234 research outputs found

    Force reflecting joystick control for applications to bilateral teleoperation in construction machinery

    Get PDF
    This paper presents a simple and effective force reflecting joystick controller for applications to bilateral teleoperation in construction machinery. First, this controller is a combination of an advanced force reflecting gain tuner and two local adaptive controllers, master and slave. Second, the force reflecting gain tuner is effectively designed using recursive least square method and fuzzy logics to estimate directly and accurately the environmental characteristics and, consequently, to produce properly a force reflection. Third, the local adaptive controllers are simply designed using fuzzy technique and optimized using a smart leaning mechanism to ensure that the slave follows well any given trajectory while the operator is able to achieve truly physical perception of interactions at the remote site. An experimental master-slave manipulator is setup and real-time control tests are carried out under various environmental conditions to evaluate the effectiveness of the proposed controller

    Sensorless force feedback joystick control for teleoperation of construction equipment

    Get PDF
    This paper aims to develop an innovative approach named sensorless force feedback joystick control for teleoperation of construction equipment. First, a force sensorless supervisory controller is designed with two advanced modules: a neural network-based environment classifier to estimate environment characteristics without requiring a force sensor and, a fuzzy-based force feedback tuner to generate properly a force reflection to the joystick. Second, two local robust adaptive controllers are simply built using neural network and Lyapunov stability condition to ensure desired task performances at both master and slave sites. A teleoperation system is setup to demonstrate the applicability of the proposed approach

    A Real-Time Bilateral Teleoperation Control System over Imperfect Network

    Get PDF
    Functionality and performance of modern machines are directly affected by the implementation of real-time control systems. Especially in networked teleoperation applications, force feedback control and networked control are two of the most important factors, which determine the performance of the whole system. In force feedback control, generally it is necessary but difficult and expensive to attach sensors (force/torque/pressure sensors) to detect the environment information in order to drive properly the feedback force. In networked control, there always exist inevitable random time-varying delays and packet dropouts, which may degrade the system performance and, even worse, cause the system instability. Therefore in this chapter, a study on a real-time bilateral teleoperation control system (BTCS) over an imperfect network is discussed. First, current technologies for teleoperation as well as BTCSs are briefly reviewed. Second, an advanced concept for designing a bilateral teleoperation networked control (BTNCS) system is proposed, and the working principle is clearly explained. Third, an approach to develop a force-sensorless feedback control (FSFC) is proposed to simplify the sensor requirement in designing the BTNCS, while the correct sense of interaction between the slave and the environment can be ensured. Fourth, a robust-adaptive networked control (RANC)-based master controller is introduced to deal with control of the slave over the network containing both time delays and information loss. Case studies are carried out to evaluate the applicability of the suggested methodology

    An Adaptive Tool-Based Telerobot Control System

    Get PDF
    Modern telerobotics concepts seek to improve the work efficiency and quality of remote operations. The unstructured nature of typical remote operational environments makes autonomous operation of telerobotic systems difficult to achieve. Thus, human operators must always remain in the control loop for safety reasons. Remote operations involve tooling interactions with task environment. These interactions can be strong enough to promote unstable operation sometimes leading to system failures. Interestingly, manipulator/tooling dynamic interactions have not been studied in detail. This dissertation introduces a human-machine cooperative telerobotic (HMCTR) system architecture that has the ability to incorporate tooling interaction control and other computer assistance functions into the overall control system. A universal tooling interaction force prediction model has been created and implemented using grey system theory. Finally, a grey prediction force/position parallel fuzzy controller has been developed that compensates for the tooling interaction forces. Detailed experiments using a full-scale telerobotics testbed indicate: (i) the feasibility of the developed methodologies, and (ii) dramatic improvements in the stability of manipulator – based on band saw cutting operations. These results are foundational toward the further enhancement and development of telerobot

    A real-time bilateral teleoperation control system over imperfect network

    Get PDF
    Functionality and performance of modern machines are directly affected by the implementation of real-time control systems. Especially in networked teleoperation applications, force feedback control and networked control are two of the most important factors and determine the performance of the whole system. In force feedback control, generally it is necessary but difficult and expensive to attach sensors (force/torque/pressure sensors) to detect the environment information in order to drive properly the feedback force. In networked control, there always exist inevitable random time-varying delays and packet losses, which may degrade the system performance and, even worse, cause the system instability. Therefore in this chapter, a study on a real-time bilateral teleoperation control system (BTCS) over an imperfect network is discussed. First, current technologies for teleoperation as well as bilateral teleoperation control systems are briefly reviewed. Second, an advanced concept for designing a bilateral teleoperation networked control (BTNCS) system is proposed and the working principle is clearly explained. Third, an approach to develop a force-sensorless feedback control (FSFC) is proposed to simplify the sensor requirement in designing the BTNCS while the correct sense of interaction between the slave and environment can be ensured. Forth, a robust adaptive networked control (RANC) -based master controller is introduced to deal with control of the slave over the network containing both time delays and information loss. Case studies are carried out to evaluate the applicability of the suggested methodology

    A survey on uninhabited underwater vehicles (UUV)

    Get PDF
    ASME Early Career Technical Conference, ASME ECTC, October 2-3, 2009, Tuscaloosa, Alabama, USAThis work presents the initiation of our underwater robotics research which will be focused on underwater vehicle-manipulator systems. Our aim is to build an underwater vehicle with a robotic manipulator which has a robust system and also can compensate itself under the influence of the hydrodynamic effects. In this paper, overview of the existing underwater vehicle systems, thruster designs, their dynamic models and control architectures are given. The purpose and results of the existing methods in underwater robotics are investigated

    Design and construction of a portable force-reflecting manual controller for teleoperation systems

    Get PDF
    A man-machine system called teleoperator system has been developed to work in hazardous environments such as nuclear reactor plants. Force reflection is a type of force feedback in which forces experienced by the remote manipulator are fed back to the manual controller. In a force-reflecting teleoperation system, the operator uses the manual controller to direct the remote manipulator and receives visual information from a video image and/or graphical animation on the computer screen. This thesis presents the design of a portable Force-Reflecting Manual Controller (FRMC) for the teleoperation of tasks such as hazardous material handling, waste cleanup, and space-related operations. The work consists of the design and construction of a prototype 1-Degree-of-Freedom (DOF) FRMC, the development of the Graphical User Interface (GUI), and system integration. Two control strategies - PID and fuzzy logic controllers are developed and experimentally tested. The system response of each is analyzed and evaluated. In addition, the concept of a telesensation system is introduced, and a variety of design alternatives of a 3-DOF FRMC are proposed for future development

    A New Computed Torque Control System with an Uncertain RBF Neural Network Controller for a 7-DOF Robot

    Get PDF
    A novel percutaneous puncture robot system is proposed in the paper. Increasing the surgical equipment precision to reduce the patient\u27s pain and the doctor\u27s operation difficulty to treat smaller tumors can increase the success rate of surgery. To attain this goal, an optimized Computed Torque Law (CTL) using a radial basis function (RBF) neural network controller (RCTL) is proposed to improve the direction and position accuracy. BRF neural network with an uncertain term (URBF) which is able to compensate the system error caused by the imprecision of the model is added in the RCTL system. At first, a 7-DOF robotic system is established. It consists of robotic arm and actuator control channels. Now, the RBF compensator is added to the CTL to adjust the robot arm to reduce the position and direction errors. The angle and velocity errors of the robot arm are compensated using the RBF controller. According to the Lyapunov theory, the accuracy of torque control system depends on path tracking errors, inertia of robot, dynamic parameters and disturbance of each joint. Compared to general CTL approaches, the precision of a 7-DOF robot could be improved by adjusting the RBF parameters

    DESIGN AND CONSTRUCTION OF A FORCE-REFLECTING TELEOPERATION SYSTEM

    Full text link

    Development of an assisted-teleoperation system for a dual-manipulator nuclear decommissioning robot

    Get PDF
    This thesis concerns a robotic platform that is being used for research into assisted tele–operation for common nuclear decommissioning tasks, such as remote handling and pipe cutting. The machine consists of dual, seven–function, hydraulically actuated HYDROLEK manipulators mounted (in prior research) on a mobile BROKK base unit. Whilst the original system was operated by remote control, the present thesis focusses on the development of a visual servoing system, in which the user selects the object of interest from an on–screen image, whilst the computer control system determines and implements via feedback control the required position and orientation of the manipulators. Novel research contributions are made in three main areas: (i) the development of a detailed mechanistic model of the system; (ii) the development and preliminary testing in the laboratory of the new assisted–teleoperation user interface; and (iii) the development of improved control systems for joint angle set point tracking, and their systematic, quantitative comparison via simulation and experiment. The mechanistic model builds on previous work, while the main novelty in this thesis relates to the hydraulic component of the model, and the development and evaluation of a multi–objective genetic algorithm framework to identify the unknown parameter values. To improve on the joystick direct teleoperation currently used as standard in the nuclear industry, which is slow and requires extensive operator training, the proposed assisted–teleoperation makes use of a camera mounted on the robot. Focussing on pipe cutting as an example, the new system ensures that one manipulator automatically grasps the user–selected pipe, and appropriately positions the second for a cutting operation. Initial laboratory testing (using a plastic pipe) shows the efficacy of the approach for positioning the manipulators, and suggests that for both experienced and inexperienced users, the task is completed significantly faster than via tele-operation. Finally, classical industrial, fuzzy logic, and novel state dependent parameter approaches to control are developed and compared, with the aim being to determine a relatively simple controller that yields good performance for the hydraulic manipulators. An improved, more structured method of dealing with the dead–zone characteristics is developed and implemented, replacing the rather ad hoc approach that had been utilised in previous research for the same machine
    corecore