5 research outputs found

    Development of Real-Time Virtual Environment with Hierarchical Construction

    Get PDF
    The development of real-time virtual environment is always a fundamental task for research to come out with a good testing procedure. Regardless any software application that has been used to develop the virtual environment, maintaining real-time aspect such as physic simulation, fluid simulation, collision detection, and others is definitely important. Numerous attempts has been introduced in order to develop nearly perfect virtual environment but at the end the solution only cater for some specific settings that must be implemented before we properly visualize the virtual environment. In this paper, we consider few elements that can be used to visualize their virtual environment and perhaps becoming a common visualization procedure to differentiate and compare with others

    Research of Simulation in Character Animation Based on Physics Engine

    Get PDF
    Computer 3D character animation essentially is a product, which is combined with computer graphics and robotics, physics, mathematics, and the arts. It is based on computer hardware and graphics algorithms and related sciences rapidly developed new technologies. At present, the mainstream character animation technology is based on the artificial production of key technologies and capture frames based on the motion capture device technology. 3D character animation is widely used not only in the production of film, animation, and other commercial areas but also in virtual reality, computer-aided education, flight simulation, engineering simulation, military simulation, and other fields. In this paper, we try to study physics based character animation to solve these problems such as poor real-time interaction that appears in the character, low utilization rate, and complex production. The paper deeply studied the kinematics, dynamics technology, and production technology based on the motion data. At the same time, it analyzed ODE, PhysX, Bullet, and other variety of mainstream physics engines and studied OBB hierarchy bounding box tree, AABB hierarchical tree, and other collision detection algorithms. Finally, character animation based on ODE is implemented, which is simulation of the motion and collision process of a tricycle

    Bounding Volume Hierarchies for Collision Detection

    Get PDF
    In virtual environment world, performing collision detection between various 3D objects requires sophisticated steps to be followed in order to properly visualize their effect. It is challenging due to the fact that multiple objects undergo various motion depending on the application’s genre. It is however an essential challenge to be resolved since it’s many use in the computer animation, simulation and robotic industry. Thus, object intersection between rigid bodies has become one of the most important areas in order to bring realism to simulation and animation

    Bounding Volume Hierarchies for Collision Detection

    Get PDF
    In virtual environment world, performing collision detection between various 3D objects requires sophisticated steps to be followed in order to properly visualize their effect. It is challenging due to the fact that multiple objects undergo various motion depending on the application’s genre. It is however an essential challenge to be resolved since it’s many use in the computer animation, simulation and robotic industry. Thus, object intersection between rigid bodies has become one of the most important areas in order to bring realism to simulation and animation

    A Hybrid Bounding Volume Algorithm to Detect Collisions between Deformable Objects

    No full text
    An algorithm to detect collisions between both rigid and deformable objects is presented. The approach exploits benefits of a Bounding Volume Hierarchy (BVH) and a Feature-based method. The BVH decomposes the three dimensional polygonal objects into a hierarchy of spheres. The lowest level of the hierarchy is formed utilising spheres which bound 1-rings surrounding each vertex of the original mesh. Spatial coherence is exploited during construction to ensure that adjacent 1-rings are joined first. This promotes tighter bounding volumes as the objects deform. Experiments were carried out to analyse the performance of the method when varying the BVH construction to consider octrees and binary trees. To illustrate the enhancement the approach provides it has been compared against standard Sphere and Axis-aligned Bounding Volume Hierarchies
    corecore