422 research outputs found

    Imminent Communication Technologies for Smart Communities: Part 1

    Full text link
    [EN] The articles in this special section focus on new information and communication technologies for smart communities. In the 21st century, we have witnessed a rapid and revolutionary growth in the ICT industry. Also, we can easily identify a variety of challenges that todayÂżs cities around the world are facing. In developing countries, with rapid population and economic growth, energy demand in urban areas is increasing. In developed countries, challenges are due to declining birth rates, aging societies demanding better health care services, and the deterioration of the physical infrastructure such as buildings, roads, water supplies and sewage systems, and the power grid. Moreover, internationally, global warming caused by increasing carbon dioxide emissions and frequent natural disasters are urgent issues. In our Feature Topic, we would like to see how communication technologies can play a vital role in assisting or solving some of the aforementioned issuesAhmed, SH.; Guizani, M.; Lloret, J.; Rawat, DB.; Guibene, W.; Zhong, Z. (2018). Imminent Communication Technologies for Smart Communities: Part 1. IEEE Communications Magazine. 56(1):76-76. https://doi.org/10.1109/MCOM.2018.8255741S767656

    A Survey on Layer-Wise Security Attacks in IoT: Attacks, Countermeasures, and Open-Issues

    Get PDF
    © 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).Security is a mandatory issue in any network, where sensitive data are transferred safely in the required direction. Wireless sensor networks (WSNs) are the networks formed in hostile areas for different applications. Whatever the application, the WSNs must gather a large amount of sensitive data and send them to an authorized body, generally a sink. WSN has integrated with Internet-of-Things (IoT) via internet access in sensor nodes along with internet-connected devices. The data gathered with IoT are enormous, which are eventually collected by WSN over the Internet. Due to several resource constraints, it is challenging to design a secure sensor network, and for a secure IoT it is essential to have a secure WSN. Most of the traditional security techniques do not work well for WSN. The merger of IoT and WSN has opened new challenges in designing a secure network. In this paper, we have discussed the challenges of creating a secure WSN. This research reviews the layer-wise security protocols for WSN and IoT in the literature. There are several issues and challenges for a secure WSN and IoT, which we have addressed in this research. This research pinpoints the new research opportunities in the security issues of both WSN and IoT. This survey climaxes in abstruse psychoanalysis of the network layer attacks. Finally, various attacks on the network using Cooja, a simulator of ContikiOS, are simulated.Peer reviewe

    Security of the Internet of Things: Vulnerabilities, Attacks and Countermeasures

    Get PDF
    Wireless Sensor Networks (WSNs) constitute one of the most promising third-millennium technologies and have wide range of applications in our surrounding environment. The reason behind the vast adoption of WSNs in various applications is that they have tremendously appealing features, e.g., low production cost, low installation cost, unattended network operation, autonomous and longtime operation. WSNs have started to merge with the Internet of Things (IoT) through the introduction of Internet access capability in sensor nodes and sensing ability in Internet-connected devices. Thereby, the IoT is providing access to huge amount of data, collected by the WSNs, over the Internet. Hence, the security of IoT should start with foremost securing WSNs ahead of the other components. However, owing to the absence of a physical line-of-defense, i.e., there is no dedicated infrastructure such as gateways to watch and observe the flowing information in the network, security of WSNs along with IoT is of a big concern to the scientific community. More specifically, for the application areas in which CIA (confidentiality, integrity, availability) has prime importance, WSNs and emerging IoT technology might constitute an open avenue for the attackers. Besides, recent integration and collaboration of WSNs with IoT will open new challenges and problems in terms of security. Hence, this would be a nightmare for the individuals using these systems as well as the security administrators who are managing those networks. Therefore, a detailed review of security attacks towards WSNs and IoT, along with the techniques for prevention, detection, and mitigation of those attacks are provided in this paper. In this text, attacks are categorized and treated into mainly two parts, most or all types of attacks towards WSNs and IoT are investigated under that umbrella: “Passive Attacks” and “Active Attacks”. Understanding these attacks and their associated defense mechanisms will help paving a secure path towards the proliferation and public acceptance of IoT technology

    ICT Based Performance Evaluation of Primary Frequency Control Support from Renewable Power Plants in Smart Grids

    Get PDF
    The increased penetration of Renewable Energy Generation (ReGen) plants in future power systems poses several challenges to the stability of the entire system. In future green energy rich power systems, the responsibility for providing ancillary services will be shifted from conventional power plants towards ReGen plants, such as wind and photovoltaic power plants. Frequency control support from the Wind Power Plants (WPPs) is one of the crucial ancillary services in order to preserve operational stability in case of grid disturbances. Among other requirements, the ability to provide fast frequency control support from ReGen plants will highly depend on the underlying communication infrastructure that allows an exchange of information between different ReGen plants and the control centers. This paper, therefore, focuses on the evaluation of the impact of communication and the related aspects to provide online frequency control support from ReGen (with special focus on WPP). The performance evaluation is based on an aggregated WPP model that is integrated into a generic power system model. This generic power system model is specifically designed to assess the ancillary services in a relatively simple yet relevant environment. Several case studies with different wind speeds at a particular wind-power penetration level and communication scenarios are considered to evaluate the performance of power system frequency response. The article provides the Transmission System Operator (TSO) and other communication engineers insights into the importance and various aspects of communication infrastructure for general service coordination between WPPs and specifically primary frequency control coordination from WPPs in future power systems

    A Risk And Trust Security Framework For The Pervasive Mobile Environment

    Get PDF
    A pervasive mobile computing environment is typically composed of multiple fixed and mobile entities that interact autonomously with each other with very little central control. Many of these interactions may occur between entities that have not interacted with each other previously. Conventional security models are inadequate for regulating access to data and services, especially when the identities of a dynamic and growing community of entities are not known in advance. In order to cope with this drawback, entities may rely on context data to make security and trust decisions. However, risk is introduced in this process due to the variability and uncertainty of context information. Moreover, by the time the decisions are made, the context data may have already changed and, in which case, the security decisions could become invalid.With this in mind, our goal is to develop mechanisms or models, to aid trust decision-making by an entity or agent (the truster), when the consequences of its decisions depend on context information from other agents (the trustees). To achieve this, in this dissertation, we have developed ContextTrust a framework to not only compute the risk associated with a context variable, but also to derive a trust measure for context data producing agents. To compute the context data risk, ContextTrust uses Monte Carlo based method to model the behavior of a context variable. Moreover, ContextTrust makes use of time series classifiers and other simple statistical measures to derive an entity trust value.We conducted empirical analyses to evaluate the performance of ContextTrust using two real life data sets. The evaluation results show that ContextTrust can be effective in helping entities render security decisions
    • …
    corecore