391 research outputs found

    An alternating direction implicit spectral method for solving two dimensional multi-term time fractional mixed diffusion and diffusion-wave equations

    Full text link
    In this paper, we consider the initial boundary value problem of the two dimensional multi-term time fractional mixed diffusion and diffusion-wave equations. An alternating direction implicit (ADI) spectral method is developed based on Legendre spectral approximation in space and finite difference discretization in time. Numerical stability and convergence of the schemes are proved, the optimal error is O(Nr+τ2)O(N^{-r}+\tau^2), where N,τ,rN, \tau, r are the polynomial degree, time step size and the regularity of the exact solution, respectively. We also consider the non-smooth solution case by adding some correction terms. Numerical experiments are presented to confirm our theoretical analysis. These techniques can be used to model diffusion and transport of viscoelastic non-Newtonian fluids

    Numerical investigation of three types of space and time fractional Bloch-Torrey equations in 2D

    Get PDF
    Recently, the fractional Bloch-Torrey model has been used to study anomalous diffusion in the human brain. In this paper, we consider three types of space and time fractional Bloch-Torrey equations in two dimensions: Model-1 with the Riesz fractional derivative; Model-2 with the one-dimensional fractional Laplacian operator; and Model-3 with the two-dimensional fractional Laplacian operator. Firstly, we propose a spatially second-order accurate implicit numerical method for Model-1 whereby we discretize the Riesz fractional derivative using a fractional centered difference. We consider a finite domain where the time and space derivatives are replaced by the Caputo and the sequential Riesz fractional derivatives, respectively. Secondly, we utilize the matrix transfer technique for solving Model-2 and Model-3. Finally, some numerical results are given to show the behaviours of these three models especially on varying domain sizes with zero Dirichlet boundary conditions

    On the bilateral preconditioning for an L2-type all-at-once system arising from time-space fractional Bloch-Torrey equations

    Get PDF
    Time-space fractional Bloch-Torrey equations (TSFBTEs) are developed by some researchers to investigate the relationship between diffusion and fractional-order dynamics. In this paper, we first propose a second-order implicit difference scheme for TSFBTEs by employing the recently proposed L2-type formula [A. A. Alikhanov, C. Huang, Appl. Math. Comput. (2021) 126545]. Then, we prove the stability and the convergence of the proposed scheme. Based on such a numerical scheme, an L2-type all-at-once system is derived. In order to solve this system in a parallel-in-time pattern, a bilateral preconditioning technique is designed to accelerate the convergence of Krylov subspace solvers according to the special structure of the coefficient matrix of the system. We theoretically show that the condition number of the preconditioned matrix is uniformly bounded by a constant for the time fractional order α(0,0.3624)\alpha \in (0,0.3624). Numerical results are reported to show the efficiency of our method.Comment: 24 pages, 6 tables, 4 figure

    Fourier spectral methods for fractional-in-space reaction-diffusion equations

    Get PDF
    Fractional differential equations are becoming increasingly used as a powerful modelling approach for understanding the many aspects of nonlocality and spatial heterogeneity. However, the numerical approximation of these models is computationally demanding and imposes a number of computational constraints. In this paper, we introduce Fourier spectral methods as an attractive and easy-to-code alternative for the integration of fractional-in-space reactiondiffusion equations. The main advantages of the proposed schemes is that they yield a fully diagonal representation of the fractional operator, with increased accuracy and efficiency when compared to low-order counterparts, and a completely straightforward extension to two and three spatial dimensions. Our approach is show-cased by solving several problems of practical interest, including the fractional Allen–Cahn, FitzHugh–Nagumo and Gray–Scott models,together with an analysis of the properties of these systems in terms of the fractional power of the underlying Laplacian operator

    Rational approximation to the fractional Laplacian operator in reaction-diffusion problems

    Get PDF
    This paper provides a new numerical strategy to solve fractional in space reaction-diffusion equations on bounded domains under homogeneous Dirichlet boundary conditions. Using the matrix transform method the fractional Laplacian operator is replaced by a matrix which, in general, is dense. The approach here presented is based on the approximation of this matrix by the product of two suitable banded matrices. This leads to a semi-linear initial value problem in which the matrices involved are sparse. Numerical results are presented to verify the effectiveness of the proposed solution strategy

    An efficient implementation of an implicit FEM scheme for fractional-in-space reaction-diffusion equations

    Get PDF
    Fractional differential equations are becoming increasingly used as a modelling tool for processes with anomalous diffusion or spatial heterogeneity. However, the presence of a fractional differential operator causes memory (time fractional) or nonlocality (space fractional) issues, which impose a number of computational constraints. In this paper we develop efficient, scalable techniques for solving fractional-in-space reaction diffusion equations using the finite element method on both structured and unstructured grids, and robust techniques for computing the fractional power of a matrix times a vector. Our approach is show-cased by solving the fractional Fisher and fractional Allen-Cahn reaction-diffusion equations in two and three spatial dimensions, and analysing the speed of the travelling wave and size of the interface in terms of the fractional power of the underlying Laplacian operator

    High‐order ADI orthogonal spline collocation method for a new 2D fractional integro‐differential problem

    Get PDF
    This is the peer reviewed version of the following article: Qiao L, Xu D, Yan Y. (2020). High-order ADI orthogonal spline collocation method for a new 2D fractional integro-differential problem. Mathematical Methods in the Applied Sciences, 1-17., which has been published in final form at https://doi.org/10.1002/mma.6258. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Use of Self-Archived Versions.We use the generalized L1 approximation for the Caputo fractional deriva-tive, the second-order fractional quadrature rule approximation for the inte-gral term, and a classical Crank-Nicolson alternating direction implicit (ADI)scheme for the time discretization of a new two-dimensional (2D) fractionalintegro-differential equation, in combination with a space discretization by anarbitrary-order orthogonal spline collocation (OSC) method. The stability of aCrank-Nicolson ADI OSC scheme is rigourously established, and error estimateis also derived. Finally, some numerical tests are give
    corecore