460 research outputs found

    An Unsplit, Cell-Centered Godunov Method for Ideal MHD

    Full text link
    We present a second-order Godunov algorithm for multidimensional, ideal MHD. Our algorithm is based on the unsplit formulation of Colella (J. Comput. Phys. vol. 87, 1990), with all of the primary dependent variables centered at the same location. To properly represent the divergence-free condition of the magnetic fields, we apply a discrete projection to the intermediate values of the field at cell faces, and apply a filter to the primary dependent variables at the end of each time step. We test the method against a suite of linear and nonlinear tests to ascertain accuracy and stability of the scheme under a variety of conditions. The test suite includes rotated planar linear waves, MHD shock tube problems, low-beta flux tubes, and a magnetized rotor problem. For all of these cases, we observe that the algorithm is second-order accurate for smooth solutions, converges to the correct weak solution for problems involving shocks, and exhibits no evidence of instability or loss of accuracy due to the possible presence of non-solenoidal fields.Comment: 37 Pages, 9 Figures, submitted to Journal of Computational Physic

    A Second-Order Unsplit Godunov Scheme for Cell-Centered MHD: the CTU-GLM scheme

    Get PDF
    We assess the validity of a single step Godunov scheme for the solution of the magneto-hydrodynamics equations in more than one dimension. The scheme is second-order accurate and the temporal discretization is based on the dimensionally unsplit Corner Transport Upwind (CTU) method of Colella. The proposed scheme employs a cell-centered representation of the primary fluid variables (including magnetic field) and conserves mass, momentum, magnetic induction and energy. A variant of the scheme, which breaks momentum and energy conservation, is also considered. Divergence errors are transported out of the domain and damped using the mixed hyperbolic/parabolic divergence cleaning technique by Dedner et al. (J. Comput. Phys., 175, 2002). The strength and accuracy of the scheme are verified by a direct comparison with the eight-wave formulation (also employing a cell-centered representation) and with the popular constrained transport method, where magnetic field components retain a staggered collocation inside the computational cell. Results obtained from two- and three-dimensional test problems indicate that the newly proposed scheme is robust, accurate and competitive with recent implementations of the constrained transport method while being considerably easier to implement in existing hydro codes.Comment: 31 Pages, 16 Figures Accepted for publication in Journal of Computational Physic

    High-order conservative finite difference GLM-MHD schemes for cell-centered MHD

    Get PDF
    We present and compare third- as well as fifth-order accurate finite difference schemes for the numerical solution of the compressible ideal MHD equations in multiple spatial dimensions. The selected methods lean on four different reconstruction techniques based on recently improved versions of the weighted essentially non-oscillatory (WENO) schemes, monotonicity preserving (MP) schemes as well as slope-limited polynomial reconstruction. The proposed numerical methods are highly accurate in smooth regions of the flow, avoid loss of accuracy in proximity of smooth extrema and provide sharp non-oscillatory transitions at discontinuities. We suggest a numerical formulation based on a cell-centered approach where all of the primary flow variables are discretized at the zone center. The divergence-free condition is enforced by augmenting the MHD equations with a generalized Lagrange multiplier yielding a mixed hyperbolic/parabolic correction, as in Dedner et al. (J. Comput. Phys. 175 (2002) 645-673). The resulting family of schemes is robust, cost-effective and straightforward to implement. Compared to previous existing approaches, it completely avoids the CPU intensive workload associated with an elliptic divergence cleaning step and the additional complexities required by staggered mesh algorithms. Extensive numerical testing demonstrate the robustness and reliability of the proposed framework for computations involving both smooth and discontinuous features.Comment: 32 pages, 14 figure, submitted to Journal of Computational Physics (Aug 7 2009

    A Two-dimensional HLLC Riemann Solver for Conservation Laws : Application to Euler and MHD Flows

    Full text link
    In this paper we present a genuinely two-dimensional HLLC Riemann solver. On logically rectangular meshes, it accepts four input states that come together at an edge and outputs the multi-dimensionally upwinded fluxes in both directions. This work builds on, and improves, our prior work on two-dimensional HLL Riemann solvers. The HLL Riemann solver presented here achieves its stabilization by introducing a constant state in the region of strong interaction, where four one-dimensional Riemann problems interact vigorously with one another. A robust version of the HLL Riemann solver is presented here along with a strategy for introducing sub-structure in the strongly-interacting state. Introducing sub-structure turns the two-dimensional HLL Riemann solver into a two-dimensional HLLC Riemann solver. The sub-structure that we introduce represents a contact discontinuity which can be oriented in any direction relative to the mesh. The Riemann solver presented here is general and can work with any system of conservation laws. We also present a second order accurate Godunov scheme that works in three dimensions and is entirely based on the present multidimensional HLLC Riemann solver technology. The methods presented are cost-competitive with traditional higher order Godunov schemes

    Lagrangian ADER-WENO Finite Volume Schemes on Unstructured Triangular Meshes Based On Genuinely Multidimensional HLL Riemann Solvers

    Full text link
    In this paper we use the genuinely multidimensional HLL Riemann solvers recently developed by Balsara et al. to construct a new class of computationally efficient high order Lagrangian ADER-WENO one-step ALE finite volume schemes on unstructured triangular meshes. A nonlinear WENO reconstruction operator allows the algorithm to achieve high order of accuracy in space, while high order of accuracy in time is obtained by the use of an ADER time-stepping technique based on a local space-time Galerkin predictor. The multidimensional HLL and HLLC Riemann solvers operate at each vertex of the grid, considering the entire Voronoi neighborhood of each node and allows for larger time steps than conventional one-dimensional Riemann solvers. The results produced by the multidimensional Riemann solver are then used twice in our one-step ALE algorithm: first, as a node solver that assigns a unique velocity vector to each vertex, in order to preserve the continuity of the computational mesh; second, as a building block for genuinely multidimensional numerical flux evaluation that allows the scheme to run with larger time steps compared to conventional finite volume schemes that use classical one-dimensional Riemann solvers in normal direction. A rezoning step may be necessary in order to overcome element overlapping or crossing-over. We apply the method presented in this article to two systems of hyperbolic conservation laws, namely the Euler equations of compressible gas dynamics and the equations of ideal classical magneto-hydrodynamics (MHD). Convergence studies up to fourth order of accuracy in space and time have been carried out. Several numerical test problems have been solved to validate the new approach
    • …
    corecore