6 research outputs found

    Monitor amb control strategies to reduce the impact of process variations in digital circuits

    Get PDF
    As CMOS technology scales down, Process, Voltage, Temperature and Ageing (PVTA) variations have an increasing impact on the performance and power consumption of electronic devices. These issues may hold back the continuous improvement of these devices in the near future. There are several ways to face the variability problem: to increase the operating margins of maximum clock frequency, the implementation of lithographic friendly layout styles, and the last one and the focus of this thesis, to adapt the circuit to its actual manufacturing and environment conditions by tuning some of the adjustable parameters once the circuit has been manufactured. The main challenge of this thesis is to develop a low-area variability compensation mechanism to automatically mitigate PVTA variations in run-time, i.e. while integrated circuit is running. This implies the development of a sensor to obtain the most accurate picture of variability, and the implementation of a control block to knob some of the electrical parameters of the circuit.A mesura que la tecnologia CMOS escala, les variacions de Procés, Voltatge, Temperatura i Envelliment (PVTA) tenen un impacte creixent en el rendiment i el consum de potència dels dispositius electrònics. Aquesta problemàtica podria arribar a frenar la millora contínua d'aquests dispositius en un futur proper. Hi ha diverses maneres d'afrontar el problema de la variabilitat: relaxar el marge de la freqüència màxima d'operació, implementar dissenys físics de xips més fàcils de litografiar, i per últim i com a tema principal d'aquesta tesi, adaptar el xip a les condicions de fabricació i d'entorn mitjançant la modificació d'algun dels seus paràmetres ajustables una vegada el circuit ja ha estat fabricat. El principal repte d'aquesta tesi és desenvolupar un mecanisme de compensació de variabilitat per tal de mitigar les variacions PVTA de manera automàtica en temps d'execució, és a dir, mentre el xip està funcionant. Això implica el desenvolupament d'un sensor capaç de mesurar la variabilitat de la manera més acurada possible, i la implementació d'un bloc de control que permeti l'ajust d'alguns dels paràmetres elèctrics dels circuits

    Topical Workshop on Electronics for Particle Physics

    Get PDF
    The purpose of the workshop was to present results and original concepts for electronics research and development relevant to particle physics experiments as well as accelerator and beam instrumentation at future facilities; to review the status of electronics for the LHC experiments; to identify and encourage common efforts for the development of electronics; and to promote information exchange and collaboration in the relevant engineering and physics communities

    Minimizing and exploiting leakage in VLSI

    Get PDF
    Power consumption of VLSI (Very Large Scale Integrated) circuits has been growing at an alarmingly rapid rate. This increase in power consumption, coupled with the increasing demand for portable/hand-held electronics, has made power consumption a dominant concern in the design of VLSI circuits today. Traditionally dynamic (switching) power has dominated the total power consumption of VLSI circuits. However, due to process scaling trends, leakage power has now become a major component of the total power consumption in VLSI circuits. This dissertation explores techniques to reduce leakage, as well as techniques to exploit leakage currents through the use of sub-threshold circuits. This dissertation consists of two studies. In the first study, techniques to reduce leakage are presented. These include a low leakage ASIC design methodology that uses high VT sleep transistors selectively, a methodology that combines input vector control and circuit modification, and a scheme to find the optimum reverse body bias voltage to minimize leakage. As the minimum feature size of VLSI fabrication processes continues to shrink with each successive process generation (along with the value of supply voltage and therefore the threshold voltage of the devices), leakage currents increase exponentially. Leakage currents are hence seen as a necessary evil in traditional VLSI design methodologies. We present an approach to turn this problem into an opportunity. In the second study in this dissertation, we attempt to exploit leakage currents to perform computation. We use sub-threshold digital circuits and come up with ways to get around some of the pitfalls associated with sub-threshold circuit design. These include a technique that uses body biasing adaptively to compensate for Process, Voltage and Temperature (PVT) variations, a design approach that uses asynchronous micro-pipelined Network of Programmable Logic Arrays (NPLAs) to help improve the throughput of sub-threshold designs, and a method to find the optimum supply voltage that minimizes energy consumption in a circuit

    A High-Throughput On-Chip Variation Monitoring Circuit for MOSFET Threshold Voltage using VCDL and Time-to-Digital Converter

    No full text
    A high-throughput on-chip monitoring circuit with a digital output is proposed for the variations of the NMOS and PMOS threshold voltages. A voltage-controlled delay line (VCDL) and a time-to-digital converter (TDC) are used to convert a small difference in analog voltage into a large difference in time delay. This circuit was applied to the transistors of W = 10 mu m and L = 0.18 mu m in a 16 x 16 array matrix fabricated with a 0.18-mu m process. The measurement of the threshold voltage shows that the maximum peak-to-peak intra-chip variation of NMOS and PMOS transistors are about 31.7 mV and 32.2 mV, respectively, for the temperature range from -25 degrees C to 75 degrees C. The voltage resolutions of NMOS and PMOS transistors are measured to be 1.10 mV/bit and 3.53 mV/bit at 25 degrees C, respectively. The 8-bit digital code is generated for the threshold voltage of a transistor in every 125 ns, which corresponds to the 8-MHz throughput.

    A High-Throughput On-Chip Variation Monitoring Circuit for MOSFET Threshold Voltage Using VCDL and Time-to-Digital Converter

    No full text
    A high-throughput on-chip monitoring circuit with a digital output is proposed for the variations of the NMOS and PMOS threshold voltages. A voltage-controlled delay line (VCDL) and a time-to-digital converter (TDC) are used to convert a small difference in analog voltage into a large difference in time delay. This circuit was applied to the transistors of W = 10 mu m and L = 0.18 mu m in a 16 x 16 array matrix fabricated with a 0.18-mu m process. The measurement of the threshold voltage shows that the maximum peak-to-peak intra-chip variation of NMOS and PMOS transistors are about 31.7 mV and 32.2 mV, respectively, for the temperature range from -25 degrees C to 75 degrees C. The voltage resolutions of NMOS and PMOS transistors are measured to be 1.10 mV/bit and 3.53 mV/bit at 25 degrees C, respectively. The 8-bit digital code is generated for the threshold voltage of a transistor in every 125 ns, which corresponds to the 8-MHz throughput.open111sciescopu
    corecore