86,685 research outputs found

    IoTSan: Fortifying the Safety of IoT Systems

    Full text link
    Today's IoT systems include event-driven smart applications (apps) that interact with sensors and actuators. A problem specific to IoT systems is that buggy apps, unforeseen bad app interactions, or device/communication failures, can cause unsafe and dangerous physical states. Detecting flaws that lead to such states, requires a holistic view of installed apps, component devices, their configurations, and more importantly, how they interact. In this paper, we design IoTSan, a novel practical system that uses model checking as a building block to reveal "interaction-level" flaws by identifying events that can lead the system to unsafe states. In building IoTSan, we design novel techniques tailored to IoT systems, to alleviate the state explosion associated with model checking. IoTSan also automatically translates IoT apps into a format amenable to model checking. Finally, to understand the root cause of a detected vulnerability, we design an attribution mechanism to identify problematic and potentially malicious apps. We evaluate IoTSan on the Samsung SmartThings platform. From 76 manually configured systems, IoTSan detects 147 vulnerabilities. We also evaluate IoTSan with malicious SmartThings apps from a previous effort. IoTSan detects the potential safety violations and also effectively attributes these apps as malicious.Comment: Proc. of the 14th ACM CoNEXT, 201

    RAPID ANALYTICAL VERIFICATION OF HANDWRITTEN ALPHANUMERIC ADDRESS FIELDS

    Get PDF
    Microsoft, Motorola, Siemens, Hitachi, IAPR, NICI, IUF This paper presents a combination of fuzzy system and dynamic analytical model to deal with imprecise data derived from feature extraction in handwritten address images which are compared against postulated addresses for address verification. A dynamic building­number locator is able to locate and recognise the building­number, without knowing exactly where the building­number starts in the candidate address line. The overall system achieved a correct sorting rate of 72.9%, 27.1% rejection rate and 0.0% error rate on a blind test set of 450 cursive handwritten addresses.

    Transition UGent: a bottom-up initiative towards a more sustainable university

    Get PDF
    The vibrant think-tank ‘Transition UGent’ engaged over 250 academics, students and people from the university management in suggesting objectives and actions for the Sustainability Policy of Ghent University (Belgium). Founded in 2012, this bottom-up initiative succeeded to place sustainability high on the policy agenda of our university. Through discussions within 9 working groups and using the transition management method, Transition UGent developed system analyses, sustainability visions and transition paths on 9 fields of Ghent University: mobility, energy, food, waste, nature and green, water, art, education and research. At the moment, many visions and ideas find their way into concrete actions and policies. In our presentation we focused on the broad participative process, on the most remarkable structural results (e.g. a formal and ambitious Sustainability Vision and a student-led Sustainability Office) and on recent actions and experiments (e.g. a sustainability assessment on food supply in student restaurants, artistic COP21 activities, ambitious mobility plans, food leftovers projects, an education network on sustainability controversies, a transdisciplinary platform on Sustainable Cities). We concluded with some recommendations and reflections on this transition approach, on the important role of ‘policy entrepreneurs’ and student involvement, on lock-ins and bottlenecks, and on convincing skeptical leaders

    DCDIDP: A distributed, collaborative, and data-driven intrusion detection and prevention framework for cloud computing environments

    Get PDF
    With the growing popularity of cloud computing, the exploitation of possible vulnerabilities grows at the same pace; the distributed nature of the cloud makes it an attractive target for potential intruders. Despite security issues delaying its adoption, cloud computing has already become an unstoppable force; thus, security mechanisms to ensure its secure adoption are an immediate need. Here, we focus on intrusion detection and prevention systems (IDPSs) to defend against the intruders. In this paper, we propose a Distributed, Collaborative, and Data-driven Intrusion Detection and Prevention system (DCDIDP). Its goal is to make use of the resources in the cloud and provide a holistic IDPS for all cloud service providers which collaborate with other peers in a distributed manner at different architectural levels to respond to attacks. We present the DCDIDP framework, whose infrastructure level is composed of three logical layers: network, host, and global as well as platform and software levels. Then, we review its components and discuss some existing approaches to be used for the modules in our proposed framework. Furthermore, we discuss developing a comprehensive trust management framework to support the establishment and evolution of trust among different cloud service providers. © 2011 ICST
    • 

    corecore