455 research outputs found

    Intelligent Condition Monitoring of Industrial Plants: An Overview of Methodologies and Uncertainty Management Strategies

    Full text link
    Condition monitoring plays a significant role in the safety and reliability of modern industrial systems. Artificial intelligence (AI) approaches are gaining attention from academia and industry as a growing subject in industrial applications and as a powerful way of identifying faults. This paper provides an overview of intelligent condition monitoring and fault detection and diagnosis methods for industrial plants with a focus on the open-source benchmark Tennessee Eastman Process (TEP). In this survey, the most popular and state-of-the-art deep learning (DL) and machine learning (ML) algorithms for industrial plant condition monitoring, fault detection, and diagnosis are summarized and the advantages and disadvantages of each algorithm are studied. Challenges like imbalanced data, unlabelled samples and how deep learning models can handle them are also covered. Finally, a comparison of the accuracies and specifications of different algorithms utilizing the Tennessee Eastman Process (TEP) is conducted. This research will be beneficial for both researchers who are new to the field and experts, as it covers the literature on condition monitoring and state-of-the-art methods alongside the challenges and possible solutions to them

    Explainability: Relevance based Dynamic Deep Learning Algorithm for Fault Detection and Diagnosis in Chemical Processes

    Full text link
    The focus of this work is on Statistical Process Control (SPC) of a manufacturing process based on available measurements. Two important applications of SPC in industrial settings are fault detection and diagnosis (FDD). In this work a deep learning (DL) based methodology is proposed for FDD. We investigate the application of an explainability concept to enhance the FDD accuracy of a deep neural network model trained with a data set of relatively small number of samples. The explainability is quantified by a novel relevance measure of input variables that is calculated from a Layerwise Relevance Propagation (LRP) algorithm. It is shown that the relevances can be used to discard redundant input feature vectors/ variables iteratively thus resulting in reduced over-fitting of noisy data, increasing distinguishability between output classes and superior FDD test accuracy. The efficacy of the proposed method is demonstrated on the benchmark Tennessee Eastman Process.Comment: Under Review. arXiv admin note: text overlap with arXiv:2012.0386

    Deep Learning in Visual Computing and Signal Processing

    Get PDF

    Deep Recurrent Neural Networks for Fault Detection and Classification

    Get PDF
    Deep Learning is one of the fastest growing research topics in process systems engineering due to the ability of deep learning models to represent and predict non-linear behavior in many applications. However, the application of these models in chemical engineering is still in its infancy. Thus, a key goal of this work is assessing the capabilities of deep-learning based models in a chemical engineering applications. The specific focus in the current work is detection and classification of faults in a large industrial plant involving several chemical unit operations. Towards this goal we compare the efficacy of a deep learning based algorithm to other state-of-the-art multivariate statistical based techniques for fault detection and classification. The comparison is conducted using simulated data from a chemical benchmark case study that has been often used to test fault detection algorithms, the Tennessee Eastman Process (TEP). A real time online scheme is proposed in the current work that enhances the detection and classifications of all the faults occurring in the simulation. This is accomplished by formulating a fault-detection model capable of describing the dynamic nonlinear relationships among the output variables and manipulated variables that can be measured in the Tennessee Eastman Process during the occurrence of faults or in the absence of them. In particular, we are focusing on specific faults that cannot be correctly detected and classified by traditional statistical methods nor by simpler Artificial Neural Networks (ANN). To increase the detectability of these faults, a deep Recurrent Neural Network (RNN) is programmed that uses dynamic information of the process along a pre-specified time horizon. In this research we first studied the effect of the number of samples feed into the RNN in order to capture more dynamical information of the faults and showed that accuracy increases with this number e.g. average classification rates were 79.8%, 80.3%, 81% and 84% for the RNN with 5, 15, 25 and 100 number of samples respectively. As well, to increase the classification accuracy of difficult to observe faults we developed a hierarchical structure where faults are grouped into subsets and classified with separate models for each subset. Also, to improve the classification for faults that resulted in responses with low signal to noise ratio excitation was added to the process through an implementation of a pseudo random signal(PRS). By applying the hierarchical structure there is an increment on the signal-to-noise ratio of faults 3 and 9, which translates in an improvement in the classification accuracy in both of these faults by 43.0% and 17.2% respectively for the case of 100 number of samples and by 8.7% and 23.4% for 25 number samples. On the other hand, applying a PRS to excite the system has showed a dramatic increase in the classification rates of the normal state to 88.7% and fault 15 up to 76.4%. Therefore, the proposed method is able to improve considerably both the detection and classification accuracy of several observable faults, as well as faults considered to be unobservable when using other detection algorithms. Overall, the comparison of the deep learning algorithms with Dynamic PCA (Principal Component Analysis) techniques showed a clear superiority of the deep learning techniques in classifying faults in nonlinear dynamic processes. Finally, we develop these same techniques to different operational modes of the TEP simulation, achieving comparable improvements to the classification accuracies

    SensorSCAN: Self-Supervised Learning and Deep Clustering for Fault Diagnosis in Chemical Processes

    Full text link
    Modern industrial facilities generate large volumes of raw sensor data during the production process. This data is used to monitor and control the processes and can be analyzed to detect and predict process abnormalities. Typically, the data has to be annotated by experts in order to be used in predictive modeling. However, manual annotation of large amounts of data can be difficult in industrial settings. In this paper, we propose SensorSCAN, a novel method for unsupervised fault detection and diagnosis, designed for industrial chemical process monitoring. We demonstrate our model's performance on two publicly available datasets of the Tennessee Eastman Process with various faults. The results show that our method significantly outperforms existing approaches (+0.2-0.3 TPR for a fixed FPR) and effectively detects most of the process faults without expert annotation. Moreover, we show that the model fine-tuned on a small fraction of labeled data nearly reaches the performance of a SOTA model trained on the full dataset. We also demonstrate that our method is suitable for real-world applications where the number of faults is not known in advance. The code is available at https://github.com/AIRI-Institute/sensorscan

    Application of Deep Learning in Chemical Processes: Explainability, Monitoring and Observability

    Get PDF
    The last decade has seen remarkable advances in speech, image, and language recognition tools that have been made available to the public through computer and mobile devices’ applications. Most of these significant improvements were achieved by Artificial Intelligence (AI)/ deep learning (DL) algorithms (Hinton et al., 2006) that generally refers to a set of novel neural network architectures and algorithms such as long-short term memory (LSTM) units, convolutional networks (CNN), autoencoders (AE), t-distributed stochastic embedding (TSNE), etc. Although neural networks are not new, due to a combination of relatively novel improvements in methods for training the networks and the availability of increasingly powerful computers, one can now model much more complex nonlinear dynamic behaviour by using complex structures of neurons, i.e. more layers of neurons, than ever before (Goodfellow et al., 2016). However, it is recognized that the training of neural nets of such complex structures requires a vast amount of data. In this sense manufacturing processes are good candidates for deep learning applications since they utilize computers and information systems for monitoring and control thus generating a massive amount of data. This is especially true in pharmaceutical companies such as Sanofi Pasteur, the industrial collaborator for the current study, where large data sets are routinely stored for monitoring and regulatory purposes. Although novel DL algorithms have been applied with great success in image analysis, speech recognition, and language translation, their applications to chemical processes and pharmaceutical processes, in particular, are scarce. The current work deals with the investigation of deep learning in process systems engineering for three main areas of application: (i) Developing a deep learning classification model for profit-based operating regions. (ii) Developing both supervised and unsupervised process monitoring algorithms. (iii) Observability Analysis It is recognized that most empirical or black-box models, including DL models, have good generalization capabilities but are difficult to interpret. For example, using these methods it is difficult to understand how a particular decision is made, which input variable/feature is greatly influencing the decision made by the DL models etc. This understanding is expected to shed light on why biased results can be obtained or why a wrong class is predicted with a higher probability in classification problems. Hence, a key goal of the current work is on deriving process insights from DL models. To this end, the work proposes both supervised and unsupervised learning approaches to identify regions of process inputs that result in corresponding regions, i.e. ranges of values, of process profit. Furthermore, it will be shown that the ability to better interpret the model by identifying inputs that are most informative can be used to reduce over-fitting. To this end, a neural network (NN) pruning algorithm is developed that provides important physical insights on the system regarding the inputs that have positive and negative effect on profit function and to detect significant changes in process phenomenon. It is shown that pruning of input variables significantly reduces the number of parameters to be estimated and improves the classification test accuracy for both case studies: the Tennessee Eastman Process (TEP) and an industrial vaccine manufacturing process. The ability to store a large amount of data has permitted the use of deep learning (DL) and optimization algorithms for the process industries. In order to meet high levels of product quality, efficiency, and reliability, a process monitoring system is needed. The two aspects of Statistical Process Control (SPC) are fault detection and diagnosis (FDD). Many multivariate statistical methods like PCA and PLS and their dynamic variants have been extensively used for FD. However, the inherent non-linearities in the process pose challenges while using these linear models. Numerous deep learning FDD approaches have also been developed in the literature. However, the contribution plots for identifying the root cause of the fault have not been derived from Deep Neural Networks (DNNs). To this end, the supervised fault detection problem in the current work is formulated as a binary classification problem while the supervised fault diagnosis problem is formulated as a multi-class classification problem to identify the type of fault. Then, the application of the concept of explainability of DNNs is explored with its particular application in FDD problem. The developed methodology is demonstrated on TEP with non-incipient faults. Incipient faults are faulty conditions where signal to noise ratio is small and have not been widely studied in the literature. To address the same, a hierarchical dynamic deep learning algorithm is developed specifically to address the issue of fault detection and diagnosis of incipient faults. One of the major drawbacks of both the methods described above is the availability of labeled data i.e. normal operation and faulty operation data. From an industrial point of view, most data in an industrial setting, especially for biochemical processes, is obtained during normal operation and faulty data may not be available or may be insufficient. Hence, we also develop an unsupervised DL approach for process monitoring. It involves a novel objective function and a NN architecture that is tailored to detect the faults effectively. The idea is to learn the distribution of normal operation data to differentiate among the fault conditions. In order to demonstrate the advantages of the proposed methodology for fault detection, systematic comparisons are conducted with Multiway Principal Component Analysis (MPCA) and Multiway Partial Least Squares (MPLS) on an industrial scale Penicillin Simulator. Past investigations reported that the variability in productivity in the Sanofi's Pertussis Vaccine Manufacturing process may be highly correlated to biological phenomena, i.e. oxidative stresses, that are not routinely monitored by the company. While the company monitors and stores a large amount of fermentation data it may not be sufficiently informative about the underlying phenomena affecting the level of productivity. Furthermore, since the addition of new sensors in pharmaceutical processes requires extensive and expensive validation and certification procedures, it is very important to assess the potential ability of a sensor to observe relevant phenomena before its actual adoption in the manufacturing environment. This motivates the study of the observability of the phenomena from available data. An algorithm is proposed to check the observability for the classification task from the observed data (measurements). The proposed methodology makes use of a Supervised AE to reduce the dimensionality of the inputs. Thereafter, a criterion on the distance between the samples is used to calculate the percentage of overlap between the defined classes. The proposed algorithm is tested on the benchmark Tennessee Eastman process and then applied to the industrial vaccine manufacturing process

    Fault diagnosis in industrial process by using LSTM and an elastic net

    Full text link
    [EN] Fault diagnosis is important for industrial processes because it permits to determine the necessity of emergency stops in a process and/or to propose a maintenance plan. Two strategies for fault diagnosis are compared in this work. On the one hand, the data are preprocessed using the independent components analysis for dimension reduction, then the wavelet transform is used in order to highlight the faulty signals, with this information an artificial neural network was fed. On the other hand, the second strategy, the main contribution of this work, is the implementation of a long short term memory. This memory is fed with the most representative variables selected by an elastic net to use both, the L1 and L2 norms. These strategies are applied in the Tennessee Eastman process, a benchmark widely used for fault diagnosis. The fault isolation had better results than those reported in the literature.[ES] El diagnóstico de fallas es importante en los procesos industriales, ya que permite determinar si es necesario detener el proceso en operación y/o proponer un plan de mantenimiento. En el presente trabajo se comparan dos estrategias para diagnosticar fallas. La primera realiza un preprocesamiento de datos usando el análisis de componentes independientes para reducir la dimensión de los datos, posteriormente, se emplea la transformada wavelet para resaltar las señales de falla, con esta información se alimenta una red neuronal artificial. Por su parte, la segunda estrategia, principal contribución de este trabajo, usa una memoria de corto y largo plazo. Esta memoria es alimentada por las variables más significativas seleccionadas mediante una red elástica para usar tanto la norma L1L_1 como la L2L_2. Como ejemplo de aplicación se utilizó el proceso químico Tennessee Eastman, un proceso ampliamente usado en el diagnóstico de fallas. El aislamiento de fallas mostró mejores resultados con respecto a los reportados en la literatura.Márquez-Vera, MA.; López-Ortega, O.; Ramos-Velasco, LE.; Ortega-Mendoza, RM.; Fernández-Neri, BJ.; Zúñiga-Peña, NS. (2021). Diagnóstico de fallas mediante una LSTM y una red elástica. Revista Iberoamericana de Automática e Informática industrial. 18(2):164-175. https://doi.org/10.4995/riai.2020.13611OJS164175182Adewole, A., Tzoneva, R., Behardien, S., 2016. Distribution network fault section identification and fault location using wavelet entropy and neural networks. Applied Soft Computing 46, 296-306. https://doi.org/10.1016/j.asoc.2016.05.013Alkaya, A., Eker, I., 2011. Variance sensitive adaptive threshold-based PCA method for fault detection with experimental application. ISA Transactions 50, 287-302. https://doi.org/10.1016/j.isatra.2010.12.004Barakat, S., Eteiba, M., Wahba, W., 2014. Fault location in underground cables using anfis nets and discrete wavelet transform. Journal of Electrical Systems and Information Technology 1, 198-211. https://doi.org/10.1016/j.jesit.2014.12.003Bathelt, A., Ricker, N., Jelali, M., 2015. Revision of the Tennessee Eastman process model. IFAC Papers-Online 48 (8), 309-314. https://doi.org/10.1016/j.ifacol.2015.08.199Boldt, F., Rauber, T., Varejao, F., October 2014. Evaluation of the extreme learning machine for automatic fault diagnosis of the Tennessee Eastman chemical process. In: IEEE (Ed.), Annual Conference of the IEEE Industrial Electronics Society. Vol. 40. Dallas, Texas, pp. 2551-2557. https://doi.org/10.1109/IECON.2014.7048865Chen, H., Tino, P., Yao, X., 2014. Cognitive fault diagnosis in Tennessee Eastman process using learning in the model space. Computers and Chemical Engineering 67, 33-42. https://doi.org/10.1016/j.compchemeng.2014.03.015Rodrigues, J., Filho, P., PeixotoJr., E., Kumar, A., deAlbuquerque, V., 2019. Classification of EEG signals to detect alcoholism using machine learning techniques. Pattern Recognition Letters 125, 140-149. https://doi.org/10.1016/j.patrec.2019.04.019Dixit, A., Majumdar, S., 2013. Comparative analysis of coiflet and daubechies wavelets using global threshold for image denoising. Intenational Journal of Advances in Engineering & Technology 6 (5), 2247-2252.Downs, J., Vogel, E., 1993. A plant-wide industrial process control problem. Computers and Chemical Engineering 17 (3), 245-255. https://doi.org/10.1016/0098-1354(93)80018-IFischer, T., Krauss, C., 2018. Deep learning with long short-term memory networks for financial market predictions. European Journal of Operational Research 270, 654-669. https://doi.org/10.1016/j.ejor.2017.11.054Gao, X., Hou, J., 2016. An improved SVM integrated GS-PCA fault diagnosis approach of Tennessee Eastman process. Neurocomputing 174, 906-911. https://doi.org/10.1016/j.neucom.2015.10.018Geng, Z., Li, Z., Han, Y., 2018. A new deep belief network based on RBM with glial chains. Information Sciences 463, 294-306. https://doi.org/10.1016/j.ins.2018.06.043Goodfellow, I., Bengio, Y., Courville, A., 2016. Deep Learning. MIT Press, United States of America, http://www.deeplearningbook.ogr.Han, L., Li, C., Guo, S., Su, X., 2015. Feature extraction method of bearing AE signal based on improved Fast-ICA and wavelet packet energy. Mechanical Systems and Signal Processing 62-63, 91-99. https://doi.org/10.1016/j.ymssp.2015.03.009Hastie, T., Tibshirani, R., Friedman, J., 2009. The elements of statistical learning: data mining, inference and prediction. Springer, New York. https://doi.org/10.1007/978-0-387-84858-7Hoang, D., Kang, H., 2019. A survey on deep learning based bearing fault diagnosis. Neurocomputing 335, 327-335. ttps://doi.org/10.1016/j.neucom.2018.06.078Hochreiter, S., Schmidhuber, J., 1997. Long short term memory. Neural Computation 9 (8), 1735-1780. ttps://doi.org/10.1162/neco.1997.9.8.1735Hyvärinen, A., Oja, E., 2000. Independent component analysis: Algorithms and applications. Neural Networks 13, 411-430. ttps://doi.org/10.1016/S0893-6080(00)00026-5Jing, C., Gao, X., Zhu, X., Lang, S., July 2014. Fault classificaction on Tennessee Eastman process: PCA and SVM. In: IEEE (Ed.), Intenational Conference on Mecatronics and Control. Jinzhou, China, pp. 2194-2197. https://doi.org/10.1109/ICMC.2014.7231958Jung, C., Kim, K., Lee, J., Klockl, B., 2007. Wavelet and neuro-fuzzy based fault location for combined transmission systems. Energy Systems 29, 445-454. https://doi.org/10.1016/j.ijepes.2006.11.003Kandula, V. K., 2011. Fault detection in process control plants using principal component analysis. Master's thesis, Louisiana State University, Department of Electrical Engineering.Karpenko, M., Sepehri, N., Octubre 2001. A neural network based fault detection and identification scheme for pneumatic process control valves. In: IEEE (Ed.), International Conference on Systems, Man and Cybernetics. Tucson, USA, pp. 93-98. https://doi.org/10.1109/ICSMC.2001.969794Khakipour, M., Safavi, A., Setoodeh, P., 2017. Bearing fault diagnosis with morphological gradient wavelet. Journal of the Franklin Institute 354, 2465-2476. https://doi.org/10.1016/j.jfranklin.2016.11.013Kuang, T., Yang, Z., Yao, Y., 2015. Multivariate fault isolation via variable selection in discriminant analysis. Journal of Process Control 35, 30-40. https://doi.org/10.1016/j.isatra.2017.06.014Kumar, R., Bansal, H., 2019. Hardware in the loop implementation of wavelet based strategy in shuntactive powerfilter to mitigate power quality issues. Electric Power Systems Research 169, 92-104. https://doi.org/10.1016/j.epsr.2019.01.001Lau, C., Ghosh, K., Hussain, M., Hassan, C. C., 2013. Fault disgnosis of Tennessee Eastman process with multi-scale PCA and ANFIS. Chemom. Intell. Lab. Syst. 120, 1-14. https://doi.org/10.1016/j.chemolab.2012.10.005Lee, J., Yoo, C., Lee, I., 2004. Statistical process monitoring with independent component analysis. Journal of Process Control 14 (5), 467-485. https://doi.org/10.1016/j.jprocont.2003.09.004Lei, J., Liu, C., Jiang, D., 2019. Fault diagnosis of wind turbine based on long short-term memory networks. Renewable Energy 133, 422-432. https://doi.org/10.1016/j.renene.2018.10.031Li, W., Monti, A., Ponci, F., 2014. Fault detection and classification in medium voltage DC shipboard power systems with wavelets and artificial neural networks. IEEE Transactions on Instrumentation and Measurement 63 (11), 2651-2665. https://doi.org/10.1109/TIM.2014.2313035Liang, P., Deng, C.,Wu, J., Yang, Z., Zhu, J., Zhang, Z., 2019. Compound fault diagnosis of gearboxes via multi-label convolutional neural network and wavelet transform. Computers in Industry 113, 103132. https://doi.org/10.1016/j.compind.2019.103132Lin, J., Zhang, A., 2005. Fault feature separation using wavelet-ICA filter. NDT&E International 38, 421-427. https://doi.org/10.1016/j.ndteint.2004.11.005Linker, R., Gutman, P., Seginer, I., 2002. Observer-based robust failure detection and isolation in greenhouses. Control Engineering Practice 10 (5), 519- 531. https://doi.org/10.1016/S0967-0661(02)00002-3Lou, W., Loparo, K., 2004. Bearing fault diagnosis based on wavelet transform and fuzzy inference. Mechanical Systems and Signal Processing 18, 1077-1095. https://doi.org/10.1016/S0888-3270(03)00077-3Lv, F.,Wen, C., Bao, Z., Liu, M., 2016. Fault diagnosis based on deep learning. In: AACC (Ed.), American Control Conference. Boston, USA, pp. 6851-6856. https://doi.org/10.1109/ACC.2016.7526751Lv, F., Wen, C., Liu, M., Bao, Z., 2017. Weighted time series fault diagnosis based on a staked sparce autoencoder. Journal of Chemometrics 31, 16 pages. https://doi.org/10.1002/cem.2912Lv, F., Fan, X., Wen, C., Bao, Z., 2018. Stacked sparse auto encoder network based multimode process monitoring. In: IEEE (Ed.), International Conference on Control Automation & Information Science. Hangzhou, China, pp. 227-232. https://doi.org/10.1109/ICCAIS.2018.8570618Maglaveras, N., Stamkopoulos, T., Diamantaras, K., Pappas, C., Strintzis, M., 1998. ECG pattern recognition and classification using non-linear transfor mations and neural networks: A review. International Journal of Medical Informatics 52, 191-208. https://doi.org/10.1016/S1386-5056(98)00138-5Methnani, S., Lafont, F., Gautier, J., Damak, T., Toumi, A., 2013. Actuator and sensor fault detection, isolation and identification in nonlinear dynamical systems, with applications to a waste water treatment plant. Journal of Computer Engineering and Informatics 1 (4), 112-125. https://doi.org/10.1080/21642583.2014.888525Muñoz-Cobo, J., Mendizábal, R., Miquel, A., Berna, C., Escrivá, A., 2017. Use of the principles of maximum entropy and maximum relative entropy for the determination of uncertain parameter distributions in engineering applications. Entropy 19, 486, 37 pages. https://doi.org/10.3390/e19090486Nguyen, B., Quyen, A., Nguyen, P., Ton, T., July 2017. Wavelet-based neural network for recognition of faults at nhabe power substation of the vietnam power system. In: IEEE (Ed.), International Conference on System Science and Engineering. Ho Chi Minh City, Vietnam, pp. 165-168. https://doi.org/10.1109/ICSSE.2017.8030858Ojeda-González, A., Mendes-Jr., O., Oliveira-Domingues, M., Menconi, V., 2014. Daubechies wavelet coeffcients: a tool to study interplanetary magnetic field fluctuations. Geof'ısica Internacional 53 (2), 101-115. https://doi.org/10.1016/S0016-7169(14)71494-1Oliveira, J., Pontes, K., Santori, I., Embirucu, M., 2017. Fault detection and diagnosis in dynamic systems using weightless neural networks. Expert Systems With Applications 84, 200-219. https://doi.org/10.1016/j.eswa.2017.05.020Patan, K., 2008. Artificial neural networks for the modelling and fault diagnosis of technical process. Lecture Notes in Control and Information Sciences. Springer, India.Rafiee, J., Rafiee, M., Tse, P., 2010. Application of mother wavelet functions for automatic gear and bearing fault diagnosis. Expert Systems with Applications 37, 4568-4579. https://doi.org/10.1016/j.eswa.2009.12.051Ramos-Velasco, L., Ramos-Fernández, J., Islar-Gómez, O., Espejel-Rivera, M., García-Lamont, J., Márquez-Vera, M., 2013. Identificación y control wavenet de un motor de ca. Revista Iberoamericana de Automática e Informática Industrial 10, 269-278. https://doi.org/10.1016/j.riai.2013.05.002Rato, T., Reis, M., 2013. Defining the structure of DPCA models and its impact on process monitoring and prediction ctivities. Chemometrics and Intelligent Laboratory Systems 125, 74-86. https://doi.org/10.1016/j.chemolab.2013.03.009Rockinger, M., Jondeau, E., 2002. Entropy densities with an application to autoregressive conditional skewness and kurtosis. Journal of Econometrics 106, 119-142. https://doi.org/10.1016/S0304-4076(01)00092-6Salahschoor, K., Kiasi, F., July 2008. On-line process monitoring based on wavelet-ICA methodology. In: IFAC (Ed.), Proceedings of the 17th World Congress. Seul- Korea, pp. 6-11. https://doi.org/10.3182/20080706-5-KR-1001.01253Salahshoor, K., Khoshro, M., Kordestani, M., 2011. Fault detection and diagnosis of an industrial steam turbine using a distributed configuration of adaptive neuro-fuzzy inference systems. Simulation Modelling Practice and Theory 19, 1280-1293. https://doi.org/10.1016/j.simpat.2011.01.005Sharif, I., Khare, S., 2014. Comparative analysis of Haar and Daubechies wavelet for hyper spectral image classification. In: Commission, I. T. (Ed.), VIII Symposium of The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Science. Hyderabad-India, pp. 937-941. https://doi.org/10.5194/isprsarchives-XL-8-937-2014Smirnov, E., Timoshenko, D., Adrianov, S., 2014. Comparison of regularization methods for imagenet classification with deep convolutional neural networks. AASRI Procedia 6, 89-94. https://doi.org/10.1016/j.aasri.2014.05.013Sobhani-Tehrani, E., Khorasani, K., 2009. Fault diagnosis of nonlinear systems using a hybrid approach. Fault detetion and diagnosis. Springer, Berlin, Ch. 2, pp. 22-49. https://doi.org/10.1007/978-0-387-92907-1_2Tayarani-Bathaie, S., Vanini, Z., Khorasani, K., 2014. Dynamic neural networkbased fault diagnosis of gas turbine engines. Neurocomputing 125, 153-165. https://doi.org/10.1016/j.neucom.2012.06.050Zvokelj, M., Zupan, S., Prebil, I., 2016. EEMD-based multiscale ICA method for slewing bearing fault detection and diagnosis. Journal of Sound and Vibration 26, 394-423. https://doi.org/10.1016/j.jsv.2016.01.046Wang, X., Qin, Y., Wang, Y., Xiang, S., Chen, H., 2019. ReLTanh: An activation function with vanishing gradient resistance for SAE-based DNNs and its application to rotating machinery fault diagnosis. Neurocomputing 363, 88-98. https://doi.org/10.1016/j.neucom.2019.07.017Wu, F., Tong, F., Yang, Z., 2016. EMGdi signal enhancement based on ICA decomposition and wavelet transform. Applied Soft Computing 43, 561-571. https://doi.org/10.1016/j.asoc.2016.03.002Wu, J., Hsu, C., Wu, G., 2009. Fault gear identification and classification using discrete wavelet transform and adaptive neuro-fuzzy inference. Expert Systems with Applications 36, 6244-6255. https://doi.org/10.1016/j.eswa.2008.07.023Wu, Q., Law, R., Wu, S., 2011. Fault diagnosis of car assembly line based on fuzzy wavelet kernel support vector classifier machine and modified genetic algorithm. Expert Systems with Applications 38, 9096-9104. https://doi.org/10.1016/j.eswa.2010.12.109Wu, H., Zhao., Jinsong, 2018. Deep convolutional neural network model based chemical process fault diagnosis. Computers and Chemical Engineering 115, 185-197. https://doi.org/10.1016/j.compchemeng.2018.04.009Xiao, C., Chen, N., Hu, C., Wang, K., Gong, J., Chen, Z., 2019. Short and midterm sea surface temperature prediction using time-series satellite data and LSTM-AdaBoost combination approach. Remote Sensing of Environment 233, 111358. https://doi.org/10.1016/j.rse.2019.111358Xie, D., Bai, L., December 2015. A hierarchical deep neural network for fault diagnosis on Tennessee-Eastman process. In: IEEE (Ed.), International Conference on Machine Learning and Applications. Vol. 14. Miami, USA, pp. 745-748. https://doi.org/10.1109/ICMLA.2015.208Yan, R., Gao, R., Chen, X., 2014. Wavelets for fault diagnosis of rotary machines: A review with applications. Signal Processing 351, 4555-4569. https://doi.org/10.1016/j.sigpro.2013.04.015Yan, Z., Yao, Y., 2015. Variable selection method for fault isolation using least absolute shrinkage and selection operator (LASSO). Chemometrics and Intelligent Laboratory Systems 146, 136-146. https://doi.org/10.1016/j.chemolab.2015.05.019Yao, G., Lei, T., Zhong, J., 2019. A review of convolutional-neural-networkbased action recognition. Pattern Recognition Letters 118, 14-22. https://doi.org/10.1016/j.patrec.2018.05.018Yin, S., Ding, S., Haghani, A., Hao, H., Zhang, P., 2012. A comparison study of basic data-driven fault diagnosis and process monitoring methods on the benchmark Tennessee Eastman process. Journal of Process Control 22, 1567-1581. https://doi.org/10.1016/j.jprocont.2012.06.009Zhang, Q., Yang, L., Chen, Z., Li, P., 2018. A survey on deep learning for big data. Information Fusion 42, 146-157. https://doi.org/10.1016/j.inffus.2017.10.006Zhang, X., Polycarpou, M., Parisini, T., 2002. A robust detection and isolation scheme for abrupt and incipient faults in nonlinear systems. IEEE Transactions on Automatic Control 47 (4), 576-593. https://doi.org/10.1109/9.995036Zhang, Y., Zhang, L., Zhang, H., 2012. Fault detection for industrial processes. Mathematical Problems in Engineering 2012, 18 pages. https://doi.org/10.1155/2012/757828Zhang, Z., Zhao, J., 2017. A deep belief network based fault diagnosis model for complex chemical process. Computers and Chemical Engineering 107, 395-407. https://doi.org/10.1016/j.compchemeng.2017.02.041Zhao, H., 2018. Neural component analysis for fault detection. Chemometrics and Intelligent Laboratory Systems 176, 11-21. https://doi.org/10.1016/j.chemolab.2018.02.001Zhao, R., Yan, R., Chen, Z., Mao, K., Wang, P., Gao, R., 2019. Deep learning and its applications to machine health monitoring. Mechanical Systems and Signal Processing 115, 213-237. https://doi.org/10.1016/j.ymssp.2018.05.050Zheng, J., Huang, W., Wang, Z., Liang, J., 2019. Mutual information-based sparse multiblock dissimilarity method for incipient fault detection and diagnosis in plant-wide process. Journal of Process Control 83, 63-76. https://doi.org/10.1016/j.jprocont.2019.09.00

    Adaptive threshold PCA for fault detection and isolation

    Get PDF
    Fault diagnosis is an important issue in industrial processes to avoid economic losses, process damage, and to guarantee safe working conditions for the operators. For high scale industrial processes the data-driven based methods are the best solution for process monitoring and fault diagnosis. Thus, in this paper, the principal component analysis is shown to detect and isolate faults. Also, a dynamic threshold is implemented to avoid false alarms because incipient faults are difficult to be detected. As a case of study, the Tennessee Eastman (TE) process is used to apply this strategy because the interaction among five units with internal control loops makes difficult to have an approached model. As results are shown the detection times, for cases where were analyzed incipient faults, the time required for fault detection must be improved, in this work, an adaptive threshold was used to reduce the false alarms but it also increases the detection times. It was concluded that the Q chart gave a better result for fault detection; the isolation times were similar to the detection ones. Two incipient faults could not be detected, the fault detection rate was similar to the shown in literature, but the detection times were better in 35% of the cases, unfortunately for four faults the detection times were bigger than the reported in other papers. It is proposed to help this method with independent component analysis due it is not guaranteed to have a Gaussian distribution in the samples
    • …
    corecore