32 research outputs found

    Gridless Evolutionary Approach for Line Spectral Estimation with Unknown Model Order

    Full text link
    Gridless methods show great superiority in line spectral estimation. These methods need to solve an atomic l0l_0 norm (i.e., the continuous analog of l0l_0 norm) minimization problem to estimate frequencies and model order. Since this problem is NP-hard to compute, relaxations of atomic l0l_0 norm, such as nuclear norm and reweighted atomic norm, have been employed for promoting sparsity. However, the relaxations give rise to a resolution limit, subsequently leading to biased model order and convergence error. To overcome the above shortcomings of relaxation, we propose a novel idea of simultaneously estimating the frequencies and model order by means of the atomic l0l_0 norm. To accomplish this idea, we build a multiobjective optimization model. The measurment error and the atomic l0l_0 norm are taken as the two optimization objectives. The proposed model directly exploits the model order via the atomic l0l_0 norm, thus breaking the resolution limit. We further design a variable-length evolutionary algorithm to solve the proposed model, which includes two innovations. One is a variable-length coding and search strategy. It flexibly codes and interactively searches diverse solutions with different model orders. These solutions act as steppingstones that help fully exploring the variable and open-ended frequency search space and provide extensive potentials towards the optima. Another innovation is a model order pruning mechanism, which heuristically prunes less contributive frequencies within the solutions, thus significantly enhancing convergence and diversity. Simulation results confirm the superiority of our approach in both frequency estimation and model order selection.Comment: This work has been submitted to the IEEE for possible publication. Copyright may be transferred without notice, after which this version may no longer be accessibl

    DOA estimation for coexistence of circular and non-circular signals based on atomic norm minimization

    Get PDF
    In this paper, a gridless DOA estimation method with coexistence of non-circular and circular signals is proposed by employing an enhanced sparse nested array, whose virtual array has no holes. The virtual signals derived from both sum and difference co-arrays are constructed based on atomic norm minimization. Simulation results are provided to demonstrate the performance of the proposed method

    スパース時間周波数表現に関する研究

    Get PDF
    早大学位記番号:新9160博士(工学)早稲田大

    Multi-Antenna Dual-Blind Deconvolution for Joint Radar-Communications via SoMAN Minimization

    Full text link
    Joint radar-communications (JRC) has emerged as a promising technology for efficiently using the limited electromagnetic spectrum. In JRC applications such as secure military receivers, often the radar and communications signals are overlaid in the received signal. In these passive listening outposts, the signals and channels of both radar and communications are unknown to the receiver. The ill-posed problem of recovering all signal and channel parameters from the overlaid signal is terms as dual-blind deconvolution (DBD). In this work, we investigate a more challenging version of DBD with a multi-antenna receiver. We model the radar and communications channels with a few (sparse) continuous-valued parameters such as time delays, Doppler velocities, and directions-of-arrival (DoAs). To solve this highly ill-posed DBD, we propose to minimize the sum of multivariate atomic norms (SoMAN) that depends on the unknown parameters. To this end, we devise an exact semidefinite program using theories of positive hyperoctant trigonometric polynomials (PhTP). Our theoretical analyses show that the minimum number of samples and antennas required for perfect recovery is logarithmically dependent on the maximum of the number of radar targets and communications paths rather than their sum. We show that our approach is easily generalized to include several practical issues such as gain/phase errors and additive noise. Numerical experiments show the exact parameter recovery for different JRCComment: 40 pages, 6 figures. arXiv admin note: text overlap with arXiv:2208.0438

    Sensor Signal and Information Processing II

    Get PDF
    In the current age of information explosion, newly invented technological sensors and software are now tightly integrated with our everyday lives. Many sensor processing algorithms have incorporated some forms of computational intelligence as part of their core framework in problem solving. These algorithms have the capacity to generalize and discover knowledge for themselves and learn new information whenever unseen data are captured. The primary aim of sensor processing is to develop techniques to interpret, understand, and act on information contained in the data. The interest of this book is in developing intelligent signal processing in order to pave the way for smart sensors. This involves mathematical advancement of nonlinear signal processing theory and its applications that extend far beyond traditional techniques. It bridges the boundary between theory and application, developing novel theoretically inspired methodologies targeting both longstanding and emergent signal processing applications. The topic ranges from phishing detection to integration of terrestrial laser scanning, and from fault diagnosis to bio-inspiring filtering. The book will appeal to established practitioners, along with researchers and students in the emerging field of smart sensors processing

    Advanced multiparametric optimization and control studies for anaesthesia

    Get PDF
    Anaesthesia is a reversible pharmacological state of the patient where hypnosis, analgesia and muscle relaxation are guaranteed and maintained throughout the surgery. Analgesics block the sensation of pain; hypnotics produce unconsciousness, while muscle relaxants prevent unwanted movement of muscle tone. Controlling the depth of anaesthesia is a very challenging task, as one has to deal with nonlinearity, inter- and intra-patient variability, multivariable characteristics, variable time delays, dynamics dependent on the hypnotic agent, model analysis variability, agent and stability issues. The modelling and automatic control of anaesthesia is believed to (i) benefit the safety of the patient undergoing surgery as side-effects may be reduced by optimizing the drug infusion rates, and (ii) support anaesthetists during critical situations by automating the drug delivery systems. In this work we have developed several advanced explicit/multi-parametric model predictive (mp-MPC) control strategies for the control of depth of anaesthesia. State estimation techniques are developed and used simultaneously with mp-MPC strategies to estimate the state of each individual patient, in an attempt to overcome the challenges of inter- and intra- patient variability, and deal with possible unmeasurable noisy outputs. Strategies to deal with the nonlinearity have been also developed including local linearization, exact linearization as well as a piece-wise linearization of the Hill curve leading to a hybrid formulation of the patient model and thereby the development of multiparametric hybrid model predictive control methodology. To deal with the inter- and intra- patient variability, as well as the noise on the process output, several robust techniques and a multiparametric moving horizon estimation technique have been design and implemented. All the studies described in the thesis are performed on clinical data for a set of 12 patients who underwent general anaesthesia.Open Acces
    corecore