
Selection of our books indexed in the Book Citation Index

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us?
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected.

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

122,000 135M

TOP 1%154

4,800

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by IntechOpen

https://core.ac.uk/display/322412901?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

3

Bounding Volume Hierarchies
for Collision Detection

Hamzah Asyrani Sulaiman1 and Abdullah Bade2

1University Teknikal Malaysia Melaka, Durian Tunggal, Melaka,
2University Malaysia Sabah, Kota Kinabalu, Sabah,

 Malaysia

1. Introduction

In virtual environment world, performing collision detection between various 3D objects
requires sophisticated steps to be followed in order to properly visualize their effect. It is
challenging due to the fact that multiple objects undergo various motion depending on the
application’s genre. It is however an essential challenge to be resolved since it’s many use in
the computer animation, simulation and robotic industry. Thus, object intersection between
rigid bodies has become one of the most important areas in order to bring realism to
simulation and animation.

Rigid bodies stand for geometric models that are fixed and assumed to remain static until
there is some force being applied on it. In collision detection case, when two geometric
models have collided, the system would notice that both objects couldn’t change it
dimensions and sizes. Any deformation to rigid bodies is neglected because of this
behaviour and the collisions only affect location or movement of both objects. Since in the
early era of 3D simulation and animation, problems prevailed in detecting object
interference parts, and numerous attempts by researchers have been made to find the
solution of the collision detection between rigid bodies. Baraff has made one of the earliest
researches concerning detecting object interference between rigid bodies (Baraff, 1989).

Later in 1993, M.C. Lin conducted a research of detecting object interference between two
rigid bodies. M.C. Lin defined that there are two types of contact between rigid bodies that
could be identified. They are tangential collision and boundary collision (Lin, 1994).
Tangential collision happens when there is intersection between two surfaces at 90 degrees
at geometric contact point. It means that the collision happens either from 90 degrees from
above, bottom, right or left surfaces of corresponding polygons. Meanwhile boundary
collision occurred when there is one object wants to check for potential collision from inside
the object boundary. For example, a circle has it owns boundary made of certain radius. If
one point inside this radius has intersected with another circle, then boundary collision has
occurred. (Lin, 1994)

Whilst, Redon explained that there are two common types of performing collision detection
between rigid bodies namely discrete collision detection (DCD) and continuous collision
detection (CDC) (Redon et al., 2002). DCD is performed by sampling the object motion

www.intechopen.com

Computer Graphics

40

towards the object that is going to be intersected and detect the object interpenetrations (Tu
and Yu, 2009, Rocha and Maria Andre'ia Formico, 2008, Kockara, 2007, Bade et al., 2006,
Klosowski et al., 1998, Baciu, 1998, Cohen et al., 1995, Garcia-Alonso et al., 1994, Cohen et al.,
1994, Gilbert and Foo, 1990, Baraff, 1990). DCD is the approach that has been used by
researchers to perform collision detection in term of speed. CDC, on the other hand,
computes from the first time of contact when object collided. It is much slower in
comparison to DCD method because CCD focuses on accuracy of collision detection.

In most 3D applications, DCD is the most useful compared to CCD. The differences between
these two are on their manipulation of time and object movement. DCD is preferred because
of its simplicity and fast collision detection compared to the CCD algorithm. DCD checks
the intersection within a fix time instant while CCD algorithm uses the object trajectory. As
checking for object trajectory requires future object location to be known in very small time
frames, the CCD algorithm cannot be performed as fast as DCD algorithm. However, CCD
is useful for accurate collision detection where high precision is needed. It also has a small
false positive (collision miss) compared to the DCD algorithm. As an example, an
application such as clothes, medical, hair or any deformable bodies’ simulation requires
collision of the object to be detected at high precision state where it involves accurate
collision detection algorithm. Fast collision detection algorithm on the other hand is useful
for computer games development where the response of potential colliding objects need to
be known as fast as possible.

In DCD algorithm, hierarchical representation for object is commonly used (Tu and Yu,
2009, Larsson, 2009, Chang et al., 2008, Liu et al., 2007, Nguyen, 2006). By enveloping the
object in virtual environment with hierarchical representation, the detection time could be
reduced by performing collision checking for specific node in hierarchical tree. Bounding-
Volume Hierarchies (BVH) is the most fashionable approach used by researchers to perform
collision checking. It represents the object into hierarchical manners where each node
contains single Bounding-Volume (BV) that enclosed set of triangles (Larsson and Akenine-
Moller, 2008, Sobottka and Weber, 2005, Chang et al., 2008, Liu et al., 2007).

Figure 1 illustrates the different between CCD and DCD algorithm.

In order to perform fast DCD approach, BVH itself must be able to have very efficient node
so the traversal algorithm for the BVH could traverse as fast as possible avoiding any
unnecessary node that does not involve in collision. Thus, researchers has come out with
solution by using heuristic, it could produces balance BVH tree where until specific level of
BVH tree. Once the balance BVH tree had reached, the primitive-primitive testing inside leaf
nodes will be tested against another BVH tree. However, it still suffers from limitation of
performing fast response to the collision detection due to balance level that had been
generated is not well-organized where some nodes contains unbalance set of triangles or
size of BV.

2. Hierarchical approaches

Virtual environment is composed of many objects that could be static or in motion, where
each objects may have thousands of primitives. Testing object interference between these
primitives could become troublesome as the number of pair intersection tests that need to be
performed is exploding (Bergen, 2004). Hence, spatial data structures is becoming one of the

www.intechopen.com

Bounding Volume Hierarchies for Collision Detection

41

(a)

(b)

Fig. 1. (a) Discrete Collision Detection - During the detection, object might be sampling for
example, every 0.1 seconds. While (b) Continuous Collision Detection - During the
detection, every object movement is calculated in order to find the accurate time of contact.

efficient solution for accelerating collision detection checks in massive environments

(Bergen, 2004). According to (Bergen, 2004) for n objects there are
1

(1)
2 2

n
 n n

potentially collided pairs. There are two types of spatial data structures being used for
collision detection: spatial division and BVH. Spatial partitioning divides the spaces of

www.intechopen.com

Computer Graphics

42

virtual environment and causes the environment to be divided into cells while BVH only
divides each object that exists in virtual environment. However for spatial partitioning case,
when it comes to large-scaled simulation, the tree depth increases and it will slow down the
performance of the simulation.

Furthermore, since spatial partitioning divide the cell into smaller cells, it cannot cover the

object very tightly as bounding-volume could. Thus, the accuracy of detecting object

interference between environments that use spatial partitioning might decrease since it

might report false positive intersection. Bounding-volume hierarchy provides a better

solution to the researchers by providing simpler and tighter tree hierarchy. Figure 2 depicts

the BVH tree.

Fig. 2. The left hand side image shows a BVH with Sphere BV while on the right hand side
image, shows unbalanced hierarchical form using binary type hierarchy

2.1 Hierarchy characteristics

Figure 3 describes in general of hierarchical tree characteristic. Haverkort suggested useful

characteristics of hierarchy tree using bounding-volumes but also suitable for any kind of

hierarchical (Haverkort, 2004).

Fig. 3. Hierarchical Tree characteristics

www.intechopen.com

Bounding Volume Hierarchies for Collision Detection

43

As illustrated in Figure 3, the main important attribute is to find a suitable bounding-
volume (BV) for the targeted application. If the application requires an accurate collision
detection scheme especially for medical and fluid simulation, then tight BV is needed. For
computer games development and fast response simulation, simple and low count surfaces
BV is the most suitable. Examples of them include the Axis-Aligned Bounding-Box (AABB),
Oriented Bounding-Box (OBB), and Sphere. This is due to the reason that when intersection
occurs, it first checks for the intersection points between bounding volume without
calculating the complex primitives in geometric models. Then, when there is an intersection
between top-level bounding-volume (root of hierarchy), further checks between children
nodes of hierarchy will be conducted down through the tree until the correct intersection is
found. However, there is trade-off between simple and tight bounding-volume. Simple
bounding-volume seems to perform faster intersection test while tight bounding-volume
goes for the accuracy but slow intersection test.

The structure of the tree is also one of the important elements in tree building since it
determines the speed of the tree traversal when collision needs to check part of the
primitives bounded by the BV. For example, the binary-type tree is faster than quad-type
tree in term of reaching the bottom of the tree. The binary-type tree only needs to check for
two nodes that are either left or right node compared to the quad-type tree that needs to
checks four nodes. But in term of the accuracy, sometimes it depends on the intersection
itself as quad-type tree can spend less time than binary-type tree if the quad-tree managed
to find the collision at earlier level of the tree hierarchy. The number of primitives reside in
the nodes also depends on well-organized algorithm that is used to split up the upper node
into several nodes (depends again on the type of the tree).

It also needs to be determine the height of the tree by own algorithm as the process can be
lengthy and could also ultimately leads to infinite tree height (when set of triangle failed to
split themselves and repeat the process all over again). Faster traversal can be achieved if the
algorithm used to split up the tree is successful at dividing the nodes into certain level (less
is good) and carried out primitives-primitives testing or one BV one triangle testing. One BV
one-triangle testing is the primitive checking using the BV itself. Whereas the triangle
testing could lead to a faster collision checking but could also bring false positive result if
the BV is not a suitable one. Faster traversal from root to specific node can be achieved if the
height of the hierarchy is small but it might not always be sufficient.

Creating a balance tree hierarchy for the object is an important task for collision detection in
order to improve result speed. As the height of the tree is getting deeper and longer, the tree
must be able to well balance on it as it affects the traversal processes. Giving an example of
binary-tree traversal system when the left node is deeper than the other one (right node), it
will slow down the process of collision checking at the particular nodes. Thus it is essential
that the tree hierarchy is kept balanced out with respect to nodes, volume and density.

The design and the construction of the hierarchy tree must also have minimal overlap
between its volumes. This is to make sure that the process of tree traversal does not check
for the same intersection between nodes multiple times. The last characteristic is to use
appropriate tight BV with an appropriate hierarchy tree type for our application. Tight BV is
used for accurate collision checking between other objects that are also bounded by the tight
BV. K-Dop, Elipsoid, and Convex Hull are the examples of the BV that can tightly bounded
the object but mainly used for the accurate collision detection.

www.intechopen.com

Computer Graphics

44

2.2 Bounding-volume

Generally in any simulation, computation is very high when detecting interference between

two rigid bodies. For example, a car model with 10,000 polygons surface hit the building

that has 40 polygons surface is waiting for signal that object has been intersected. Each

polygon surface will be checked one by one to find which parts of the car and the building

has come into intersection. Even though the computer may be able to calculate in

milliseconds, but imagine if the simulation environment consists of multiple objects that

each of them has tens of thousands polygon surfaces. So, one of the way to overcome this is

by implementing the bounding-volume.

Fig. 4. Common Bounding Volume in previous researches (Suaib et al., 2008, Bade et al.,
2006).

The purpose of using BV is to reduce the computational cost to detect object interference. If

the object performs primitive-primitive testing without applying BV, it could consume

longer time, as it needs to check each triangle with other object triangle set. However, time

to check for each collision can be reduced through enveloping highly complex object with

BV. Instead of using single BV, BVH could help performing collision detection better than a

single BV. BVH provides a hierarchical representation that could split the single BV into

certain level before performing primitive-primitive testing for accurate collision detection. It

can also be used for fast collision detection method by stopping at certain level using

stopping function or criteria and approximately response to the collision as object that has

been collided. It depends heavily on what kind of application that been developed as some

application prefers speed and others accuracy.

At present time, there are several famous bounding volumes such as spheres (Weller and

Zachmann, 2009, Madera et al., 2009, Chang et al., 2009, Rocha and Maria Andre'ia Formico,

2008, Larsson et al., 2007, Spillmann et al., 2007, Benitez et al., 2005, Gareth and Carol, 2004,

Bradshaw and O'Sullivan, 2002), Axis Aligned Bounding Box (AABB) (Tu and Yu, 2009,

Zhang and Kim, 2007, Weller et al., 2006), Oriented Bounding Box (OBB) (Tu and Yu, 2009,

Chang et al., 2009, Gottschalk et al., 1996), Discrete Oriented Polytope (k-DOP) [3], new type

of bounding volume; Oriented Convex Polyhedra (Suaib et al., 2008, Bade et al., 2006), and

hybrid combination bounding volume (Tu and Yu, 2009, Kockara, 2007). Most large scale 3D

simulations used bounding box because it iss simple, require small space of storage, fast

response of collision, and easy to implement (Lin and Manocha, 2004). Figure 4 illustrates

most commonly used bounding volume.

www.intechopen.com

Bounding Volume Hierarchies for Collision Detection

45

2.3 Hierarchical tree building strategies

There are three different ways to construct a tree: top down, bottom up, or insertion method.

Top down methods can be presented as a growing tree of two or more subsets while the

bottom up grouped the subsets to form internal node until they becomes root node.

Insertion methods can be implemented by inserting one object at one time into the tree. Each

type has its own unique characteristic as shown Figure 5.

Fig. 5. Hierarchy tree based of four objects using (a) top-down, (b) bottom-up, and (c)
insertion construction (Ericson, 2004).

Among the three, top-down approach is the most popular technique to be used to construct

hierarchy tree. (Gottschalk, 2000, Gottschalk et al., 1996) proposed an OBB-tree while (Tu

and Yu, 2009) constructed binary AABB BVH that use top-down hierarchy where each set of

primitives is tightly bounded with bounding-volume. However, depending on the

application type, they might not always produce the best result. From Figure 5, top-down

approach seems to fully cover the objects with large bounding-volume for example sphere.

Then, it is recursively partitioned into two separate parts that has smaller spheres, that is

connected to the root of the hierarchy. These two separate parts will then keep partitioning

until a particular stopping criteria is reached or only a single primitive is available. Top-

www.intechopen.com

Computer Graphics

46

down approach commonly use splitting algorithm in order to find the correct splitting of the

tree.

In contrary, bottom up approach are more complicated to put into as it has slower

construction time but it is efficient in producing the best tree (Omohundro, 1989). From

Figure 5, each primitive will be bounded with the smallest bounding-volume. Then, these

volumes will be grouped together to perform the upper nodes called leaf nodes. However,

from this point, some merging criterion or clustering rule must be followed in order to

merge two or more leaf nodes into parent nodes. Afterward, these nodes will be enclosed

with a bounding-volume and replace the original set of nodes. This procedure will continue

until a single bounding-volume is left that will become root of the hierarchy tree. Bottom-up

approach regularly use merging algorithm when merging two or more leaf nodes into

parent nodes.

The third hierarchy type is the insertion method or incremental method. Starting from an

empty tree, single primitive will be inserted one by one at a time by finding the insertion

location. It depends fully on the cost metric. Incremental insertion algorithm as presented

(Goldsmith and Salmon, 1987) in Figure 6 was the first algorithm to construct incremental

hierarchy tree. It used cost function to control the insertion or primitives into hierarchy tree.

First the algorithm estimates the cost of inserting primitives at different places in the

hierarchy, and then the algorithm automatically picks the lowest cost and the cheapest place

to insert primitives into tree. There are three rules that need to be followed when a primitive

needs to be inserted into as tree (Goldsmith and Salmon, 1987) :-

1. p can become the child of parent o
2. p can be combined with another q of a group o to establish new group called o’ which

automatically becomes child of o.
3. p can becomes child of parent o’ of a group o recursively. Then, partially formed

hierarchy is traversed until either case 1 or 2 is reached.

However, the problem of this method is that it can become worst as it depends on the
insertion order of the nodes. Various insertion methods can be designed but it is challenging
to find the best one. Apart from that, a well-balanced hierarchy tree can become a totally an
unbalanced tree (worst case) if no proper insertion algorithm is used.

Fig. 6. Rule 1(left) group o has p as a child. Rule 2 (middle) merging two primitives to create
new o’. Rule 3(right) recursively insert primitive into parent nodes (Goldsmith and Salmon,
1987).

www.intechopen.com

Bounding Volume Hierarchies for Collision Detection

47

2.4 Partitioning strategies and splitting algorithm

The simplest way to partition an object is to split the object equally with respect to local
coordination axes of the object. The split can be done according to the median-cut algorithm
style or several other strategies as follows(Ericson, 2004):-

 Minimize the sum of the volumes (or surface areas) of the child volumes. Minimizing the sum
of value can effectively minimize the probability of intersection - tightness bounding
volume must be used.

 Minimize the maximum volume (surface area) of the child volumes. Divides the child volume
into equal size by making larger volume as small as possible.

 Minimize the volume (surface area) of the intersection of the child volumes. Complex to be
implemented as it depends on the tightness of bounding volume.

 Minimize the separation of the child volumes. Where each child will be separated, it helps to
decrease the probability of both children being traversed at the same time.

 Divide primitives equally between the child volumes. Divide the object into two equal parts
as mentioned earlier.

 Hybrid combination of multiple bounding-volumes

(Müller et al., 1999) had explained the splitting criteria that have been used to partition a set
of primitives into two subsets until certain stopping criteria are reached. In this optimized
hierarchical method, each object will be divided into several pieces called subsets. By using
a certain cost function, it can be ensured that the best possible splitting plane is used.
However, the splitting procedure is applied only to the bounded object. This means that no
BV will be decomposed into pieces.

Normally, root of the hierarchy is created by sorting each primitive using its centres. A cost
function is then used to determine the best possible partitions that split the object volume
into two parts or subsets. The splitting parts or subsets constitute the left and right side of
the hierarchy. Then splitting algorithm continues to repeat the above process recursively
until there is only one big BV enclosing the whole object.

2.4.1 Choosing the splitting point

There are some options available to determine splitting point along the axes (Ericson, 2004)
(please see Figure 7):-

Fig. 7. An example of (a) Object median splitting (b) Object mean splitting (c) Spatial median
splitting based on (Ericson, 2004)

www.intechopen.com

Computer Graphics

48

 Median of the centroid coordinates (object median) – split at the object median (distributed
parts) resulting a well-balanced tree.

 Mean of centroid coordinates (object mean) – (Klosowski et al., 1998) stated that better
performance is obtained using object mean compared to object median. It was claimed
that splitting at the object mean gives smaller volume trees.

 Median of the bounding-volume projection extents (spatial median) – splitting the volume
into two equal parts.

Meanwhile, (Gottschalk et al., 1996) constructed OBB trees using top-down approach. The
first procedure is to enclose all primitives by an oriented bounding box, and the recursive
partition is made possible by using certain rules. Their subdivision rule proposed as applied
to the object is to find the longest axes and the splitting point is determined through an
orthogonal plane on one of its axes. Objects are partitioned according to the side of the
splitting point but this does not involve the primitive. Figure 8 and 9 depicts the splitting
example (Gottschalk et al., 1996).

Fig. 8. Splitting along the farthest axis of object bounded with OBB using centre points
(Gottschalk et al., 1996).

Fig. 9. OBB tree recursively divides the object into two parts using binary tree and top-down
approach (Kamat and Martinez, 2007).

2.4.2 Merging algorithm

Merging algorithm has been described in (Erleben et al., 2005), and its implementation can

be found from the Open Tissue website. The algorithm started by building graph of the data

structure. Nodes in the graph correspond to the primitives and the edges on the other hand

correspond to the nearest neighbour relations. Here, an edge in the graph indicates that two

www.intechopen.com

Bounding Volume Hierarchies for Collision Detection

49

BVH nodes are good candidates to be merged into group. A heuristic function is used to

determine collisions and large primitive BVs into one single BV. A collision here means that

any edge between two colliding nodes in the graph must be added into the graph. Figure 10

depicts the operation of grouped BVs.

Fig. 10. Edge collapsed and merged into one single node.

3. Bounding volume hierarchies

BVH is simply a tree structure that represents geometric models with specific bounding

volumes. It works like a tree that has a root (upper division), a group of leafs (middle

division) and a leaf (last division). Each node has it bounding-volumes that cover the

children nodes. The main idea of BVH is to build a tree that has a primary and secondary

root where each of the secondary nodes is stored as leaf. BVH allows intersection to occur

without searching for non-colliding pairs from the hierarchy tree. For example, given two

objects with their BVH, when root of the hierarchies do not intersect, the calculation will not

be done for both objects. However, when roots of both hierarchies intersect, it will check for

intersection between roots of one of the hierarchy’s tree with the children of the other

hierarchy’s tree. In this case, it recursively checks again whether there is intersection

between both objects at middle level until the correct intersection is found. Figure 1

previously shows how object is partitioned into several parts. While Figure 11 depicts the

basic algorithms for detecting collision between two hierarchies (Kamat and Martinez, 2007,

Nguyen, 2006)

Beginning at the root nodes of two given trees

1. Check for intersection between two parent nodes

2. If there is no intersection between two parents

3. Then stop and report “no collision”

4. Else check all children of one node against all

 Children of the other node

5. If there is intersection between any children

6. Then If at leaf nodes

7. Then report “possible collision”

8. Else go to Step 4

9. Else skip and report “no collision”

Fig. 11. BVH traversal algorithm proposed by (Nguyen, 2006) for collision detection between
two BVH

www.intechopen.com

Computer Graphics

50

3.1 BVH construction

The construction of BVH is started by selecting type of the tree. There are multiple types of

BVH construction available. One of the most popular tree constructions is binary tree, which

has following nodes definition:-

a. Nodes – A node may contain specific value or a condition that represents a separate
data structure or a tree of its own. In BVH, it contains bounding-volume with their tree
ID. Each node may become parent, child or leaf nodes (in computer science tree grow
downward where the root is at the top of the tree). The node that produces child nodes
is called parent node, superior node or ancestor node. The length starting from root
node down to the leaf node determines the height of the tree. The depth of the tree is
the length of the path to its root.

b. Root Nodes – The topmost node in binary tree is called root node. Actually, root node
does not have any parents. It is the starting node where all the operations of the tree
will begin normally. Root Node is connected to each child nodes downward by using
branch or subtree connector. Branch of subtree connector is one of the important
elements that are connecting each node with their parent nodes.

c. Leaf Nodes – The bottommost node in binary tree is called the leaf nodes. It does not
have any child nodes and mostly contain the last value or conditions. In BVH, it may
contain few triangles or maybe one triangle.

d. Internal Nodes – The functional node where it has both parent nodes and child nodes.
It is not leaf nodes as it still has child nodes and linked by parent node.

e. Subtree – A portion of a tree data structure that can be viewed as a complete tree in
itself. It represents some other parts of the tree that can be manipulated by user in
programming.

Binary approach in top down fashion is selected, as it is the most preferred approach by

researchers. It can traverse faster and is very efficient compared to other version of BVH

tree. There are few common operations involved in construction and implementation of

binary tree for BVH construction. Among others are enumerating all the items, searching for

an item which is bounding-volume, removing a whole section of a tree for non-intersected

area when performing collision detection (called pruning), traverse down from the root to

leaf nodes or leaf nodes to the root, and report any intersected area between two intersected

BVH that possible to collide. The construction of BVH is then implemented using C++

language by loading 3D object into the environment. Then, the object vertices is calculated

and stored into a temporary location, as it is required for the BVH tree construction.

Next step is to choose a suitable BV for the BVH tree. The purpose of using BV is to reduce

the computation cost of detecting object interference. If the object performs primitive-

primitive testing without BV, it could consume time, as it needs to check each object triangle

with other object triangle set. However, the time to check for each collision can be reduced

through enveloping highly complex object with BV. Instead of using single BV, BVH is used

to achieve improved collision detection. BVH provides a hierarchical representation that

could split the single BV into certain level before performing primitive-primitive testing. It

can also be used for fast collision detection method by stopping at certain level using

stopping function or criteria and approximately response to the collision as the object has

been collided.

www.intechopen.com

Bounding Volume Hierarchies for Collision Detection

51

At present, there are several well-known BVs such as spheres (Liu et al., 2007), Axis Aligned
Bounding Box (AABB) (Zhang and Kim, 2007, Weller et al., 2006, Tu and Yu, 2009), Oriented
Bounding Box (OBB) (Chang et al., 2009, Gottschalk et al., 1996, Tu and Yu, 2009), Discrete
Oriented Polytope (k-DOP) (Klosowski et al., 1998), Oriented Convex Polyhedra (Bade et al.,
2006), and hybrid combination BV (Kockara, 2007).

3.2 BVH cost function

This section will describe the overview of hierarchical method that is used in the proposed
urban simulation. BVH is proven to be the most efficient method for collision detection
(Sulaiman et al., 2009, Chang et al., 2008, Bergen, 2004, Bergen, 1999). Thus, in this research,
the hierarchical cost function that has been used by previous researchers will be used. Basic
cost function was first formulated by (Weghorst et al., 1984) for hierarchical method in ray
tracing and later was applied by (Gottschalk et al., 1996) and enhanced by (Klosowski et al.,
1998). The calculation of execution time is formulated as follows:

 T = Nv X Cv + Np X Cp + Nu X Cu + Co (1)

Where

T: total execution time for detecting interference
Nv: number of BV pairs overlap tests
Cv: time require for testing a pair of bounding-volumes
Np: numbers of primitive pairs overlap tests
Cp: time require for testing a pair of primitives for interference
Nu: numbers of nodes that need to be updated
Cu: cost of updating each node
Co: Cost of one-time processing

From the formula 1, Nv shows the number of the BV that is currently overlapped when the
objects has come into contact while Np shows number of the primitive itself when
overlapped. Given of example of two rigid bodies that enclosed with their BVHs. When both
objects come into contact, the system will calculated how much BV between these two rigid
bodies has been overlapped and we also measure its Cv. Next, the system also will store the
information of the number of primitive inside the BVs that need to perform intersection test
in order to determine the exact number of primitives that currently overlapping and with
the Cp to measure time require to test each primitive-primitive testing. Meanwhile, Nu takes
into account the numbers of nodes that need to be updated once the intersection has
occurred (where each node has a BV and few primitives inside). Cu is the time taken to
update each node while Co is for any additional time taken for transformation update or
coordinate update of each objects.

The formula shows that the most important factors that determine the performance of

collision detection between rigid bodies are the tightness of bounding-volumes and the

simplicity of bounding-volumes. When we have lower number of overlap tests (lower Nv

and Np) per intersection between two rigid bodies for example, the object must be bounded

with tight bounding-volumes and will eventually decrease the potential of object

interference hence increase performance. However when we enclosed the objects with

simple bounding-volumes (lower Cv and Cp), it is resulting significant increment of the

www.intechopen.com

Computer Graphics

52

intersection tests between bounding-volumes. Minimizing one value will cause another

value to increase. This is the challenge in all collision detection to find which one is the most

important.

4. References

Baciu, G. Recode: An Image-based Collision Detection Algorithm. In: WONG, W. & SUN,
H., eds., 1998. 125-125.

Bade, A., Suaib, N., A, M. Z. & M, T. S. T. 2006. Oriented convex polyhedra for collision
detection in 3D computer animation. Proceedings of the 4th international conference on
Computer graphics and interactive techniques in Australasia and Southeast Asia. Kuala
Lumpur, Malaysia: ACM.

Baraff, D. 1989. Analytical methods for dynamic simulation of non-penetrating rigid bodies.
Proceedings of the 16th annual conference on Computer graphics and interactive
techniques. ACM.

Baraff, D. 1990. Curved surfaces and coherence for non-penetrating rigid body simulation.
SIGGRAPH Comput. Graph., 24, 19-28.

Benitez, A., Ramirez, M. D. C. & Vallejo, D. 2005. Collision Detection Using Sphere-Tree
Construction. Proceedings of the 15th International Conference on Electronics,
Communications and Computers. IEEE Computer Society.

Bergen, G. V. D. 1999. A fast and robust GJK implementation for collision detection of
convex objects. J. Graph. Tools, 4, 7-25.

Bergen, G. V. D. 2004. Collision Detection in Interactive 3D Environments, United States of
America, Elsevier, Inc.

Bradshaw, G. & O'Sullivan, C. 2002. Sphere-tree construction using dynamic medial axis
approximation. Proceedings of the 2002 ACM SIGGRAPH/Eurographics symposium on
Computer animation. San Antonio, Texas: ACM.

Chang, J.-W., Wang, W. & Kim, M.-S. 2008. Efficient Collision Detection Using a Dual
Bounding Volume Hierarchy Geometric Modeling and Processing. Berlin Heidelberg.

Chang, J.-W., Wang, W. & Kim, M.-S. 2009. Efficient collision detection using a dual OBB-
sphere bounding volume hierarchy. Computer-Aided Design, In Press, Corrected
Proof.

Cohen, J. D., Lin, M. C., Manocha, D. & Ponamgi, M. 1995. I-Collide: an interactive and exact
collision detection system for large-scale environments. Proceedings of the 1995
symposium on Interactive 3D graphics. Monterey, California, United States: ACM.

Cohen, J. D., Manocha, D., Lin, M. C. & K.Ponamgi, M. 1994. Interactive and Exact Collision
Detection for Large-Scale Environments. Technical Report TR94-005.

Ericson, C. 2004. Real-Time Collision Detection (The Morgan Kaufmann Series in Interactive 3-D
Technology) (The Morgan Kaufmann Series in Interactive 3D Technology), Morgan
Kaufmann Publishers Inc.

Erleben, K., Sporring, J., Henriksen, K. & Dohlman, K. 2005. Physics-based Animation
(Graphics Series), Charles River Media, Inc.

Garcia-Alonso, A., Nicol, Serrano, S. & Flaquer, J. 1994. Solving the Collision Detection
Problem. IEEE Comput. Graph. Appl., 14, 36-43.

Gareth, B. & Carol, O. S. 2004. Adaptive medial-axis approximation for sphere-tree
construction. ACM Trans. Graph., 23, 1-26.

www.intechopen.com

Bounding Volume Hierarchies for Collision Detection

53

Gilbert, E. G. & Foo, C. P. 1990. Computing the distance between general convex objects in
three-dimensional space. Robotics and Automation, IEEE Transactions on, 6, 53-61.

Goldsmith, J. & Salmon, J. 1987. Automatic Creation of Object Hierarchies for Ray Tracing.
IEEE Comput. Graph. Appl., 7, 14-20.

Gottschalk, S., Lin, M. C. & Manocha, D. 1996. OBBTree: a hierarchical structure for rapid
interference detection. Proceedings of the 23rd annual conference on Computer graphics
and interactive techniques. ACM.

Gottschalk, S. A. 2000. Collision queries using oriented bounding boxes. The University of North
Carolina at Chapel Hill.

Haverkort, H. J. 2004. Results on Geometric Networks and Data Structures. PhD, Technische
Universiteit Eindhoven.

Kamat, V. R. & Martinez, J. C. 2007. Interactive collision detection in three-dimensional
visualizations of simulated construction operations. Engineering with Computers, 23,
79-91.

Klosowski, J. T., Held, M., Mitchell, J. S. B., Sowizral, H. & Zikan, K. 1998. Efficient Collision
Detection Using Bounding Volume Hierarchies of k-DOPs. IEEE Transactions on
Visualization and Computer Graphics, 4, 21-36.

Kockara, S. H., T.; Iqbal, K.; Bayrak, C.; Rowe, Richard; 2007. Collision Detection - A Survey.
IEEE International Conference on Systems, Man and Cybernetics, 2007. ISIC.

Larsson, T. 2009. Adaptive Bounding-Volume Hierarchies for Efficient Collision Queries. PhD,
Malardalen University.

Larsson, T. & Akenine-Moller, T. 2008. Bounding Volume Hierarchies of Slab Cut Balls.
Malardalen University.

Larsson, T., Akenine-Möller, T. & Lengyel, E. 2007. On Faster Sphere-Box Overlap Testing.
Journal of Graphics Tools, 12, 3-8.

Lin, M. C. 1994. EFFICIENT COLLISION DETECTION FOR ANIMATION AND
ROBOTICS. University of California at Berkeley.

Lin, M. C. & Manocha, D. 2004. Collision and Proximity Queries. In Handbook of Discrete and
Computational Geometry, 2nd Ed. Boca Raton, FL: CRC Press LLC.

Liu, L., Wang, Z.-Q. & Xia, S.-H. A Volumetric Bounding Volume Hierarchy for Collision
Detection. 10th IEEE International Conference on Computer-Aided Design and
Computer Graphics, 2007 2007. 485-488.

Madera, F. A., Day, A. M. & Laycock, S. D. A Hybrid Bounding Volume Algorithm to Detect
Collisions between Deformable Objects. Second International Conferences on
Advances in Computer-Human Interactions, 2009. ACHI '09. , 2009. 136-141.

Müller, G., Schäfer, S. & Fellner, D. W. 1999. Automatic Creation of Object Hierarchies for
Radiosity Clustering. Proceedings of the 7th Pacific Conference on Computer Graphics
and Applications. IEEE Computer Society.

Nguyen, A. 2006. IMPLICIT BOUNDING VOLUMES AND BOUNDING VOLUME
HIERARCHIES. Doctor of Philosophy, Stanford University.

Omohundro, S. 1989. Five Ball tree Construction Algorithm. Technical Report TR-89-063.
International Computer Science Institute, Berkeley, CA.

Redon, S., Kheddar, A. & Coquillart, S. 2002. Fast Continuous Collision Detection between
Rigid Bodies. Computer Graphics Forum.

www.intechopen.com

Computer Graphics

54

Rocha, R. D. S. & Maria Andre'ia Formico, R. 2008. An evaluation of a collision handling
system using sphere-trees for plausible rigid body animation. Proceedings of the 2008
ACM symposium on Applied computing. Fortaleza, Ceara, Brazil: ACM.

Sobottka, G. & Weber, A. Efficient Bounding Volume Hierarchies for Hair Simulation. Proc.
Second Workshop Virtual Reality Interactions and Physical Simulations (VRIPHYS
'05), 2005. 101-110.

Spillmann, J., Becker, M. & Teschner, M. 2007. Efficient updates of bounding sphere
hierarchies for geometrically deformable models. J. Vis. Comun. Image Represent., 18,
101-108.

Suaib, N. M., Bade, A. & Mohamad, D. Collision Detection Using Bounding-Volume for
avatars in Virtual Environment applications. The 4th International Conference on
Information & Communication Technology and Systems, August 2008 2008 Institut
Teknologi Sepuluh Nopember (ITS), Surabaya, Indonesia. 486 - 491.

Sulaiman, H. A., Bade, A., Daman, D. & Suaib, N. M. 2009. Collision Detection using
Bounding-Volume Hierarchies in Urban Simulation. The 5th Postgraduate Annual
Research Seminar. Faculty of Computer Science & Information System, UTM.

Tu, C. & Yu, L. Research on Collision Detection Algorithm Based on AABB-OBB Bounding
Volume. First International Workshop on Education Technology and Computer
Science, 2009. ETCS '09. , 2009. 331-333.

Weghorst, H., Hooper, G. & Greenberg, D. P. 1984. Improved Computational Methods for
Ray Tracing. ACM Trans. Graph., 3, 52-69.

Weller, R. & Zachmann, G. 2009. Inner Sphere Trees. In: DIX, J. (ed.). Clausthal-Zellerfeld,
Germany: Clausthal University of Technology.

Weller, R. E., Klein, J. & Zachmann, G. A Model for the Expected Running Time of Collision
Detection using AABB Trees. In: HUBBOLD, R. & LIN, M., eds. Eurographics
Symposium on Virtual Environments (EGVE), 8--10 May 2006 Lisbon, Portugal.

Zhang, X. & Kim, Y. J. 2007. Interactive Collision Detection for Deformable Models Using
Streaming AABBs. IEEE Transactions on Visualization and Computer Graphics, 13, 318-
329.

www.intechopen.com

Computer Graphics

Edited by Prof. Nobuhiko Mukai

ISBN 978-953-51-0455-1

Hard cover, 256 pages

Publisher InTech

Published online 30, March, 2012

Published in print edition March, 2012

InTech Europe

University Campus STeP Ri

Slavka Krautzeka 83/A

51000 Rijeka, Croatia

Phone: +385 (51) 770 447

Fax: +385 (51) 686 166

www.intechopen.com

InTech China

Unit 405, Office Block, Hotel Equatorial Shanghai

No.65, Yan An Road (West), Shanghai, 200040, China

Phone: +86-21-62489820

Fax: +86-21-62489821

Computer graphics is now used in various fields; for industrial, educational, medical and entertainment

purposes. The aim of computer graphics is to visualize real objects and imaginary or other abstract items. In

order to visualize various things, many technologies are necessary and they are mainly divided into two types

in computer graphics: modeling and rendering technologies. This book covers the most advanced

technologies for both types. It also includes some visualization techniques and applications for motion blur,

virtual agents and historical textiles. This book provides useful insights for researchers in computer graphics.

How to reference

In order to correctly reference this scholarly work, feel free to copy and paste the following:

Hamzah Asyrani Sulaiman and Abdullah Bade (2012). Bounding Volume Hierarchies for Collision Detection,

Computer Graphics, Prof. Nobuhiko Mukai (Ed.), ISBN: 978-953-51-0455-1, InTech, Available from:

http://www.intechopen.com/books/computer-graphics/bounding-volume-hierarchies-for-collision-detection

© 2012 The Author(s). Licensee IntechOpen. This is an open access article

distributed under the terms of the Creative Commons Attribution 3.0

License, which permits unrestricted use, distribution, and reproduction in

any medium, provided the original work is properly cited.

