2 research outputs found

    A current-driven six-channel potentiostat for rapid performance characterization of microbial electrolysis cells

    Get PDF
    Knowledge of the performance of microbial electrolysis cells under a wide range of operating conditions is crucial to achieve high production efficiencies. Characterizing this performance in an experiment, however, is challenging due to either the long measurement times of steady-state procedures or the transient errors of dynamic procedures. Moreover, wide parallelization of the measurements is not feasible due to the high measurement equipment cost per channel. Hence, to speedup this characterization and to facilitate low-cost, yet widely parallel measurements, this paper presents a novel rapid polarization curve measurement procedure with a dynamic measurement resolution that runs on a custom six-channel potentiostat with a current-driven topology. As case study, the procedure is used to rapidly assess the impact of altering pH values on a microbial electrolysis cell that produces H-2. A ×2\times 2 - ×12\times 12 speedup could be obtained in comparison with the state-of-the-art, depending on the characterization resolution (16-128 levels). On top of this speedup, measurements can be parallelized up to 6×6\times on the presented, affordable-42-per-channel-potentiostat

    IEEE Trans Instrum Meas

    Get PDF
    This paper introduces a novel compact low-power amperometric instrumentation design with current-to-digital output for electrochemical sensors. By incorporating the double layer capacitance of an electrochemical sensor's impedance model, our new design can maintain performance while dramatically reducing circuit complexity and size. Electrochemical experiments with potassium ferricyanide, show that the circuit output is in good agreement with results obtained using commercial amperometric instrumentation. A high level of linearity (R| = 0.991) between the circuit output and the concentration of potassium ferricyanide was also demonstrated. Furthermore, we show that a CMOS implementation of the presented architecture could save 25.3% of area, and 47.6% of power compared to a traditional amperometric instrumentation structure. Thus, this new circuit structure is ideally suited for portable/wireless electrochemical sensing applications.20192021-05-01T00:00:00ZR01 ES022302/ES/NIEHS NIH HHS/United StatesR01 OH009644/OH/NIOSH CDC HHS/United States32292210PMC7156046759
    corecore