6 research outputs found

    Power maximised and anti-saturation power conditioning circuit for current transformer harvester on overhead lines

    Get PDF
    The current transformer (CT) harvester is an effective and efficient solution due to its higher reliability and power density compared to other techniques. However, the current of overhead conductor fluctuates from tens of to thousands of amperes, which brings two challenges for the CT harvester design. First, the startup current, above which the harvester can independently power the monitoring devices, should be as low as possible, so that the battery capacity can be reduced; secondly, the magnetic core should be ensured unsaturated in high current condition. This paper proposes a power conditioning circuit with comprehensive control to maximize the output power and prevent the core from saturation. A prototype that can deliver 22.5 W power with 200 A is designed, and a control strategy based on the finite-state machine is implemented. Experimental results show that the startup current for 2 W load is about 30 A, and the core power density at 60 A is 45.96 mW/cm3, both of which are markedly improved compared to the reported results of the same condition

    Energy harvesting methods for transmission lines: a comprehensive review

    Get PDF
    Humanity faces important challenges concerning the optimal use, security, and availability of energy systems, particularly electrical power systems and transmission lines. In this context, data-driven predictive maintenance plans make it possible to increase the safety, stability, reliability, and availability of electrical power systems. In contrast, strategies such as dynamic line rating (DLR) make it possible to optimize the use of power lines. However, these approaches require developing monitoring plans based on acquiring electrical data in real-time using different types of wireless sensors placed in strategic locations. Due to the specific conditions of the transmission lines, e.g., high electric and magnetic fields, this a challenging problem, aggravated by the harsh outdoor environments where power lines are built. Such sensors must also incorporate an energy harvesting (EH) unit that supplies the necessary electronics. Therefore, the EH unit plays a key role, so when designing such electronic systems, care must be taken to select the most suitable EH technology, which is currently evolving rapidly. This work reviews and analyzes the state-of-the-art technology for EH focused on transmission lines, as it is an area with enormous potential for expansion. In addition to recent advances, it also discusses the research needs and challenges that need to be addressed. Despite the importance of this topic, there is still much to investigate, as this area is still in its infancy. Although EH systems for transmission lines are reviewed, many other applications could potentially benefit from introducing wireless sensors with EH capabilities, such as power transformers, distribution switches, or low- and medium-voltage power lines, among others.This research was funded by Ministerio de Ciencia e Innovación de España, grant number PID2020-114240RB-I00 and by the Generalitat de Catalunya, grant number 2017 SGR 967.Peer ReviewedPostprint (author's final draft

    Development and characterization of sensors fabricated from polymer based magnetoelectric nanocomposites

    Get PDF
    Tese de Doutoramento em Engenharia Electrónica e de ComputadoresSensors are increasingly used in many applications areas, integrated in structures, industrial machinery, or in the environment, contributing to improve the society level of well-being. It is expected that sensorization will play on of the most relevant roles in the fourth industrial revolution, and allow, together with mechanization and informatization, a full automation. Particularly, magnetic sensors allow measurements, without physical contact, of parameters such as direction, presence, rotation, angle, or current, in addition to magnetic field. In this way, for most applications, such sensors offer a safe, noninvasive and non-destructive measurement, as well as provide a reliable and almost maintenance-free technology. Industry demands for smaller, cheaper and low-powered magnetic sensors, motivating the exploration of new materials and different technologies, such as polymerbased magnetoelectric (ME) composites. These composites are flexible, versatile, lightweight, low cost, easy to model in complicated shapes, and typically involve a lowtemperature fabrication process, being in this way, a solution for innovative magnetic sensor device applications. Therefore, the main objective of this thesis is the development of polymer-based ME sensors to be incorporated into technological devices. Thus, the ME effect is increasingly being considered an attractive alternative for magnetic field and current sensing, being able to sense static and dynamic magnetic fields. In order to obtain a wide-range ME response, a nanocomposite of Tb0.3Dy0.7Fe1.92 (Terfenol-D)/CoFe2O4/poly(vinylidene fluoride-trifluoroethylene) (P(VDF-TrFE)) was produced and their morphological, piezoelectric, magnetic and magnetoelectric properties investigated. The obtained composites reveals a high piezoelectric response (≈-18 pC∙N- 1) that is independent of the weight ratio between the fillers. In turn, the magnetic properties of the composites are influenced by the composite composition. It was found that the magnetization saturation values decrease with increasing CoFe2O4 content (from 18.5 to 13.3 emu∙g-1) while the magnetization and coercive field values increase (from 3.7 to 5.5 emu∙g-1 and from 355.7 to 1225.2 Oe, respectively) with increasing CoFe2O4 content. Additionally, the films show a wide-range dual-peak ME response at room temperature with the ME coefficient increasing with increasing weight content of Terfenol-D, from 18.6 mV∙cm-1∙Oe-1 to 42.3 mV∙cm-1∙Oe-1. The anisotropic ME effect on a Fe61.6Co16.4Si10.8B11.2 (FCSB)/poly(vinylidene fluoride) (PVDF)/FCSB laminate composite has been used for the development of a magnetic field sensor able to detect both magnitude and direction of ac and dc magnetic fields. The accuracy (99% for both ac and dc sensors), linearity (92% for the dc sensor and 99% for the ac sensor), sensitivity (15 and 1400 mV∙Oe-1 for the dc and ac fields, respectively), and reproducibility (99% for both sensors) indicate the suitability of the sensor for applications. A dc magnetic field sensor based on a PVDF/Metglas composite and the corresponding readout electronic circuits for processing the output ME voltage were developed. The ME sensing composite presents an electromechanical resonance frequency close to 25.4 kHz, a linear response (r2=0.997) in the 0–2 Oe dc magnetic field range, and a maximum output voltage of 112 mV (ME voltage coefficient α33 of ≈30 V∙cm-1∙Oe-1). By incorporating a charge amplifier, an ac–rms converter and a microcontroller with an on chip analog-to-digital converter (ADC), the ME voltage response is not distorted, the linearity is maintained, and the ME output voltage increases to 3.3 V (α33effective=1000 V∙cm-1∙Oe-1). The sensing device, including the readout electronics, has a maximum drift of 0.12 Oe with an average total drift of 0.04 Oe, a sensitivity of 1.5 V∙Oe-1 (15 kV∙T-1), and a 70 nT resolution. Such properties allied to the accurate measurement of the dc magnetic field in the 0–2 Oe range makes this polymerbased device very attractive for applications, such as Earth magnetic field sensing, digital compasses, navigation, and magnetic field anomaly detectors. A dc current sensor device based on a ME PVDF/Metglas composite, a solenoid, and the corresponding electronic instrumentation were developed. The ME sample exhibits a maximum α33 of 34.48V∙cm-1∙Oe-1, a linear response (r2=0.998) and a sensitivity of 6.7 mV∙A-1. With the incorporation of a charge amplifier, a precision ac/dc converter and a microcontroller, the linearity is maintained (r2=0.997), the ME output voltage increases to a maximum of 2320 mV and the sensitivity is increased to 476.5 mV∙A-1. Such features indicate that the fabricated ME sensing device is suitable to be used in non-contact electric current measurement, motor operational status checking, and condition monitoring of rechargeable batteries, among others. In this way, polymer-based ME composites proved to be suitable for magnetic field and current sensor applications.Os sensores estão a ser cada vez mais utilizados em diversas áreas, integrados em estruturas, máquinas industriais ou projetos ambientais, contribuindo para melhorar o nível de bem-estar e eficiência da nossa sociedade. Espera-se que a “sensorização” contribua decisivamente para a quarta revolução industrial, e que permita, em conjunto com a mecanização e a informatização, uma completa automação. Em particular, os sensores magnéticos permitem medir parâmetros como a direção, presença, rotação, ângulo ou corrente, para além do campo magnético, tudo isto sem qualquer contacto físico. Assim, para a maioria das aplicações, estes sensores oferecem uma medição segura, não invasiva e não destrutiva, para além de garantirem uma tecnologia confiável e de escassa manutenção. A indústria procura e exige sensores magnéticos mais pequenos, mais baratos e de baixo consumo, daí a motivação para explorar novos materiais e diferentes tecnologias, tais como os compósitos magnetoelétricos (ME) baseados em polímeros. Estes compósitos são flexíveis, versáteis, leves, de baixo custo, fáceis de se modelar em formas complexas e tipicamente envolvem um processo de fabricação a baixa temperatura, constituindo uma solução fiável e de qualidade para os sensores magnéticos. É da constatação deste potencial que surge este estudo e o objetivo desta tese: o desenvolvimento de sensores ME de base polimérica. O efeito ME é cada vez mais considerado como uma alternativa credível para a medição de campo magnético e da intensidade da corrente elétrica, podendo detetar campos magnéticos estáticos e dinâmicos. De modo a obter uma gama mais alargada de resposta ME, produziram-se nanocompósitos de Tb0.3Dy0.7Fe1.92 (Terfenol-D)/CoFe2O4/poli(fluoreto de vinilideno trifluor-etileno) (P(VDF-TrFE) e as suas propriedades morfológicas, piezoelétricas, magnéticas e magnetoelétricas foram investigadas. Os compósitos obtidos revelam uma elevada resposta piezoelétrica (≈-18 pC∙N-1) que é independente da percentagem de cada material magnetoestrictivo. Por sua vez, as propriedades magnéticas são influenciadas pela composição dos compósitos. Verificou-se que a magnetização de saturação diminuí com o aumento da percentagem de CoFe2O4 (de 18.5 para 13.3 emu∙g-1) enquanto que a magnetização e o campo coercivo aumentam (de 3.7 para 5.5 emu∙g-1 e de 355.7 para 1225.2 Oe, respetivamente) com o aumento da percentagem em massa de CoFe2O4. O efeito ME anisotrópico num compósito Fe61.6Co16.4Si10.8B11.2 (FCSB)/ poli(fluoreto de vinilideno) (PVDF)/FCSB laminado foi utilizado para desenvolver um sensor de campo magnético capaz de detetar tanto a magnitude como a direção de campos magnéticos ac e dc. A exatidão (99% para ambos os sensores ac e dc), linearidade (92% para o sensor dc e 99% para o ac), sensibilidade (15 e 1400 mV∙Oe-1 para o sensor dc e ac, respetivamente) e reprodutibilidade (99% para ambos os sensores) indicam a aptidão destes sensores para aplicações avançadas. Desenvolveu-se ainda um sensor de campo magnético dc baseado num compósito ME de PVDF/Metglas, bem como a correspondente eletrónica de leitura para processar a tensão de saída ME. O compósito ME apresenta uma ressonância eletromecânica de aproximadamente 25.4 kHz, uma resposta linear (r2=0.997) para uma gama de campos magnéticos dc entre 0–2 Oe e uma tensão de saída máxima de 112 mV (coeficiente ME α33≈30 V∙cm-1∙Oe-1). Ao incorporar um amplificador de carga, um conversor ac–rms e um microcontrolador com um conversor analógico-digital (ADC), a tensão ME não é distorcida, a linearidade manteve-se e a tensão ME aumentou para 3.3 V (α33efectivo=1000 V∙cm-1∙Oe-1). O sensor, incluindo a eletrónica de leitura, obteve um desvio máximo de 0.12 Oe com um desvio total médio de 0.04 Oe, uma sensibilidade de 1.5 V∙Oe-1 (15 kV∙T-1) e 70 nT de resolução. Tais propriedades aliadas à medida exata do campo magnético dc entre 0–2 Oe tornam este dispositivo indicado para aplicações como sensores de campo magnético terrestre, compassos digitais, navegação e detetores de anomalia no campo magnético. Foi ainda possível desenvolver e otimizar um sensor de corrente baseado num compósito ME de PVDF/Metglas, num solenoide e na correspondente eletrónica de instrumentação. A amostra ME exibe um α33 máximo de 34.48V∙cm-1∙Oe-1, uma resposta linear (r2=0.998) e uma sensibilidade de 6.7 mV∙A-1. Com a incorporação de um amplificador de carga, um conversor ac/dc de precisão e um microcontrolador, a linearidade manteve-se, a tensão ME aumentou para um máximo de 2320 mV e a sensibilidade subiu para 476.5 mV∙A-1. Estas propriedades tornam este sensor ME apropriado para a medição de corrente elétrica sem contato, para a verificação do estado de funcionamento de motores e para monitorização da condição de baterias recarregáveis, entre outros. Concluindo-se deste modo que os compósitos de ME com base em polímeros provaram ser adequados para aplicações na medição de campos magnéticos e intensidade de corrente elétrica

    Transformador de corrente com núcleo toroidal para recuperação de energia eletromagnética.

    Get PDF
    Neste trabalho são apresentados estudos analíticos e simulações computacionais sobre transformadores de corrente (TC) com núcleo toroidal de material magneticamente mole como recuperadores de energia eletromagnética. A fundamentação teórica parte das leis fundamentais do eletromagnetismo derivadas das equações de Maxwell. Na obtenção dos circuitos magnéticos equivalentes foram levados em conta as forças magnetomotrizes, relutâncias e os fluxos magnéticos. Como estudo de caso, foi utilizada uma simulação computacional baseada no método dos elementos finitos para a obtenção da distribuição de indução magnética dentro do núcleo toroidal. Tal como previsto pelas expressões analíticas, verificou-se que a indução magnética distribui-se de maneira não uniforme na direção radial do núcleo. Partindo dos circuitos magnéticos, circuitos elétricos equivalentes foram deduzidos, nos quais foram representadas as resistências e as reatâncias. Simulou-se o comportamento do TC como recuperador de energia e verificou-se que o rendimento do sistema de recuperação depende do material do núcleo, da carga acoplada ao secundário do TC, do coeficiente de acoplamento entre primário e secundário e da existência ou não de entreferro no núcleo magnético.In this work an analytic and computational analysis of current transformers (CT) with soft magnetic material toroidal core used as energy harvester is presented. The theoretical approach is based on the fundamental laws of electromagnetism presented in Maxwell's equations. Magnetomotive forces, reluctance and magnetic flux were taken into account in order to obtain equivalent magnetic circuits. Using a 2D simulation tool based on finite element method, computational simulations were performed in order obtain the distribution of magnetic induction in radial direction of the toroidal core. As predicted by the analytical expressions, the magnetic induction is distributed nonuniformly in the radial direction of the core. Based on the magnetic circuits, equivalent electrical circuits were deducted, in which the resistance and reactance were represented. Based on computational simulations, it was possible to conclude that the efficiency of the TC as energy harvester varies according to the core material, to the load at its secondary terminal, to the coupling coefficient between primary and secondary and to the existence of air gap in the magnetic core.Cape

    Electric field energy harvesting from medium voltage power lines

    Get PDF
    The Smart Grid is the response of the Electrical Engineering discipline to challenges of the 21st century such as global warming. It is envisioned as an automatic entity in charge of managing electrical energy in the most efficient way and with as small an ecological impact as possible. This new model is currently being materialized with continuous research efforts all over the world to develop the technologies that will compose it. As renewable generation resources become more popular, their introduction to the grid is now changing the paradigm of how the tasks for achieving safe and efficient management of electricity should be carried out. Hence the deployment of technologies around different sections of the grid are becoming increasingly important, in particular in distribution power lines, which are the large conductors in charge of the last stages of electricity dispatch, usually at 11 kV or 22 kV in Australia and New Zealand. For the task of continuously monitoring vital line parameters, the most effective approach is the sensing and transmission of the data using wireless communication technologies. The development of the electronic devices for power line monitoring requires a cost-efficient deployment, as their number will be considerable given the large distances that distribution lines usually cover. Hence, self-powering of these electronics is essential in the design. The research field that deals with this problem is Energy Harvesting, which addresses the transfer of low amounts of energy taken from environmental sources to feed low-power-consumption loads. For the environment of distribution power lines, the discernible environmental source is within the strong electric fields produced by the high voltages in these lines. The topic that addresses this problem is called Electric Field Energy Harvesting (EFEH) and the literature around this subject is moderate and has not yet defined the basis that underlays its maximum energy transfer. This thesis addresses EFEH from medium voltage distribution power lines, focusing on an optimal solution both in terms of its adaption to the grid and of the most adequate energy conversion strategy for maximum power transfer. A non-contact EFEH technique using power line insulators is introduced, and the specific conditions under which the energy is maximised are determined. Under such conditions, the limitations that a solid-state switching converter has when transforming the EFEH supply to usable levels for low-power loads has, are identified and then addressed by the proposal of a pulsed transfer-mode flyback conversion strategy. The implementation of a self-powered, pulsed-mode energy converter is demonstrated theoretically and then practically through the development of physical prototypes. The results obtained from the investigations indicate that this conversion strategy can outperform previous works, being able to harvest higher levels of power with a reduced volume and a weaker coupling capacitance. The contribution of this research work to the scientific community is the proof of concept that a better solution for EFEH can be achieved that will enrich the set of technologies for the upcoming Smart Grid and hence contribute to achieving a more sustainable future for our society
    corecore