5 research outputs found

    Achieving Fair Random Access Performance in Massive MIMO Crowded Machine-Type Networks

    Get PDF
    The use of massive multiple-input multiple-output (MIMO) to serve a crowd of user equipments (UEs) is challenged by the deficit of pilots. Assuming that the UEs are intermittently active, this problem can be addressed by a shared access to the pilots and a suitable random access (RA) protocol. The strongest-user collision resolution (SUCRe) is a previously proposed RA protocol that often privileges the UEs closer to the base station (BS). In contrast, we propose a novel RA protocol using a decentralized pilot power allocation method that aims at a fairer performance. The proposed access class barring with power control (ACBPC) protocol allows each UE to estimate, without additional overhead, how many UEs collided for the chosen pilot and calculate an ACB factor, which is then used to determine the pilot retransmission probability in the next protocol step. The results show that the proposed ACBPC protocol is superior to SUCRe in terms of providing a fair connectivity for very crowded networks, although still being distributed and uncoordinated as the original SUCRe protocol.Comment: 12 pages, 4 figure

    Random Access in Massive MIMO by Exploiting Timing Offsets and Excess Antennas

    Get PDF
    Massive MIMO systems, where base stations are equipped with hundreds of antennas, are an attractive way to handle the rapid growth of data traffic. As the number of user equipments (UEs) increases, the initial access and handover in contemporary networks will be flooded by user collisions. In this paper, a random access protocol is proposed that resolves collisions and performs timing estimation by simply utilizing the large number of antennas envisioned in Massive MIMO networks. UEs entering the network perform spreading in both time and frequency domains, and their timing offsets are estimated at the base station in closed-form using a subspace decomposition approach. This information is used to compute channel estimates that are subsequently employed by the base station to communicate with the detected UEs. The favorable propagation conditions of Massive MIMO suppress interference among UEs whereas the inherent timing misalignments improve the detection capabilities of the protocol. Numerical results are used to validate the performance of the proposed procedure in cellular networks under uncorrelated and correlated fading channels. With 2.5×1032.5\times10^3 UEs that may simultaneously become active with probability 1\% and a total of 1616 frequency-time codes (in a given random access block), it turns out that, with 100100 antennas, the proposed procedure successfully detects a given UE with probability 75\% while providing reliable timing estimates.Comment: 30 pages, 6 figures, 1 table, submitted to Transactions on Communication

    Massive MIMO for Internet of Things (IoT) Connectivity

    Full text link
    Massive MIMO is considered to be one of the key technologies in the emerging 5G systems, but also a concept applicable to other wireless systems. Exploiting the large number of degrees of freedom (DoFs) of massive MIMO essential for achieving high spectral efficiency, high data rates and extreme spatial multiplexing of densely distributed users. On the one hand, the benefits of applying massive MIMO for broadband communication are well known and there has been a large body of research on designing communication schemes to support high rates. On the other hand, using massive MIMO for Internet-of-Things (IoT) is still a developing topic, as IoT connectivity has requirements and constraints that are significantly different from the broadband connections. In this paper we investigate the applicability of massive MIMO to IoT connectivity. Specifically, we treat the two generic types of IoT connections envisioned in 5G: massive machine-type communication (mMTC) and ultra-reliable low-latency communication (URLLC). This paper fills this important gap by identifying the opportunities and challenges in exploiting massive MIMO for IoT connectivity. We provide insights into the trade-offs that emerge when massive MIMO is applied to mMTC or URLLC and present a number of suitable communication schemes. The discussion continues to the questions of network slicing of the wireless resources and the use of massive MIMO to simultaneously support IoT connections with very heterogeneous requirements. The main conclusion is that massive MIMO can bring benefits to the scenarios with IoT connectivity, but it requires tight integration of the physical-layer techniques with the protocol design.Comment: Submitted for publicatio
    corecore