors to avoid localized collisions. This layered
structure is a common theme, also having been employed
in the VAHM [22] and Wheelsley [23] projects, for example.

The ARTY researchers in 2012 [24], following on from
Carlson, attempted to use two methods of navigational
assistance for their smart PWC. The first method used the
Vector Field Histogram (VFH) [25], which proved difficult
to tune and adjust, is non-intuitive and relies on the model
of the platform being expressed as a point object. The
second method used the Dynamic Window Approach
(DWA) [26], which is a better representation for taking into
account platform dynamics and modelling and was easier
to tune and adjust. However, this method was computa‐
tionally expensive, taking too long to compute solutions.
The researchers adopted a novel hybrid approach that
provided an approximate solution to the DWA. Another
separate development by researchers at the University of
Seville has been to modify the DWA method into a shared
dynamic control [27].

4. Methodology For The Dynamic Localized Adjustable
Force Field Method (DLAFF)

Potential fields were first suggested by Andrews and
Hogan [28] for use with manipulators and later by Katib
[29], who included mobile robotics. The concept combines
the principle of positive attractive forces acting at the goal,
or target, and negative repulsive forces emanating from
obstacles. A gradient then forms between the target and the
current position of the robot; this forms a gradient descent
trajectory from the current position to the target, making
potential field methods highly suited to real-time mobile
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robotics applications [30]. This method has been adopted
for collision avoidance with smart powered wheelchairs
[31, 32]; road vehicle driving assistance based upon using
potential fields to keep vehicles following lanes and
utilizing a steering damping method has also been sug‐
gested [33].

Urdiales et al. [34] state that many assistive wheelchair
collision avoidance systems rely upon the potential field
concept or are derived from the method, such as the VFH.

The Virtual Force Field (VFF) [25], which led to the VFH
method, was introduced in 1989 as real-time obstacle
avoidance for fast robots. VFH utilizes a two-dimensional
Cartesian grid, or active window, centred on the vehicle
centre point that moves with the platform in the real-world
reference frame, thus effectively reducing the world frame
area in size to the immediate vicinity of the platform.
Ultrasound ranging measurements can then be used to
determine the existence of obstacles by using certainty
values for each of those measurements in a histogram grid
[35], from which a repulsive force vector can be deter‐
mined. The resultant force vector driving the robot is then
the summation of the repulsive vector and the target
attractive vector.

We have used the concept of an active window or moving
frame and force field to develop our method; however, we
propose that the frame should be elliptically shaped, and
adjustable in size according to the platform’s dimensions
and dynamics.

One common problem occurring with the application of
potential fields has been the passage of the platform
between two close obstacles, such as a doorway [36]. The
force field either causes the platform to veer away, if the net
magnitude of the driving force is less than the sum of the
repulsive forces, or pass through it, if the repulsive force is
less than the driving force’s magnitude — a problem Soh
and Demiris reported when using VFH [24]. We use a non-
linear localized potential field which acts between an inner
and outer boundary (surrounding the platform) upon the
nearest obstacle, Guldner et al. [36] introduced the concept
of representing obstacles as point charges within circular
security zones that are inside ellipsoidal gradients, which
considered the nearest obstacle and used weighting to
avoid discontinuities when switching between zones.

A solution to the local minima problem [37] used a human-
robot interaction for the manipulation of potential fields
[38] in order to navigate around obstacles. They used the
human interaction to shape the potential field such that the
two sides of the trap were modified by the human operator
and they were ‘pulled’ into a convex boat-like shape, thus
driving the robot out of the trapped situation. The devel‐
opment of our ellipse method allows adjustment of the
repulsive zones according to the waypoint being negotiat‐
ed, either by system recognition of the waypoint [39, 40] or
by human override.

4.1 Platform Kinematic Model

Human transport is largely based upon car-like vehicles,
which can all be thought of as acting in a manner whose
kinematic modelling can be described as a bicycle model
[41]. Another alternative form of transport commonly used
is the tank style, or differential drive wheels on the same
axle, such as is used on electric wheelchairs; this kinematic
model can be thought of as a unicycle [42]. Both the unicycle
and bicycle models can be expressed as follows [43]:
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Where:

ẋ =vbody =  The platform body’s velocity,

θ̇ =ωbody =  The body’s rotation rate about the z body axis,

W =  The distance between the two rear drive wheels,

vright ,left =  The velocity of the rear drive wheels,

vrear =  The velocity of the single-motor driven rear wheels
and

φ̇ =  The body’s rotation rate about the z body axis

Conventional use of the kinematic models [44] usually
divides them such that unicycle-type robots obey Eq. (1)
and Eq. (3), whilst bicycle-type robots obey Eq. (2) and Eq.
(4). However, it can be clearly seen that the form of both
equations are very similar; for example, unicycle robots
could be represented as front-wheel driven tricycles, and
six common wheel configurations (with 2-degrees-of-
freedom or 3-degrees-of-freedom) have been given consid‐
eration [45]. However, in all cases, the effective real-world
platform trajectory could be said to generally follow the
mid-point between the two rear wheels, marked as ‘o’ (z
body axis) in Fig. 2, where Eqns. (1) and (2) are effectively
the same and describe the rate of translation of the platform
at ‘o’ as forward platform velocity (vbody). Eqns. (3) and (4)
describe the rate of body rotation (ωbody) about the z body
axis on the x, y plane, where θ and φ are the instantaneous
tangential heading angle for some time. It can be seen that
the steering angle α can be effectively described as a
bounded case of θ.
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Whilst these simple models describe the kinematic behav‐
iour of these non-holonomic vehicles that they represent,
they do not offer any physical Euclidean geometric
dimension of the robotic platform, and therefore techni‐
ques need to be employed for collision avoidance, such as
increasing the protective zone around the robot or the
repulsive zone around the obstacles. Furthermore, these
simple kinematic models do not take into account dynamic
changes such as mass and inertia, velocity and acceleration
or gravity and incline: all of which become increasingly
important in the dynamic workspace as the kinetic energies
of the platform and other dynamic obstacles change.
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Figure 2. Platform and ground frame of reference

To address these issues and to develop a better obstacle
avoidance model, which can be applied to all platform
kinematic models, we have chosen to represent the mobile
robotic platform as a differential drive platform with a
frame of reference as given in Fig. 2. The rear axle, which
we set as the y body axis, has a mid-point marked o, which
is set as the z body axis. The x body axis lies orthogonal to
the rear axle at that mid-point. The steering angle, or
maximum turn angle at which forward motion in the x
body axis is still greater than zero, is represented by α,
which in our model will be moved to the rear axle mid-
point and treated as if it were θ.

4.2 Platform Dynamic Model

If we take our user input desire as a force vector — rather
than a velocity vector taken either from a joystick or some
other human analogue interface device, or even from some
digital threshold value from another human interface that
is opposed by an obstacle force vector — then we need to
develop the geometric kinematics function into one that
better represents a truer model, allowing dynamic adjust‐
ments to be made from feedback sensors. For example,
inertia and mass need to be considered adjustable due to
loading and the gravity vector in order to maintain a
constant velocity while driving up an incline, or, converse‐
ly, damping to prevent tipping over when turning on a
slope.

Referring to our method and previous statement that the
human input device in some way gives a desired force
vector, we can disseminate this into a force component and
a torque component so desired at a certain time and — in
order to damp or maintain that platform motion — we need
to state the dynamic model in terms of left motor and right
motor. If we take Eqns. (1) and (3) and then re-arrange
them, we can obtain those kinematic equations in terms of
each of the two drive wheels where Eqn. (5) gives the left
wheel ground velocity (located on the positive y body axis
at W/2) velocity and Eqn. (6) gives the right wheel ground
velocity (on the negative body axis at -W/2).
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Then, in terms of a dynamic model [42] using Newton’s
second law where M and J are platform mass and rotational
inertia, and Jm represents the motor and gearbox inertia, our
dynamic force and torque model for left and right wheel
motor torques are then given by Eqns. (7) and (8).
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It can be shown that the electrical energy input to the
electric motors directly relates to the mechanical energy of
the platform. Therefore, losses and ratios can be empirically
obtained and their respective sums are represented by
constants k. Taking the voltage inputs to the motors as
having an almost direct linear relationship to the electrical
power, we can then say that the electrical voltage motor
inputs to the motors are directly proportional to the
respective desired wheel torques of each drive wheel,
which in turn are directly proportional to the body velocity
and body turn rate expressed in Eqns. (9) and (10).
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We can then describe our improved adjustable dynamic
model in terms of torque and force damping directly from
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the obstacle avoidance requirements, as shown in Eqns.
(11) and (12), where the obstacle damping force from an
obstacle on the front right zone quadrant acts independ‐
ently on the left wheel Fr, and an obstacle on the front left
zone quadrant acts on the right wheel Fl as exponential
ratios. They are bounded by Eqn. (13) such that they drive
their respective opposing side-wheel velocities to zero in
the presence of obstacles, as previous work by Braitenberg
[46] and Nolfi and Floreano [47] demonstrated with their
biologically inspired mobile robots.
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The damping equations of each motor can be re-arranged
to be expressed in terms of the body-heading velocity and
body-turning rate: Eqns. (14) and (15).
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4.3 Obstacle Avoidance Model

Following on from the development of the localized
potential force field and the platform dynamic model
development, we then apply them to the concept of a
localized workspace travelling with the platform. Previous
work using the VFH [25] and the DWA [26] had identified
several problems when the methods were applied to the
task of the assistive PWC [24, 34] and we solved these issues
with our DLAFF method.

Having undertaken evaluation and experimentation, we
propose that a more effective way of modelling the region
of interest around the platform, or local workspace, can be
expressed in terms of a Euclidean ellipse that has a geo‐
metric relationship with the PWC platform’s dimensions.
This region replaces the histogram workspace with a non-
linear repulsive region around the PWC platform. Similar
work on the subject has looked at modelling obstacles such
as ellipses to improve the flow of potential field lines [48]
and another looked at modelling the obstacles as geometric
shapes [49].

Following on from the development of the localized potential force field and the platform dynamic model development, 

we then apply them to the concept of a localized workspace travelling with the platform. Previous work using the VFH 
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Figure 3. Elliptical platform obstacle avoidance model

In our DLAFF model, the inner ellipse represents the
physical boundary of the platform and the outer ellipse the
furthest extent of the repulsive region. One focus of the
inner ellipse and outer ellipse marked in red and shown in
Fig. 3 is located at the body-coordinate origin marked ‘o’,
also shown in Fig. 2, and the other focus of both ellipses is
located along the x body axis — the inner ellipse coincides
with the front steering axis, the outer ellipse moves
outward from the inner focus’ location according to the
adjustment of the region of repulsion. Therefore, the inner
ellipse shape is determined by dimensions A and B, where
2A is at least the length of the platform (including appen‐
dages) and 2B is at least the width of the platform, plus any
overhang. The platform sits within the inner ellipse
boundary as shown in Fig. 4. The outer ellipse can be
extended along Ex and Ey, as shown in Fig. 3, which is
always equal to or greater than the inner ellipse’s dimen‐
sions.

Furthermore, our ellipse model can be separated into zones
with different elliptical dimensions depending upon the
navigational requirements. For example, the right hand
side zone may have the inner and outer ellipse extended
along Ey (Fig. 3) to follow a corridor along one side, or for
lane following behaviour. Another example would be to
extend both the left and right front zones as shown in Fig.
3 along Ex; this extension can be based upon dynamic
feedback, so that as velocity of the platform increases then
the inner and outer ellipses are extended, not necessarily
equally. Therefore, this method allows the repulsive
elliptical zone surrounding the platform to be easily tuned
to the task at hand, either by some other system or by the
user.
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Figure 4. Zonal application of the elliptical obstacle avoidance model

Sensors are mounted so as to radiate out from the platform,
such that they provide ranging data along the lines marked
R and p in Fig. 3 and Fig. 4. The repulsive force field method
is applied as a moderating input to the drive motors, as
developed in the previous section. This force is applied
along the ranging axis R between the inner and outer
ellipses, which is given in the general form by Eqn. (16),
where the nearest obstacle on each side is specified by the
zone such that Eqns. (17) and (18) represent the terms for
the front left and right zones; the rear and side zones can
be similarly obtained. Fig. 4 shows the front right quarter
angle as θ, represent the region covering the maximum
platform steering angle (max α) whilst still moving forward
or reverse, such that the sensors in this region can be high
resolution providing accurate range and angle, for exam‐
ple, in detecting doorway sides. The side zones are used to
detect proximity to obstacles, such as walls, when the
platform is translating in the x body axis, and obstacles
when rotating about the z body axis in the special case of
the unicycle or wheelchair kinematic model. Thus, our
ellipse model separates obstacles and sensors into zoned
regions of interest as shown in Fig. 4; where, depending
upon the direction of travel, the nearest object in each zone
then acts to damp each drive motor.

The damping terms:

( )( )/

11
exp R p k

F
-

= - (16)

( )( )/

11
exp r

r R p k
F

-
= - (17)

Where: θ ≥0 and θ ≤αmax

( )( )/

11
exp l

l R p k
F

-
= - (18)

Where: θ <0 and θ ≥ −αmax

The angle α relates to the maximum steering angle of the
car-like platform whilst, in forward motion, the term k
allows the potential field slope to be empirically tuned.

The zones shown in Fig. 4 are a simplification; the number
depends upon the placement of suitable sensors, the type
of platform and individual applications. Each zone can be
independently manipulated: moving the inner and outer
ellipse further out or the outer ellipse closer in (when the
inner ellipse is at the minimum range). Furthermore, zones
can be active or not, depending upon the requirements. For
example, active zones would be related to the direction of
platform motion, side zones can be activated when the
platform is either rotating about the z body axis or accord‐
ing to the task: such as traversing corridors, when lane
following or according to some other dynamic require‐
ment.

The equations for all zones are the same as for the forward
one, although the repulsion may be applied to both wheels
equally to slow the platform down rather than turn it away.
Zones should coincide with angular steering limitations
such that no obstacle can be missed. Dynamic adjustment
of the force field by velocity feedback or joystick input can
be implemented by extending both the inner and outer
ellipses by an amount proportionate to the velocity, and/or
by adjusting k.

5. PWC System And DLAFF Evaluation

Our experimental platform hardware, labelled in Fig. 5,
consisted of a differential drive wheelchair, with a width of
0.68m (2B inner ellipse variable) and a length of 1.0m (2A
inner ellipse). The platform was driven by two 150W
brushed DC motors, through two 25A independent motor
drivers. A Hall Effect joystick and four digital buttons were
employed as the human input devices. An Atmel
SAM3X8E ARM 32-bit microcontroller was used as the
system-processing unit. We modified the two standard
motor gearboxes to make each accommodate a 360-pulse
resolution optical wheel encoder.

For the movements of wall following and doorway passing,
an array of six Sharp GP2Y0A710K0F 5m range infrared
distance measuring sensors were mounted on the platform
at 90°, 45°, 10°, -10°, -45°, -90°, and two 128-pixels TSL1411
line-scan imaging sensors (one covering the front left zone
and the other the front right zone between -25° to 25°)
modified to function in the near-infrared, in order to
provide a high-resolution obstacle-edge detection for
doorway passing. An additional two Sharp
GP2Y0A710K0F 5m range infrared distance sensors,
together with six sonar SRF02 ultrasonic range finders,
were mounted lower down for the detection of obstacles.
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A series of tests were conducted to experimentally evaluate
the performance of our DLAFF method:

• Trajectory comparison,

• Travel down a narrow corridor,

• Travel down a wide corridor keeping to one side, i.e.,
lane keeping,

• Approaches to an obstacle at different velocities,

• Negotiating several obstacles in the pathway,

• Passage through closely spaced obstacles, i.e., a doorway
and

• Driving up to an obstacle and docking.

An initial trajectory comparison was made between eight
naturally driven human trajectories, shown in Fig. 6, and
eight paths, shown in Fig. 7, that the DLAFF method
generated by negotiating ninety-degree corridor turns. The
PWC platform started at the same position each time and
was driven by a non-disabled, experienced operator of a
PWC. Full joystick control was available for the human
trial; however, for the DLAFF trial, only forward velocity
was controllable, not turning, and the collision avoidance
provided the steering.

When a best-fit quadratic curve is applied to each of the two
sets of trajectories, the resulting curves given in Fig. 8 can
be seen to be a similar shape.

A  1.1m  wide  corridor  was  chosen  for  the  first  experi‐
ment,  and it  was only by adjusting the  outer  ellipse  B
value that we were able to pass down the centre of the
narrow corridor. The trajectory is shown in Fig. 9a, with
a  platform  clearance  of  0.21m  on  either  side.  Despite
moving the joystick from side to side as if  to steer the
platform  deliberately  into  the  walls—the  joystick  volt‐
age in Fig. 9b shows this action—little deviation from the
centre is seen, and no collision with the walls occurred.
Furthermore,  no  oscillations  can  be  seen  with  this

Figure 5. Experimental DLAFF test platform

damping method, as is often the case with potential field
applications in mobile robotics [37].

Potential fields have been suggested for lane keeping in
mobile robotics [33] and we considered this application in
our second evaluation with a 1.7m wide corridor. In this
experiment, we kept the right zone ellipse equal to the
narrow corridor setting, and set the left ellipse zone such
that the platform again followed a path parallel to the
corridor. However, this time we had a bias to the right and
we set the ellipse shape to allow a little free movement so
that the platform could move a few centimetres off course:
hence, not damping the overall velocity as much as we did
in the narrow corridor. The low clearance between the
platform and the right wall at the higher velocity was
considered uncomfortable for the user and so adjustment
to the two ellipses were made to guide the trajectory away
from the right wall a little more. The lane-following
trajectory can be seen in Fig. 10a and the attempt to
vigorously deviate from the lane-following trajectory by
moving the joystick from side to side can be seen in Fig. 10b.

We show in this experiment that one of the major problems
when implementing potential fields in mobile robotics and
passing between close objects can be overcome using our
DLAFF method. We adjusted the potential field k to change
the shape of the slope in order to reduce the velocity with
which the platform passed through the doorway, and
minimized the outer ellipse to allow a fast approach.

The doorway opening in this experiment was 0.76m; the
clearance between the doorway frame and platform was
only 40mm each side. The platform trajectory can be seen
in Fig. 11a, in which the platform was driven away from
the ride side of the doorway, whilst in Fig. 11b, the joystick
user input remains at zero. The approach velocity to the
doorway is nearly 0.8m/s (Fig. 11b), only slowing and
manoeuvring in the last 0.75m; this speed was much faster
than was comfortable for the experimenters. Several high-
speed passes of the doorway are shown in Fig. 12, where
the damping caused the platform to centre on the doorway
as it approached. One of the trajectories (6), shown as a
dashed line, can be seen to correctly cause the platform to
avoid the doorway because the approach angle was too
great for the platform to pass through. Hence, our method
is not susceptible to the local minima problem [37].

Applying potential field methods to obstacle avoidance has
traditionally meant that the repulsive effect of an obstacle
may not be sufficiently powerful to cause a deviation of the
trajectory until the platform is close to that obstacle; this
causes the platform to behave in a non-intuitive manner.
Using our DLAFF method, we took the user-desired
platform-velocity vector magnitude from the joystick input
(which we also treated independently as the force vector)
or which we obtained from wheel-encoder velocity
feedback, and used that feedback to extend the inner and
outer front zone ellipses. This manipulation of the field
allows the platform to move out around the obstacle earlier
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thus leading to a smoother trajectory around that obstacle;
at nearly 0.8 m/s, the trajectory starts to deviate 2.5m from
the obstacle, as shown in Fig. 13. When we approach the
obstacle at a velocity of 0.6 m/s we can see that the trajectory
starts to deviate at around 1.5m from the obstacle shown in
Fig. 14. Finally if we drive slowly up to the obstacle, in this
case <0.2 m/s, then the dynamic potential field allows the
platform to be driven very close to the obstacle before
diverting the trajectory away from it, as shown in Fig. 15 —
such a requirement would be necessary when manoeu‐
vring in highly cluttered and confined environments.

A multiple obstacle experiment was run with four obstacles
in order to evaluate the performance of the platform when
negotiating slaloms. The obstacles were placed approxi‐
mately 1.5m apart longitudinally and approximately 0.5m
apart laterally. The trajectory can be seen in Fig. 16a and the
joystick steering can be seen in Fig. 16b, which shows the

input from the user in trying to oppose the motion by
deliberately driving the chair into the obstacles.

One inherent problem with obstacle avoidance methods is
that by avoiding obstacles, the robotic platform is prevent‐
ed from docking or passing close by; for example, when a
human operator is on that platform, they may wish to pull
up to a desk. We solve this problem by using our DLAFF
method; our previous experiments have shown that the
platform can pass through a doorway and pass close to
corridor walls. We have also shown that the method allows
dynamic feedback to alter the elliptical potential field.
Therefore, in this experiment, we treated the complete
frontal zone as the same shape, i.e., no longer handed (the
nearest obstacle in either frontal zone acts on both drive
wheels, equally) and we used the joystick velocity demand
as feedback to adjust both the inner and outer ellipses
proportionally.
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Figure 6 Human-turned PWC trajectories 
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Figure 7 DLAFF collision-avoidance-turned PWC trajectories 
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Figure 7 DLAFF collision-avoidance-turned PWC trajectories 
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When we drove up to a wall with a dead-end, the period
marked D of the joystick forward-velocity command
shown in Fig. 17b can be seen to demand the platform
move, yet the period marked S in Fig. 17a clearly shows that
the actual platform velocity is zero during this period. It is
only after the period D, when the joystick demand is
reduced to a very low level that the dynamic damping
allows the platform to move forward with a very slow
velocity until docking occurs and the demand is zeroed.
This experiment clearly shows that our DLAFF method
allows the platform to dock gently, and that excessive
demand drives the platform velocity to zero, such as a
digital switch remaining high, the joystick being accidently
stuck in the forward position or operated erratically due to
the platform user’s motor co-ordination difficulties, for
example.

These experimental evaluations were repeated at least 10
times each with different attempts to crash and steer
incorrectly; the data shown in each of the figures are
representative of one of those tests.

6. The Human Experimental Trial Of DLAFF

Evaluation of smart PWCs has no associated standard and
benchmarks. Driving around a course that may include
corridors and doorways while assessing the number of
collisions and the time taken is usually adopted as a method
of evaluating the performance of an assistive robotic PWC.
One trial undertaken in 2002 by Yanco et al. involved 14
non-disabled participants using the Wheelesley platform
[50]. When asked to complete an obstacle-strewn course,
participants were able to reduce their time taken by an
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Figure 8 Best-fit quadratic curve comparison 
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Figure 9 Passage down a narrow corridor 
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Figure 10 Lane-following movement 
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Figure 8 Best-fit quadratic curve comparison 
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on the doorway as it approached. One of the trajectories 

(6), shown as a dashed line, can be seen to correctly cause 

the platform to avoid the doorway because the approach 

angle was too great for the platform to pass through. 

Hence, our method is not susceptible to the local minima 

problem [37]. 
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Figure 10 Lane-following movement 
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average of 25% when using the assistive system rather than
the manual one. Furthermore, the number of collisions was
on average reduced from 0.25 using a manual system to 0.18
per person when in assistive mode. The users reported on
a scale of 1-10, where 10 represented the best, that the
system rated 8.7 and the manual rated 3.5, on average.

Another example of assessing smart PWCs is the ARTY
project, in which researchers sought to test their smart PWC
using eight non-disabled children aged 11 on a simple
obstacle course, going forwards and in reverse (2012)[24].
The test consisted of trialling two assisted control modes
(safeguarding and assistive) and did not appear to include
a non-assisted comparison. Although the assistance was

helpful when reversing, the researchers reported little
difference in the forwards test. Interestingly, when the
respondents were asked after the trial if ‘it felt natural
driving the wheelchair’, there was little distinction between
safeguarding, the assistive method or the use of both
together. The researchers went on to test the system with a
five-year-old boy who had physical and cognitive disabil‐
ities, and who was considered by his occupational therapist
not ready to learn how to operate a PWC.

In order to evaluate the human compatibility of the DLAFF
methodology using our ACA control architecture, 17 non-
disabled volunteers (a similar number of participants to
that used by Yanco [50], Soh [24] and Urdiales [51]), with
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and it was only by adjusting the outer ellipse B value that 

we were able to pass down the centre of the narrow 

corridor. The trajectory is shown in Fig. 9a, with a 
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Furthermore, no oscillations can be seen with this 
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Figure 8 Best-fit quadratic curve comparison 

 

 

Potential fields have been suggested for lane keeping in 

mobile robotics [33] and we considered this application in 

our second evaluation with a 1.7m wide corridor. In this 

experiment, we kept the right zone ellipse equal to the 

narrow corridor setting, and set the left ellipse zone such 

that the platform again followed a path parallel to the 

corridor. However, this time we had a bias to the right 

and we set the ellipse shape to allow a little free 

movement so that the platform could move a few 

centimetres off course: hence, not damping the overall 

velocity as much as we did in the narrow corridor. The 

low clearance between the platform and the right wall at 

the higher velocity was considered uncomfortable for the 

user and so adjustment to the two ellipses were made to 

guide the trajectory away from the right wall a little 

more. The lane-following trajectory can be seen in Fig. 

10a and the attempt to vigorously deviate from the lane-

following trajectory by moving the joystick from side to 

side can be seen in Fig. 10b. 

 

We show in this experiment that one of the major 

problems when implementing potential fields in mobile 

robotics and passing between close objects can be 

overcome using our DLAFF method. We adjusted the 

potential field k to change the shape of the slope in order 

to reduce the velocity with which the platform passed 

through the doorway, and minimized the outer ellipse to 

allow a fast approach.  

The doorway opening in this experiment was 0.76m; the 

clearance between the doorway frame and platform was 

only 40mm each side. The platform trajectory can be seen 

in Fig. 11a, in which the platform was driven away from 

the ride side of the doorway, whilst in Fig. 11b, the 
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to the doorway is nearly 0.8m/s (Fig. 11b), only slowing 

and manoeuvring in the last 0.75m; this speed was much 

faster than was comfortable for the experimenters. 

Several high-speed passes of the doorway are shown in 

Fig. 12, where the damping caused the platform to centre 

on the doorway as it approached. One of the trajectories 

(6), shown as a dashed line, can be seen to correctly cause 

the platform to avoid the doorway because the approach 

angle was too great for the platform to pass through. 

Hence, our method is not susceptible to the local minima 

problem [37]. 
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that obstacle; this causes the platform to behave in a non-

intuitive manner. Using our DLAFF method, we took the 

user-desired platform-velocity vector magnitude from the 

joystick input (which we also treated independently as 

the force vector) or which we obtained from wheel-

encoder velocity feedback, and used that feedback to 

extend the inner and outer front zone ellipses. This 

manipulation of the field allows the platform to move out 

around the obstacle earlier thus leading to a smoother 

trajectory around that obstacle; at nearly 0.8 m/s, the 

trajectory starts to deviate 2.5m from the obstacle, as 

shown in Fig. 13. When we approach the obstacle at a 

velocity of 0.6 m/s we can see that the trajectory starts to 

deviate at around 1.5m from the obstacle shown in Fig. 

14. Finally if we drive slowly up to the obstacle, in this 

case <0.2 m/s, then the dynamic potential field allows the 

platform to be driven very close to the obstacle before 

diverting the trajectory away from it, as shown in Fig. 15 

— such a requirement would be necessary when 

manoeuvring in highly cluttered and confined 

environments. 
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Figure 11 A fast and incorrect line of attack to the doorway 
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Figure 12 Various doorway approaches 
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Figure 13 A fast approach to an obstacle 
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obstacles in order to evaluate the performance of the 
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Fig. 16b, which shows the input from the user in trying to 

oppose the motion by deliberately driving the chair into 

the obstacles. 
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Figure 14 A medium velocity approach to an obstacle 

 

One inherent problem with obstacle avoidance methods 

is that by avoiding obstacles, the robotic platform is 

prevented from docking or passing close by; for example, 

when a human operator is on that platform, they may 

wish to pull up to a desk. We solve this problem by using 

our DLAFF method; our previous experiments have 

shown that the platform can pass through a doorway and 

pass close to corridor walls. We have also shown that the 

method allows dynamic feedback to alter the elliptical 

potential field. Therefore, in this experiment, we treated 

Figure 11. A fast and incorrect line of attack to the doorway
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various levels of PWC operation and car-driving abilities,
were used to test the platform performance in a controlled
obstacle course environment, as shown in Fig 18. They were
given simple instructions on how to operate the wheelchair
platform safely, told that they would be followed by
someone with an emergency power cut-off switch and
shown their own easily accessible emergency stop button.
The 17 participants were composed of 14 males and three
females; unintentionally, all male participants were given
the joystick analogue-input device and all female partici‐
pants used a digital button push-input device.

The participants were all shown the obstacles and walked
through the course, the obstacles were all lightweight
cardboard and the doorway had collapsible sides that
folded back to prevent injuries or any need to stop. The
course consisted of a narrow doorway and a series of
obstacles, as indicated in Fig. 18. The task consisted of each
individual completing 12 consecutive circuits, the first two
with assisted navigation on, then the next two without
assistance, and so on. The subjects were all notified of the
status of the assistance and data were collected by the
system with regard to the amount of deflection given by
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that obstacle; this causes the platform to behave in a non-

intuitive manner. Using our DLAFF method, we took the 

user-desired platform-velocity vector magnitude from the 

joystick input (which we also treated independently as 

the force vector) or which we obtained from wheel-

encoder velocity feedback, and used that feedback to 

extend the inner and outer front zone ellipses. This 

manipulation of the field allows the platform to move out 

around the obstacle earlier thus leading to a smoother 

trajectory around that obstacle; at nearly 0.8 m/s, the 

trajectory starts to deviate 2.5m from the obstacle, as 

shown in Fig. 13. When we approach the obstacle at a 

velocity of 0.6 m/s we can see that the trajectory starts to 

deviate at around 1.5m from the obstacle shown in Fig. 

14. Finally if we drive slowly up to the obstacle, in this 

case <0.2 m/s, then the dynamic potential field allows the 

platform to be driven very close to the obstacle before 

diverting the trajectory away from it, as shown in Fig. 15 

— such a requirement would be necessary when 

manoeuvring in highly cluttered and confined 

environments. 
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Figure 12 Various doorway approaches 
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Figure 13 A fast approach to an obstacle 

 

 

A multiple obstacle experiment was run with four 

obstacles in order to evaluate the performance of the 

platform when negotiating slaloms. The obstacles were 

placed approximately 1.5m apart longitudinally and 

approximately 0.5m apart laterally. The trajectory can be 

seen in Fig. 16a and the joystick steering can be seen in 

Fig. 16b, which shows the input from the user in trying to 

oppose the motion by deliberately driving the chair into 

the obstacles. 
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Figure 14 A medium velocity approach to an obstacle 

 

One inherent problem with obstacle avoidance methods 

is that by avoiding obstacles, the robotic platform is 

prevented from docking or passing close by; for example, 

when a human operator is on that platform, they may 

wish to pull up to a desk. We solve this problem by using 

our DLAFF method; our previous experiments have 

shown that the platform can pass through a doorway and 

pass close to corridor walls. We have also shown that the 

method allows dynamic feedback to alter the elliptical 

potential field. Therefore, in this experiment, we treated 
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that obstacle; this causes the platform to behave in a non-

intuitive manner. Using our DLAFF method, we took the 

user-desired platform-velocity vector magnitude from the 

joystick input (which we also treated independently as 

the force vector) or which we obtained from wheel-

encoder velocity feedback, and used that feedback to 

extend the inner and outer front zone ellipses. This 

manipulation of the field allows the platform to move out 

around the obstacle earlier thus leading to a smoother 

trajectory around that obstacle; at nearly 0.8 m/s, the 

trajectory starts to deviate 2.5m from the obstacle, as 

shown in Fig. 13. When we approach the obstacle at a 

velocity of 0.6 m/s we can see that the trajectory starts to 

deviate at around 1.5m from the obstacle shown in Fig. 

14. Finally if we drive slowly up to the obstacle, in this 

case <0.2 m/s, then the dynamic potential field allows the 

platform to be driven very close to the obstacle before 

diverting the trajectory away from it, as shown in Fig. 15 

— such a requirement would be necessary when 

manoeuvring in highly cluttered and confined 

environments. 
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A multiple obstacle experiment was run with four 

obstacles in order to evaluate the performance of the 

platform when negotiating slaloms. The obstacles were 

placed approximately 1.5m apart longitudinally and 

approximately 0.5m apart laterally. The trajectory can be 

seen in Fig. 16a and the joystick steering can be seen in 

Fig. 16b, which shows the input from the user in trying to 

oppose the motion by deliberately driving the chair into 
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One inherent problem with obstacle avoidance methods 

is that by avoiding obstacles, the robotic platform is 

prevented from docking or passing close by; for example, 

when a human operator is on that platform, they may 

wish to pull up to a desk. We solve this problem by using 

our DLAFF method; our previous experiments have 

shown that the platform can pass through a doorway and 

pass close to corridor walls. We have also shown that the 

method allows dynamic feedback to alter the elliptical 

potential field. Therefore, in this experiment, we treated 
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the system assistance to the user’s trajectory when passing
through the doorway.

All participants were asked to complete a questionnaire
(see Appendix): the first page 1, up to and including
question A, before the testing, and the remainder of the
questions afterwards. This questionnaire contained a
section based upon the NASA task-load index [52], which
aimed at checking that the participants had followed the
instructions given to them in completing the task.

The NASA Task Load Index workload evaluation proce‐
dure is usually a two-part procedure that requires collect‐

ing an individual’s rating and a weighting of each of the six
perceptive categories:

• Mental Demand (MD),

• Temporal Demand (TD),

• Performance (P),

• Frustration (F),

• Effort (E) and

• Physical Demand (PD).
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that obstacle; this causes the platform to behave in a non-

intuitive manner. Using our DLAFF method, we took the 

user-desired platform-velocity vector magnitude from the 

joystick input (which we also treated independently as 

the force vector) or which we obtained from wheel-

encoder velocity feedback, and used that feedback to 

extend the inner and outer front zone ellipses. This 

manipulation of the field allows the platform to move out 

around the obstacle earlier thus leading to a smoother 

trajectory around that obstacle; at nearly 0.8 m/s, the 

trajectory starts to deviate 2.5m from the obstacle, as 

shown in Fig. 13. When we approach the obstacle at a 

velocity of 0.6 m/s we can see that the trajectory starts to 

deviate at around 1.5m from the obstacle shown in Fig. 

14. Finally if we drive slowly up to the obstacle, in this 

case <0.2 m/s, then the dynamic potential field allows the 

platform to be driven very close to the obstacle before 

diverting the trajectory away from it, as shown in Fig. 15 

— such a requirement would be necessary when 

manoeuvring in highly cluttered and confined 

environments. 
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Figure 12 Various doorway approaches 

0 1.0 2.0 3.0 4.0 5.0 6.0
-2.0

-1.0

0

1.0

2.0

-2.0

x ground axis (m)

y
 g

ro
u

n
d

 a
x

is
 (

m
)

a) Fast trajectory

0 1.0 2.0 3.0 4.0 5.0 6.0

-2

0

2

4
b) Joystick input

x ground axis (m)

D
C

 V
o

lt
ag

e 
(V

)

 

Figure 13 A fast approach to an obstacle 
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Figure 14 A medium velocity approach to an obstacle 
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the complete frontal zone as the same shape, i.e., no 

longer handed (the nearest obstacle in either frontal zone 

acts on both drive wheels, equally) and we used the 

joystick velocity demand as feedback to adjust both the 

inner and outer ellipses proportionally. 
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Figure 15 A low velocity approach to an obstacle 
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Figure 16 Obstacle slalom 

 

When we drove up to a wall with a dead-end, the period 

marked D of the joystick forward-velocity command 

shown in Fig. 17b can be seen to demand the platform 

move, yet the period marked S in Fig. 17a clearly shows 

that the actual platform velocity is zero during this 

period. It is only after the period D, when the joystick 

demand is reduced to a very low level that the dynamic 

damping allows the platform to move forward with a 

very slow velocity until docking occurs and the demand 

is zeroed. This experiment clearly shows that our DLAFF 

method allows the platform to dock gently, and that 

excessive demand drives the platform velocity to zero, 

such as a digital switch remaining high, the joystick being 

accidently stuck in the forward position or operated 

erratically due to the platform user’s motor co-ordination 

difficulties, for example. 
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Figure 17 Dead-end or docking 

 

These experimental evaluations were repeated at least 10 

times each with different attempts to crash and steer 

incorrectly; the data shown in each of the figures are 

representative of one of those tests.  

 

 

7. The human experimental trial of DLAFF  

 

Evaluation of smart PWCs has no associated standard 

and benchmarks. Driving around a course that may 

include corridors and doorways while assessing the 

number of collisions and the time taken is usually 

adopted as a method of evaluating the performance of an 

assistive robotic PWC. One trial undertaken in 2002 by 

Yanco et al. involved 14 non-disabled participants using 

the Wheelesley platform [50]. When asked to complete an 

obstacle-strewn course, participants were able to reduce 

their time taken by an average of 25% when using the 

assistive system rather than the manual one. 

Furthermore, the number of collisions was on average 

reduced from 0.25 using a manual system to 0.18 per 

person when in assistive mode. The users reported on a 

scale of 1–10, where 10 represented the best, that the 

system rated 8.7 and the manual rated 3.5, on average. 

 

Another example of assessing smart PWCs is the ARTY 

project, in which researchers sought to test their smart 

PWC using eight non-disabled children aged 11 on a 

simple obstacle course, going forwards and in reverse 

(2012)[24]. The test consisted of trialling two assisted 

control modes (safeguarding and assistive) and did not 

appear to include a non-assisted comparison. Although 

the assistance was helpful when reversing, the 

researchers reported little difference in the forwards test. 

Interestingly, when the respondents were asked after the 

trial if ‘it felt natural driving the wheelchair’, there was 

little distinction between safeguarding, the assistive 

method or the use of both together. The researchers went 

Figure 15. low velocity approach to an obstacle
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These perceptive responses are quantified into a 0 to 20
scale which is then used to produce an Overall Workload
score; this method has been used for over 20 years in many
diverse applications [53]. We have chosen to use this
method for the purposes of checking for consistent testing.
We informed the participants that they should circumnav‐
igate the course, starting and stopping at the same place
with the following strict caveats:

• Repeat the same path accurately, each time,

• Treat this test as if it were a driving test,

• Attempt your best competitive effort,

• No stopping,

• Avoid all collisions and

• Complete each circuit as fast as possible.

Having preloaded the task, it was felt unnecessary to use
both parts of the NASA Task Index; therefore, only the first
part was applied. The results are given in Table 1 which
shows that the participants did abide by the caveats, that
the tester did not guide the completion of the form and that
some of the outliers were caused because the participants
did not fully understand the context of the question — some
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the complete frontal zone as the same shape, i.e., no 

longer handed (the nearest obstacle in either frontal zone 

acts on both drive wheels, equally) and we used the 

joystick velocity demand as feedback to adjust both the 

inner and outer ellipses proportionally. 
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Figure 16 Obstacle slalom 

 

When we drove up to a wall with a dead-end, the period 

marked D of the joystick forward-velocity command 

shown in Fig. 17b can be seen to demand the platform 

move, yet the period marked S in Fig. 17a clearly shows 

that the actual platform velocity is zero during this 

period. It is only after the period D, when the joystick 

demand is reduced to a very low level that the dynamic 

damping allows the platform to move forward with a 

very slow velocity until docking occurs and the demand 

is zeroed. This experiment clearly shows that our DLAFF 

method allows the platform to dock gently, and that 

excessive demand drives the platform velocity to zero, 

such as a digital switch remaining high, the joystick being 

accidently stuck in the forward position or operated 

erratically due to the platform user’s motor co-ordination 

difficulties, for example. 
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Figure 17 Dead-end or docking 

 

These experimental evaluations were repeated at least 10 

times each with different attempts to crash and steer 

incorrectly; the data shown in each of the figures are 

representative of one of those tests.  
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Another example of assessing smart PWCs is the ARTY 

project, in which researchers sought to test their smart 

PWC using eight non-disabled children aged 11 on a 
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(2012)[24]. The test consisted of trialling two assisted 

control modes (safeguarding and assistive) and did not 

appear to include a non-assisted comparison. Although 

the assistance was helpful when reversing, the 

researchers reported little difference in the forwards test. 

Interestingly, when the respondents were asked after the 

trial if ‘it felt natural driving the wheelchair’, there was 

little distinction between safeguarding, the assistive 

method or the use of both together. The researchers went 

Figure 16. Obstacle slalom

11 

 

the complete frontal zone as the same shape, i.e., no 

longer handed (the nearest obstacle in either frontal zone 

acts on both drive wheels, equally) and we used the 

joystick velocity demand as feedback to adjust both the 

inner and outer ellipses proportionally. 
 

2.0 3.0 4.0 5.0
-2.0

-1.0

0

1.0

x ground axis (m)

y
 g

ro
u

n
d

 a
x

is
 (

m
) a) Slow trajectory

2.0 3.0 4.0 5.0

-2

0

2
b) Joystick steering input

x ground axis (m)

D
C

 V
o

lt
ag

e 
(V

)
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When we drove up to a wall with a dead-end, the period 

marked D of the joystick forward-velocity command 

shown in Fig. 17b can be seen to demand the platform 

move, yet the period marked S in Fig. 17a clearly shows 

that the actual platform velocity is zero during this 

period. It is only after the period D, when the joystick 

demand is reduced to a very low level that the dynamic 

damping allows the platform to move forward with a 

very slow velocity until docking occurs and the demand 

is zeroed. This experiment clearly shows that our DLAFF 

method allows the platform to dock gently, and that 

excessive demand drives the platform velocity to zero, 
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erratically due to the platform user’s motor co-ordination 

difficulties, for example. 
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These experimental evaluations were repeated at least 10 

times each with different attempts to crash and steer 

incorrectly; the data shown in each of the figures are 

representative of one of those tests.  
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PWC using eight non-disabled children aged 11 on a 

simple obstacle course, going forwards and in reverse 

(2012)[24]. The test consisted of trialling two assisted 

control modes (safeguarding and assistive) and did not 

appear to include a non-assisted comparison. Although 

the assistance was helpful when reversing, the 

researchers reported little difference in the forwards test. 

Interestingly, when the respondents were asked after the 

trial if ‘it felt natural driving the wheelchair’, there was 

little distinction between safeguarding, the assistive 

method or the use of both together. The researchers went 
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thought that ‘effort’ applied to their attempts to follow the
caveats rather than to the difficulty of the actual task.
Similar confusion occurred with four individuals with
regard to the mental demand and the temporal demand
that they, again, believed referred to driving the wheelchair
rather than to the task.

User MD TD P F E PD

1 10 10 16 4 12 4

2 2 3 3 3 2 2

3 1 1 17 1 3 1

4 4 4 18 3 2 6

5 1 3 21 1 7 1

6 1 5 4 1 3 2

7 9 7 15 5 6 7

8 3 2 19 2 11 1

9 7 4 18 3 16 4

10 11 6 21 1 14 1

11 4 4 19 1 3 1

12 4 3 16 3 5 2

13 4 4 2 3 7 6

14 14 11 15 9 1 1

15 1 2 18 1 1 3

16 3 2 21 1 1 3

17 2 2 21 1 1 1

Median 4 4 18 2 3 2

Table 1. Results of the NASA load index

 

Figure 18. Obstacle course 

In order to evaluate the human compatibility of the DLAFF methodology using our ACA control architecture, 17 non-

disabled volunteers (a similar number of participants to that used by Yanco [50], Soh [24] and Urdiales [51]), with 

various levels of PWC operation and car-driving abilities, were used to test the platform performance in a controlled 

obstacle course environment, as shown in Fig 18. They were given simple instructions on how to operate the wheelchair 

platform safely, told that they would be followed by someone with an emergency power cut-off switch and shown their 

own easily accessible emergency stop button. The 17 participants were composed of 14 males and three females; 

unintentionally, all male participants were given the joystick analogue-input device and all female participants used a 

digital button push-input device. 

The participants were all shown the obstacles and walked through the course, the obstacles were all lightweight 

cardboard and the doorway had collapsible sides that folded back to prevent injuries or any need to stop. The course 

consisted of a narrow doorway and a series of obstacles, as indicated in Fig. 18. The task consisted of each individual 

completing 12 consecutive circuits, the first two with assisted navigation on, then the next two without assistance, and so 

on. The subjects were all notified of the status of the assistance and data were collected by the system with regard to the 

amount of deflection given by the system assistance to the user’s trajectory when passing through the doorway. 

All participants were asked to complete a questionnaire: the first part of page 1, up to and including question A, before 

the testing, and the remainder of the questions afterwards. This questionnaire contained a section based upon the NASA 

task-load index [52], which aimed at checking that the participants had followed the instructions given to them in 

completing the task. 

The NASA Task Load Index workload evaluation procedure is usually a two-part procedure that requires collecting an 

individual’s rating and a weighting of each of the six perceptive categories: 

• Mental Demand (MD), 

• Temporal Demand (TD), 

• Performance (P), 

 

Figure 18. Obstacle course

User A PRB PRA SRB SRA E

1 5 4 4.5 4.5 4.5 5

2 3 5 5 5 5 3

3 5 5 4 5 5 2

4 2 3 5 4 5 1

5 1 3 4 4 4 1

6 1 1 3 4 4 4

7 1 3 4 4 4 4

8 1 4 5 5 5 3

9 3 3 4 4 5 4

10 2 3 5 4 5 1

11 1 3 5 3 5 2

12 2 4 4 3 5 4

13 1 3 4 4 5 2

14 5 5 5 5 5 3

15 1 3 4 4 5 1

16 1 3 5 2 5 4

17 1 5 4 3 4 3

Mean 2.11 3.53 4.38 3.97 4.74 2.76

Table 2. Perception results of the participant questionnaire

The participant questionnaire given before and after
questions was devised to assess the expectations of the
participants towards the collision-avoidance system. They
were shown the course and the task was explained with a
demonstration. Then, just prior to starting the task,
participants were asked to respond on a scale of 1 to 5 how
well they expected the system and themselves to perform
in completing that task. Having completed the task, they
were asked to respond again with their revised response to
the task, and how well they and the system performed.

Trajectory assistance provided % Collisions No.
of

User 1 2 3 4 5 6 Sys on Sys off

1 32 29 27 31 76 22 0 0

2 30 28 30 29 28 28 0 1

3 13 29 30 29 29 19 0 1

4 24 27 30 24 19 19 0 0

5 34 19 18 23 23 21 0 0

6 19 6 27 25 27 19 0 0

7 26 30 13 30 30 30 0 0

8 23 24 27 27 39 27 0 1

9 3 23 30 20 29 22 0 0

10 25 32 29 31 24 23 0 0

11 20 24 11 16 20 26 0 0

12 30 27 31 17 26 26 0 0

13 1 32 32 22 29 22 0 1

14 27 30 29 24 25 20 0 0

15 47 46 38 50 51 38 0 3

16 59 49 51 54 49 52 0 0

17 49 46 30 48 43 43 0 0

Table 3. Trajectory assistance when passing through a doorway
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The results of the personal perceptions are given in Table
2, which shows that the mean personal rating after (PRA)
is higher than the mean personal rating before (PRB), with
only two individual’s down-rating themselves. The mean
system ratings after (SRA) were also higher than the system
ratings before (SRB), with no down-rating by any individ‐
ual. The last column (E) in Table 2 represents the results of
participants being asked how obvious, quantitatively
speaking, were the system’s interventions. All participants
were asked whether the intervention was intuitive and was
it helpful, to which they all replied that it was. The first
column (A) in Table 2 indicates the participants’ previous
experiences of wheelchair driving and may be used to
qualify the answers given.

There were no collisions with the doorway in all 84 of the
passes that the 17 participants made when the assistance
was enabled, as shown in Table 3. However, there were four
joystick-input participants who each collided once with the
doorway during the 84 passes without assistance. One of
the three digital-input participants collided on three of their
six passes without assistance. The doorway-passing
trajectory assistance for each participant was recorded and
given again in Table 3. The three digital-input participants
(15-17) consistently received the most assistance, as would
be expected; the other 14 analogue-joystick-input partici‐
pants ranged from a good central alignment with no help
(Participant 13 on Pass 1) to one participant who decided
to test the system by trying deliberately to crash (Partici‐
pant 1 on Pass 5), which required the system to intervene
more.

Previous research has determined that ANOVA is a
suitable tool for assessing the statistical differences be‐
tween assisted PWC driving and non-assisted. The aim of
the human trial was to establish whether the DLAFF
method and the ACA control architecture was intuitive and

less frustrating than other assistive PWC methods. There
were 84 timed laps with the system on and 84 laps with the
system off, undertaken by participants using a human
joystick-input device. The statistical ranges shown in Fig.
19 give a p-value of 0.23 for joystick users, indicating that
there is not a significant statistical difference between
assisted and non-assisted lap times. When the 36 digital-
human input lap times were analysed, the p-value rose to
0.94, which is statistically significant. The assistive system
with digital input had no collisions and no statistical lap-
time reduction when compared to the non-assisted lap-
times, which had three collisions. As a check, the p-value
for the participant who had the three collisions was 0.98,
which indicates that no time was expended due to the
collisions.

Previous experiments by Ferrer et al. [54] using a modified
VFH method indicated that oscillations occurred and, on
evaluation, that user frustration was higher when the
assistive system was engaged. Soh and Demiris also
reported that VFH was difficult to tune and that they were
unsure of the behaviour [24].

7. Conclusions and Discussion

A novel, enhanced, human-in-the-loop control structure
has been presented that allows the human-in-the-loop to
provide guidance commands on a higher level than is
possible in a traditional system, whilst retaining the role of
instigator of all actions. The system incorporates a localized
adjustable elliptical force field that can be used to overcome
the traditional problems associated with potential field
methods. This method is applied to a novel-shaped
dynamic window that travels with the platform; this shape
allows the platform trajectory to obey an appropriate set of
kinematic constraints.
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occurred and, on evaluation, that user frustration was 
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A novel, enhanced, human-in-the-loop control structure 

has been presented that allows the human-in-the-loop to 

provide guidance commands on a higher level than is 

possible in a traditional system, whilst retaining the role 

of instigator of all actions. The system incorporates a 

localized adjustable elliptical force field that can be used 

to overcome the traditional problems associated with 

potential field methods. This method is applied to a 

novel-shaped dynamic window that travels with the 

platform; this shape allows the platform trajectory to 

obey an appropriate set of kinematic constraints.  

 

The paper demonstrates through human evaluation that: 

 

 when users try to pass through a narrow 

standard doorway using a powered wheelchair, 

collision will occasionally occur for some users 

when not provided with assistance; 

 our collision avoidance method prevents 

collision with narrow doorways and will not 

allow passage if the approach angle is such that 

the gap is too small, yet it does not suffer from 

the local minima problem; 

 the assistive trajectory is similar to the humans’ 

natural trajectory; 

 from the user feedback, our DLAFF method of 

assistance is intuitive and not intrusive when the 

user needs that assistance; 

 oscillations around objects and in narrow 

corridors do not occur when using our method; 

 trajectory deviation can be adjusted according to 

the dynamics of the platform, or obstacle. 

 

The lap time analysis indicates that the collision 

avoidance method does not slow down a joystick-input 

powered-wheelchair user with any degree of statistical 

significance. Regarding digital input, a method that many 

highly disabled powered-wheelchair users may need to 

use, lap time analysis showed that when comparing the 

non-assisted laps to the assisted ones, there was a 

statistical significance that they were equal. In addition, 

all the assisted laps were collision free as opposed to the 

case of the non-assisted laps. One user who had three 

collisions with the doorway had almost identical lap 

times; the statistical significance between assisted and 

non-assisted laps was p = 0.98.  

 

We therefore conclude that the DLAFF method is 

potentially suitable for application in human-in-the-loop 

systems, such as assistive mobile robotic wheelchairs and 

tele-operated robots; future work will be required to test 

the method in human clinical trials. 

 

 

Figure 19. ANOVA results of the obstacle course lap times
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The paper demonstrates through human evaluation that:

• when users try to pass through a narrow standard
doorway using a powered wheelchair, collision will
occasionally occur for some users when not provided
with assistance;

• our collision avoidance method prevents collision with
narrow doorways and will not allow passage if the
approach angle is such that the gap is too small, yet it
does not suffer from the local minima problem;

• the assistive trajectory is similar to the humans’ natural
trajectory;

• from the user feedback, our DLAFF method of assistance
is intuitive and not intrusive when the user needs that
assistance;

• oscillations around objects and in narrow corridors do
not occur when using our method;

• trajectory deviation can be adjusted according to the
dynamics of the platform, or obstacle.

The lap time analysis indicates that the collision avoidance
method does not slow down a joystick-input powered-
wheelchair user with any degree of statistical significance.
Regarding digital input, a method that many highly
disabled powered-wheelchair users may need to use, lap
time analysis showed that when comparing the non-
assisted laps to the assisted ones, there was a statistical
significance that they were equal. In addition, all the
assisted laps were collision free as opposed to the case of
the non-assisted laps. One user who had three collisions
with the doorway had almost identical lap times; the
statistical significance between assisted and non-assisted
laps was p = 0.98.

We therefore conclude that the DLAFF method is poten‐
tially suitable for application in human-in-the-loop sys‐
tems, such as assistive mobile robotic wheelchairs and tele-
operated robots; future work will be required to test the
method in human clinical trials.
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