
Application of Deep Learning in
Chemical Processes: Explainability,

Monitoring and Observability

by

Piyush Agarwal

A thesis
presented to the University of Waterloo

in fulfillment of the
thesis requirement for the degree of

Doctor of Philosophy
in

Chemical Engineering

Waterloo, Ontario, Canada, 2021

© Piyush Agarwal 2021

Examining Committee Membership

The following served on the Examining Committee for this thesis. The decision of the
Examining Committee is by majority vote.

External Examiner: Prashant Mhaskar
Professor, Dept. of Chemical Engineering, McMaster University

Supervisor(s): Hector Budman
Professor, Dept. of Chemical Engineering, University of Waterloo

Internal Member: Peter Douglas
Professor, Dept. of Chemical Engineering, University of Waterloo

Internal-External Member: Kumaraswamy Ponnambalam
Professor, Systems Design Engineering, University of Waterloo

Internal Member: Nasser Mohieddin Abukhdeir
Professor, Dept. of Chemical Engineering, University of Waterloo

ii

Author’s Declaration

This thesis consists of material all of which I authored or co-authored: see Statement of
Contributions included in the thesis. This is a true copy of the thesis, including any re-
quired final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

iii

Statement of contribution

For Chapter 5, the author implemented the documented methodologies, obtained the
numerical results and completed the writing of the paper. Jorge Ivan Gonzalez and Hector
Budman were involved in the conceptualization of the work. All authors read and approved
the final manuscript.

For Chapter 6, the author and Mohammad Aghaee implemented the documented
methodologies, obtained the numerical results. Author and Hector Budman were involved
in the conceptualization of the work. All authors read and approved the final manuscript.

iv

Abstract

The last decade has seen remarkable advances in speech, image and language recognition
tools that have been made available to the public through computer and mobile devices’
applications. Most of these significant improvements were achieved by Artificial Intelli-
gence (AI)/ deep learning (DL) algorithms (Hinton et al. [2006]) that generally refers to a
set of novel neural network architectures and algorithms such as long-short term memory
(LSTM) units, convolutional networks (CNN), autoencoders (AE), t-distributed stochastic
embedding (TSNE), etc. Although neural networks are not new, due to a combination of
relatively novel improvements in methods for training the networks and the availability of
increasingly powerful computers, one can now model much more complex nonlinear dy-
namic behaviour by using complex structures of neurons, i.e. more layers of neurons, than
ever before (Goodfellow et al. [2016]). However, it is recognized that training of neural
nets of such complex structures require a vast amount of data. In this sense manufacturing
processes are good candidates for deep learning applications since they utilize computers
and information systems for monitoring and control thus generating massive amount of
data. This is especially true in pharmaceutical companies such as Sanofi Pasteur, the in-
dustrial collaborator for the current study, where large data sets are routinely stored for
monitoring and regulatory purposes. Although novel DL algorithms have been applied
with great success in image analysis, speech recognition and language translation, their
applications to chemical processes and pharmaceutical processes in particular is scarce.

The current work deals with investigation of deep learning in process systems engineer-
ing for three main areas of application:

1. Developing a deep learning classification model for profit based operating regions.

2. Developing both supervised and unsupervised process monitoring algorithms.

3. Observability Analysis

It is recognized that most empirical or black-box models, including DL models, have
good generalization capabilities but are difficult to interpret. For example, using these

v

methods it is difficult to understand how a particular decision is made, which input vari-
able/feature is greatly influencing the decision made by the DL models etc. This under-
standing is expected to shed light on why biased results can be obtained or why a wrong
class is predicted with a higher probability in classification problems. Hence, a key goal
of the current work is on deriving process insights from DL models. To this end, the
work proposes both supervised and unsupervised learning approaches to identify regions of
process inputs that result in corresponding regions, i.e ranges of values, of process profit.
Furthermore, it will be shown that the ability to better interpret the model by identifying
inputs that are most informative can be used to reduce over-fitting. To this end a neural
network (NN) pruning algorithm is developed that provides important physical insights on
the system regarding the inputs that have positive and negative effect on profit function
and to detect significant changes in process phenomenon. It is shown that pruning of input
variables significantly reduces the number of parameters to be estimated and improves the
classification test accuracy for both case studies: the Tennessee Eastman Process (TEP)
and an industrial vaccine manufacturing process.

The ability to store large amount of data have permitted the use of deep learning (DL)
and optimization algorithms for the process industries. In order to meet high levels of
product quality, efficiency and reliability, a process monitoring system is needed. The
two aspects of Statistical Process Control (SPC) are fault detection and diagnosis (FDD).
Many multivariate statistical methods like PCA and PLS and their dynamic variants have
been extensively used for FD. However, the inherent non-linearities in the process pose
challenges while using these linear models. Numerous deep learning FDD approaches have
also been developed in the literature. However, the contribution plots for identifying the
root cause of the fault have not been derived from Deep Neural Networks (DNNs). To
this end, the supervised fault detection problem in the current work is formulated as a
binary classification problem while the supervised fault diagnosis problem is formulated as
a multi-class classification problem to identify the type of fault. Then, the application of
the concept of explainability of DNNs is explored with its particular application in FDD
problem. The developed methodology is demonstrated on TEP with non-incipient faults.
Incipient faults are faulty conditions where signal to noise ratio is small and have not been

vi

widely studied in the literature. To address the same, a hierarchical dynamic deep learning
algorithm is developed specifically to address the issue of fault detection and diagnosis of
incipient faults.

One of the major drawback of both the methods described above is the availability of
labeled data i.e. normal operation and faulty operation data. From an industrial point of
view, most data in an industrial setting, specially for biochemical processes, is obtained
during normal operation and faulty data may not be available or may be insufficient. Hence,
we also develop a unsupervised DL approach for process monitoring. It involves a novel
objective function and a NN architecture that is tailored to detect the faults effectively.
The idea is to learn the distribution of normal operation data to differentiate among the
fault conditions. In order to demonstrate the advantages of the proposed methodology for
fault detection, systematic comparisons are conducted with Multiway Principal Compo-
nent Analysis (MPCA) and Multiway Partial Least Squares (MPLS) on an industrial scale
Penicillin Simulator.

Past investigations reported that the variability in productivity in the Sanofi’s Pertus-
sis Vaccine Manufacturing process may be highly correlated to biological phenomena, i.e.
oxidative stresses, that are not routinely monitored by the company. While the company
monitors and stores large amount of fermentation data it may be not be sufficiently infor-
mative about the underlying phenomena affecting the level of productivity. Furthermore,
since the addition of new sensors in pharmaceutical processes requires extensive and ex-
pensive validation and certification procedures, it is very important to assess the potential
ability of a sensor to observe relevant phenomena before its actual adoption in the manufac-
turing environment. This motivates the study of the observability of the phenomena from
available data. An algorithm is proposed to check the observability for the classification
task from the observed data (measurements). The proposed methodology makes use of an
Supervised AE to reduce the dimensionality of the inputs. Thereafter, a criterion on the
distance between the samples is used to calculate the percentage of overlap between the
defined classes. The proposed algorithm is tested on the benchmark Tennessee Eastman
process and then applied to the industrial vaccine manufacturing process.

vii

Acknowledgements

Foremost, I would like to express my sincere gratitude to my advisor Professor Hector Bud-
man. Even before being my supervisor he was an exceptional role model in work ethics and
research methods. My special thanks to him for his promptness and sparing his invaluable
time to help me advance quickly through out my research. His passion and devotion to
research continues to inspire me and kept me going at times. I appreciate his continuous
support throughout my graduate studies and research. I am greatly indebted for his advice
on my overall development.

I would like to thank the Department of Chemical Engineering, University of Water-
loo, for providing me an opportunity to pursue my PhD degree and with the best of the
resources and a friendly atmosphere. Special thanks to all the administrative staff and
especially Judy Caron who kept her patience and have helped me through out my journey.

I would also like to express my special thanks to Professor Alexander Penlidis. I will
always cherish the enjoyable times I have had while assisting him with his teaching. I can
never forget his wonderful words of advice and his sense of wit that I have enjoyed in his
presence. I gratefully acknowledge Dr. Melih Tamer for supporting me throughout my
PhD program and for providing the resources and help me get the right information from
the domain experts at Sanofi Pasteur. I will forever be thankful to my former advisor,
Professor Arun Tangirala. He has been instrumental in my development as a researcher
and motivated to pursue PhD in the first place.

I would like to express my gratitude to my doctoral committee members: Prof. Peter
Douglas, Prof. Nasser Mohieddin Abukhdeir and Prof. Kumaraswamy Ponnambalam, for
their feedback that gave direction to my entire doctoral research and brought in threads
of thought that made my research so much richer.

I will always cherish the warmth and affection that I have received from my present
and past colleagues and friends Tharun, Mariana, Michael, Xin, Dr. Yue, Huabei, Hong-

viii

hao, Han Wang, Shashi, Kavita, Oscar, Dr. Prasad, Manan, Dr. Manoj, Donovan, Dr.
Mahshad, Shruthi, Meghana, Abhishek, Mohammad. Special thanks to Vipul Mann, my
former colleague, who have been a key support during the pandemic. I would like to thank
him for all engaging conversations and insightful discussions over the years. I would like
to thank Vanessa for her help in understanding cell biology and her PhD work along with
several discussions.

I cannot thank Changjian Li enough for being the support system. I am grateful to
his advice on many critical occasions and helped me stay sane during the stay. Special
thanks to Anugrah Gangrade for being ‘the constant’ through all these years (a decade at
this point in time). I also thank Yash Channe and Gaurav Phule for being supportive and
caring during tough times.

Without the support of my family members, this work would not have been possible. My
endless gratitude towards my parents for bestowing their unconditional love and affection.
I am indebted to my sister Payal for her affectionate love and friendship. Besides this,
several people knowingly or unknowingly helped me in the successful completion of this
work.

ix

Dedication

I dedicate this thesis to
my grandparents, parents and my sister
for their support and unconditional love.
I love you all dearly

x

Table of Contents

List of Figures xv

List of Tables xx

1 Introduction 1

2 Background 7

2.1 Introduction to Artificial Neural Networks 7

2.2 Multi-Layer Perceptron Neural Network (MLP-NN) 7

2.3 Activation Functions . 9

2.4 Autoencoder Neural Networks (AE-NNs) 10

2.5 Long-Short Term Memory (LSTM) Units 13

2.6 Generalization, Regularization and Dropout 15

3 Deep Learning for Classification of Profit-based Operating Regions in Industrial
Processes 18

3.1 Introduction . 19

3.2 Preliminaries . 24

3.2.1 Long Short-Term Memory Neural Networks (LSTM-NN) 24

xi

3.2.2 Layer-wise Relevance Propagation (LRP) 26

3.3 Proposed Methodology: Sequential Layer-Wise Relevance Propagation for
Pruning (SLRPFP) . 27

3.4 Results and Discussions . 28

3.4.1 Case Study 1: Tennessee Eastman Process (Simulated Case Study) 28

3.4.2 Case Study 2: Industrial Vaccine Manufacturing Process 39

3.5 Conclusion . 52

4 Explainability: Relevance based Dynamic Deep Learning Algorithm for Fault De-
tection and Diagnosis in Chemical Processes 54

4.1 Introduction . 55

4.2 Preliminaries . 59

4.2.1 Deep Supervised Autoencoder Classification Neural Networks (DSAE-
NNs) . 59

4.2.2 Dynamic Deep Supervised Autoencoder Classification Neural Net-
works (DDSAE-NNs) . 61

4.2.3 Layer-wise Relevance Propagation (LRP) 62

4.3 Proposed Fault Detection and Diagnosis Methodology based on DSAE-NNs
and DDSAE-NNs . 65

4.3.1 Fault Detection Methodology . 66

4.3.2 Fault Diagnosis Methodology . 68

4.3.3 Proposed Methodology for FDD . 69

4.4 Case Study: Tennessee Eastman Process 72

4.5 Conclusion . 85

xii

5 Hierarchical Deep LSTM for Fault Detection and Diagnosis for a Chemical Process 88

5.1 Introduction . 89

5.2 Preliminaries . 92

5.2.1 Deep LSTM Supervised Autoencoder Neural Network (LSTM-SAE
NN) . 92

5.2.2 Model Structure and Specifications 94

5.3 Hierarchical Structure . 95

5.3.1 Design: Pseudo-random Binary Signal (PRBS) 98

5.4 Results and discussion . 100

5.5 Conclusions . 109

6 A Novel Unsupervised Approach for Batch Process Monitoring using Deep Learn-
ing 113

6.1 Introduction . 114

6.2 Preliminaries . 117

6.2.1 Multiway Principal Component Analysis (MPCA) 117

6.2.2 MPLS . 120

6.3 Proposed Methodology . 121

6.3.1 Multiway Partial Least Squares Autoencoder (MPLS-AE) 121

6.3.2 Novel Objective Function for Maximizing Fault Detection Rate . . . 124

6.3.3 Average Fault Detection Rate (FDR) 125

6.3.4 Case study . 127

6.4 Results and Discussions . 129

6.4.1 MPCA and MPLS with JMPCA and JMPLS 131

6.4.2 MPCA and MPLS with JMPCA−MPLS,FDR 133

xiii

6.4.3 MPLS-AE with JMPLS−AE . 135

6.4.4 MPLS-AE with JMPLS−AE,FDR . 137

6.5 Conclusion . 140

7 Assessing Observability using Supervised Autoencoders with Application to Indus-
trial Processes 142

7.1 Introduction . 143

7.2 Preliminaries . 146

7.2.1 Supervised Autoencoder Classification Neural Networks (SAE-NNs) 147

7.3 Description of Case Studies . 148

7.4 Proposed Methodology . 150

7.5 Results and Discussion . 154

7.5.1 Effect of Reconstruction Error Loss function on classification accuracy155

7.5.2 Degree of Classification Observability for the TEP problem 156

7.5.3 Enhancing Classification Observability 157

7.5.4 Degree of Classification Observability for the Vaccine Manufacturing
Process at Sanofi Pasteur, Toronto 159

7.6 Conclusion . 162

8 Conclusions and Future Work 164

8.1 Conclusions . 164

8.1.1 Classification of profit-based operating conditions 164

8.1.2 Statistical Process Control and Monitoring 165

8.1.3 Evaluating observability . 167

8.2 Future Work . 168

References 170

xiv

List of Figures

2.1 Multi-Layer Perceptron Neural Network 8

2.2 Traditional single layer Autoencoder Neural Network (AE-NN) 12

2.3 Schematic of a LSTM memory cell . 14

3.1 Schematic of a LSTM memory cell . 25

3.2 Sequence to label classification using LSTM-NN 26

3.3 Tennessee Eastman plant process (Downs & Vogel, 1993) 30

3.4 Distribution of COP values . 31

3.5 Confusion Matrices for Step 1 and Step 9 of the proposed method SLRPFP.
(a) Confusion Matrix for Step 1. (b) Confusion Matrix for Step 9. 32

3.6 Average relevance of input variables for different iterations (SLRPFP). (Step
1-4) . 33

3.7 Average relevance of input variables for different iterations (SLRPFP). (Step
5-8) . 34

3.8 Average relevance of input variables for final iteration (SLRPFP). (Step 9) 35

3.9 Confusion Matrices for unsupervised approaches (Case 1) 37

3.10 Distribution of PRN (ELISA) productivity 38

3.11 Schematic of vaccine manufacturing process at Sanofi Pasteur, Toronto,
Canada . 40

xv

3.12 MLP + SLRPFP: Test dataset accuracy before (left) and after SLRPFP
(right) for industrial process . 43

3.13 Averaged Time-based Relevance of Aeration profile for both High and Low
PRN productivity batches . 44

3.14 Averaged Time-based Relevance of Agitation profile for both High and Low
PRN productivity batches . 45

3.15 Averaged Time-based Relevance of Jacket Temperature profile for both High
and Low PRN productivity batches . 46

3.16 Averaged Time-based Relevance of Seal Temperature profile for both High
and Low PRN productivity batches . 47

3.17 LSTM + SLRPFP: confusion matrix of test dataset before (left) and after
(right) SLRPFP . 48

3.18 (a) Difference in the growth profile for two fermenters; (b) Increase in agi-
tation profiles around 18 hours because of delayed increase of growth in low
PRN batches . 50

3.19 Averaged Relevance of all Input Variables from the LSTM model 51

3.20 (a) Selection of avg. number of principal components in BDPCA; (b) Con-
fusion Matrix for test dataset (BDPCA) 52

4.1 Schematic of a single layer Supervised Autoencoder Neural Network (SAE-NN) 60

4.2 Left figure: Represents forward contribution of each node to the output
layer; Right figure: Represents the relevance propagation from output layer
to the input layer . 64

4.3 Flowchart for fault detection and diagnosis based on explainable DNN . . 70

4.4 Schematic: Tennessee Eastman plant process (Downs and Vogel, 1993) . . 72

4.5 Final Iteration: Averaged Relative Relevance Plot for Fault Detection (DDSAE
Model with 2 lagged input variables as Xl) 77

xvi

4.6 Confusion Matrix for Fault Classification (First Iteration: DSAEModel with
52 input variables) . 80

4.7 Confusion Matrix for Fault Classification (Final Iteration: DDSAE Model
with 10 lagged input variables) . 81

4.8 Final Iteration: Averaged Relative Relevance Plot for Fault Diagnosis (DDSAE
Model with 10 lagged input variables as Xl) 82

4.9 Input variable relevance plot for Fault Diagnosis (IDV 1) 82

4.10 Relevant variables contributing to IDV(1) with nominal and abnormal profiles 83

4.11 Input variable relevance plot for Fault Diagnosis (IDV 2) 83

4.12 Relevant variables contributing to IDV(2) with nominal and abnormal profiles 84

4.13 Variable Contribution Heatmap corresponding to all faults 84

4.14 Comparison of Fault Classification rate with different methods 85

5.1 Schematic of a Deep LSTM Supervised Autoencoder Neural Network (DLSTM-
SAE NN) . 94

5.2 Hierarchical structure used for fault detection and diagnosis 97

5.3 Confusion Matrix for the first level model of the hierarchical structure (i.e.
classification of non-incipient faults and considering incipient faults as a
normal class) . 101

5.4 Comparison of averaged fault classification rates (non-incipient faults only) 102

5.5 Comparison of averaged fault classification rates (all faults) 103

5.6 Confusion Matrix on test data for the second level model of the hierarchical
structure: a) After adding designed PRBS signal w.r.t. fault 15 b) After
adding designed PRBS signal w.r.t. fault 9 and fault 15 107

5.7 Selection of optimal time horizon for Hierarchical LSTM-SAE Level 1 model 108

6.1 Schematic of a Multiway Partial Least Squares Autoencoder (MPLS-AE) . 121

xvii

6.2 Flowchart for fault detection based on novel objective function 126

6.3 Summary of all model inputs and outputs recorded by IndPenSim 129

6.4 Profiles of measured variables in normal and faulty conditions. 130

6.5 Plots of T 2
k and static control limits T 2

α for six different faulty batches of the
test dataset based on JMPCA as the objective function (α = 0.01). 132

6.6 Plots of Qk and static control limits Qα for six different faulty batches of
the test dataset based on JMPCA as the objective function (α = 0.01). . . . 133

6.7 Plot of T 2
k and dynamic control limits T 2

k,α of six different faulty batches of
the test dataset by using JMPLS as the objective function (α = 0.01). . . . 134

6.8 Plots of Qk and dynamic control limits Qk,α for six different faulty batches
of the test dataset based on JMPLS as the objective function (α = 0.01). . 135

6.9 Plots of T 2
k and dynamic control limits T 2

k,α for six different faulty batches
of the test dataset based on JMPCA−MPLS,FDR as the objective function for
the MPLS model (α = 0.01). 137

6.10 Plots of Qk and dynamic control limits Qk,α for six different faulty batches
of the test dataset based on JMPCA−MPLS,FDR as the objective function for
the MPLS model (α = 0.01). 138

6.11 Loss of the validation dataset with MPLS-AE model using JMPLS−AE as
the objective function to train the network. 139

6.12 Plots of H2
k and dynamic control limits H2

k,α for six different faulty batches
of the test dataset based on JMPLS−AE,FDR as the objective function to train
MPLS-AE (α = 0.01). 140

6.13 Plots of SPE2
k and dynamic control limits SPE2

k,α for six different faulty
batches of the test dataset based on JMPLS−AE,FDR as the objective function
to train MPLS-AE (α = 0.01). 141

7.1 Traditional single layer Autoencoder Neural Network (AE-NN) 146

xviii

7.2 Left: Projection of input space in 2 dimensions using TSNE for non-overlapping
case (Case 1), Right: Projection of input space in 2 dimensions using TSNE
for overlapping case (Case 2) . 148

7.3 Schematic of Tennessee Eastman plant process (Downs & Vogel, 1993) . . 150

7.4 Distribution of Cost Of Productivities (COP) 151

7.5 Average Relevance corresponding to correctly classified samples for low over-
lapping case (Case 1) . 154

7.6 Average Relevance corresponding to overlapping samples for Case 1 155

7.7 Confusion Matrix for Case 1 (Validation Data-set) 156

7.8 Classification Overlap Matrix (COv) for Case 1 (Validation Data-set) . . . 157

xix

List of Tables

2.1 Commonly used activation functions and plots 11

3.1 Profit-based defined classes for COP . 31

3.2 Implementation of SLRPFP for pruning input variables in TEP using LSTM
model . 36

3.3 Classes for productivity of Pertactin . 41

4.1 Measured and manipulated variables (from Downs and Vogel, 1993) 73

4.2 Process Faults for classification in TE Process 74

4.3 Detection Delay for different faults . 77

4.4 Network Architecture and iterations for fault detection methodology 78

4.5 Network Architecture and iterations for fault diagnosis methodology 79

4.6 Comparison of Fault Detection Rate with different methods with non-incipient
faults only . 86

5.1 Confusion Matrix for each fault (IDV(i)) 102

5.2 Comparison of Fault Detection Rate with different methods with non-incipient
faults only . 110

5.3 Comparison of Fault Detection rate with different methods (with all faults) 111

5.4 Ablation study for the proposed method 112

xx

6.1 Description of different types of fault . 130

6.2 Comparison of (FDR) test accuracy for different models 136

7.1 Profit-based defined classes for COP . 149

7.2 Degree of classification observability (Cobs) for Case 1 and Case 2 158

7.3 Classification Accuracy for both cases (z ∈ Rdz , dz = 7) 158

xxi

Chapter 1

Introduction

Artificial intelligence (AI) involves a vast range of technologies that permit computers to
emulate human thinking for the purpose of solving problems. Within AI there is a smaller
category of algorithms, referred to as machine learning, that includes important mathe-
matical techniques such as multivariate statistical models, neural networks and other date
driven modeling methods, that can be used to improve processes based on data. Deep
Learning refers to a particular type of machine learning techniques that use Deep (mul-
tilayered) Neural Network (NN) architectures. Although neural networks (NNs) are not
new, their initial buzz momentarily fizzled in the 2000s when their computational lim-
itations were identified in a classical paper by Minsky and Papert [1972]. That study
demonstrated that NNs are limited since they require a large amount of data for training,
inefficient learning and often converge to a local optimum of the loss function that it is
minimized for learning. These convergence issues were due to the use of gradient based
algorithms that require very good initial guesses of the network parameters to converge
to global optima. The current interest in NNs stems from the significant increase of com-
putational power over the years combined with key theoretical developments that address
some of the earlier limitations of NNs. These developments are in the area of deep NNs
with new architectures such as Convolutional NNs, Auotencoder NNs, Long-short term
memory (LSTM) NNs (Hochreiter and Schmidhuber [1997]), General Adversial Networks
(GAN) (Goodfellow et al. [2016]), etc. Novel greedy learning approaches were developed to

1

train these networks where the neuron parameters for the layers of the multi-layered (deep)
neural networks are learned progressively starting from the first layer (input) to the last
layer (outputs) one at a time and where each successive layer is learned based on results
from the previous layer. While deep learning algorithms have been applied extensively in
speech, language and vision problems, there are only few reported applications in chemical
processes and specifically to bio-pharmaceutical processes as considered in this work.

Three case studies were considered in the current work: the whooping cough vac-
cine manufacturing process at Sanofi Pasteur, (the industrial collaborator for the current
work), the Tennessee Eastman process and a Penicillin batch manufacturing process. The
Sanofi process motivated the topics that were investigated in the current work. Since the
objectives of this work were to both develop novel methodologies as well as monitoring
approaches for the Sanofi process we pursued a pragmatic approach where the proposed
algorithms were first tested on a known simulator of a chemical engineering plant, the TEP
and Penicillin batch process and then they were tested on data provided by Sanofi Pasteur.

A major problem of the Pertussis Vaccine Manufacturing process for whooping cough
at Sanofi Pasteur, Toronto (our industrial collaborator) is the variability in production of
Pertactin (PRN), one of the antigens in the vaccine. In order to lower the variability, it is
required to identify its root cause with the available measurements. The data to be used
in this work is primarily extracted from the extensive historical data base of Sanofi for the
manufacturing of whooping cough vaccine. The data included frequent measurements of
fermentation data such as dissolved oxygen, aeration rates etc. While large amounts of
process data are available from Sanofi, detailed mathematical models of their processes are
not available. Also, while a lot of data was available, it was not a-priori clear which data
is informative about the sources of process variability. In view that deep neural networks
involve many model parameters it is crucial to identify the informative inputs to avoid
over-fitting of the data by the model. The ability to quantify the relevance of specific
measurements on productivity and other variables of interest was also crucial in order to
decide on the addition of new sensors to the process. The adoption of new sensors in a
pharmaceutical manufacturing environment requires extensive validation and certification
procedures. Thus, it is vital to predict the relevance of a new sensor based on preliminary

2

data before its adoption. Another important challenge for the Sanofi process is that the
sources of variability have not been fully identified as yet. This rules out the ability to
develop supervised learning algorithms for this process but motivates the application of
unsupervised learning based algorithms to detect abnormal operation.

To identify inputs that are most informative about outputs of interest, we develop a
NN based classification methodology in Chapter 3 for classifying inputs pertaining to dif-
ferent productivity regions. This algorithm identify correlations between different ranges
of input variables to different ranges of productivity of PRN antigens. The problem of clas-
sifying the inputs to a process according to different corresponding regions of productivity
is somewhat different from a conventional fault classification problem since the goal here is
to find combinations of input variables that result in different levels of profit/cost of pro-
ductivity. For example, this type of problem permits both identifying input variables that
have significant impact on profit as well as for identifying regions of input conditions that
will result in high profit/low productivity cost. Classification tasks have been previously
carried out using linear latent variables based techniques such as Principal Component
Analysis (PCA) and Partial Least Squares (PLS). However, linear models when applied to
non-linear processes may not be sufficiently accurate to represent highly nonlinear dynamic
behavior. Machine learning/deep learning tools have been shown to be capable to both
compress the data and to more accurately capture non-linear dynamics and consequently
they were utilized in this work for modelling and classification purposes.

Another important task is to derive process insights from these classification models.
Although DL based models have better generalization capabilities, they are poor in in-
terpretation abilities because of their black box nature. Using these models it is difficult
to identify the root cause, to understand how particular decisions are made, which input
variable/feature is greatly influencing the decision made by the DL-NN models, etc. This
understanding is important to shed light on why biased results can be obtained, why a
wrong class is predicted with a higher probability in classification problems etc. Towards
these goals, concepts from explainable AI were explored in order to explain the NN pre-
dictions. These explanations are termed as ‘relevances’. Relevance of input variables to a

3

classification task is paramount to understand the process model.

Moreover, the use of ‘relevances’ helped in discarding input measurements that are not
relevant or had low relevance with respect to a particular classification task. Removing
these irrelevant input variables reduces the number of network connections thus reducing
the model parameters and reducing model over-fitting. Deep neural networks tend to con-
tain millions of parameters, necessitating costly computational resources in order to train
and deploy them in practice, and motivating the need to develop compact networks with
fewer parameters (Han et al. [2015]). A reduction in parameter count alleviates the compu-
tational burden on training and inference, making it easier to deploy high capacity models.
“Pruning" techniques have been proposed to eliminate irrelevant nodes, i.e. nodes that
do not contribute significantly for minimizing the loss function. Most reported pruning
methods are based on eliminating nodes while minimizing a non-linear loss function thus
potentially converging to local minima. Other typical pruning algorithms either proceed
by gradually pruning the nodes/units of the network during training (Gale et al. [2019]; He
et al. [2018]; Zhu and Gupta [2017]) or by pruning the network after training followed by a
retraining period (Han et al. [2015]; Liebenwein et al. [2021]; Renda et al. [2020]). Instead,
we propose in this study a novel method for pruning ‘input variables’ instead of nodes/units
of the NN by an algorithm that is based on evaluation of the averaged-relative relevance
of input variables. Accordingly, the proposed method is referred to as ‘relevance based
pruning’ in this work. Beyond its ability of pruning input variables and the network it
will also be shown that the proposed methodology provides process insights. For example,
the proposed pruning method in Chapter 3 can be used to identify regions of input con-
ditions that will result in corresponding regions of high/low profit levels or high/low quality.

In order to meet high quality and productivity of end products, it is imperative to
design a process monitoring system. Numerous empirical monitoring algorithms have been
developed in the literature based on linear, non-linear and DL models. Recent DL methods
have shown considerable improvement over traditional methods. Using these methods it is
difficult to identify the root cause of faults i.e. input variables that are most correlated to
the occurrence of the faults by significantly deviating from their normal trajectories follow-
ing the occurrence of the fault. Chapter 4 investigates the application of the explainability

4

concept to derive contribution plots from deep NNs and enhance the fault detection and
diagnosis (FDD) accuracy by pruning measurements of low relevance score.

A key issue in monitoring faults in manufacturing processes is the occurrence of in-
cipient faults that cannot be easily identified due to high overlap of signals corresponding
to different faults. The detection of incipient faults is shown in Chapter 5 where a deep
LSTM based method is developed that uses dynamic information of the process along the
time horizon. Based on this network, a hierarchical structure is formulated by grouping
faults based on their similarity into subsets of faults for detection and diagnosis. Further,
an external input is designed and introduced at specific locations in the TEP for improv-
ing the low signal to noise ratio. This improves the detection and classification accuracy
significantly for both incipient and non-incipient faults. Both supervised FDD approaches
(Chapter 4 and Chapter 5) are tested on benchmark TEP resulting in significant improve-
ments over other state of the art methods.

One of the major drawback of both the methods proposed in Chapter 4 and 5 is that
they required labeled data for training i.e. normal operation and faulty operation data.
From an industrial point of view, most data in an industrial setting such as the whooping
cough vaccine manufacturing process at Sanofi Pasteur,Toronto, is obtained during normal
operation and faulty data may not be available or may be insufficient. Hence, we develop
a unsupervised DL approach for process monitoring where the process monitoring system
utilizes normal operation historical data records in Chapter 6. It involves a novel objective
function and a NN architecture that is tailored to detect the faults effectively. The idea
is to learn the distribution of normal operation data and to be able to distinguish abnor-
mal operation based on the model trained with normal operation data only. In order to
demonstrate the advantages of the proposed methodology for fault detection, systematic
comparisons are conducted with Multiway Principal Component Analysis (MPCA) and
Multiway Partial Least Squares (MPLS) on an industrial scale Penicillin Simulator.

Past investigations reported that the variability in productivity in the Sanofi process
may be highly correlated to biological phenomena, i.e. oxidative stresses, that are not

5

routinely monitored by the company. Thus, while the company monitors and stores large
amount of fermentation data, the latter may be not be sufficiently informative about the
underlying phenomena affecting the level of productivity. To improve process diagnosis,
Sanofi Pasteur continuously consider the adoption of new sensors, e.g. measurement of off-
gases concentrations in the fermentation process. This motivated the study of observability
of phenomena from preliminary data collected with a new sensor and its ability to add
information about the process. An algorithm is proposed to check the observability for the
classification task from the observed data (measurements). The proposed methodology
makes use of an Autoencoder to reduce the dimensionality of the inputs. Thereafter, a
criterion on the distance between the samples is used to calculate the percentage of overlap
between the defined classes. The proposed algorithm is tested on the benchmark Tennessee
Eastman process and it is presented later in Chapter 7.

Following the above, the novel contributions of this work can be summarized as follows:

1. Developed a supervised learning classification method for both static and dynamic
DL models based on relevance and pruning of not significant inputs.

2. Developed an explainability based fault detection and diagnosis methodology based
on DL models to identify the contributions of inputs to outputs of interest

3. Developed a hierarchical methodology for Fault detection and diagnosis of incipient
faults

4. Developed an unsupervised fault detection and diagnosis methodology based on DNN
models.

5. Developed a methodology to quantify the observability of outputs based on available
data using DL models.

6

Chapter 2

Background

2.1 Introduction to Artificial Neural Networks

Artificial Neural Networks (ANNs) have been developed as a way to describe how complex
information can be learned and processed by the biological nervous system. The way the
human nervous system works has not been fully reproduced so far, neural networks are de-
rived as a narrow - minded abstraction that takes advantage of the knowledge of the basic
functionality and neuron organization. Human brain learn through experience similarly
neural networks use examples (data samples) to generalize rules by performing multiple
linear and nonlinear functions and adjusting the tuning weights of these functions to meet
a specific fit criterion quality (Goodfellow et al. [2016]).

2.2 Multi-Layer Perceptron Neural Network (MLP-NN)

AMLP is a class of feed-forward network (also known as Artificial Neural Network (ANN)).
Since single perceptrons (neurons) models are unable to explain complex non-linear func-
tions Goodfellow et al. [2016] several stacked neurons and layers are needed to approximate
non-linear complex functions. Each layer of neurons are stacked one after another and is

7

connected to each neuron in the following layer. Figure 2.1 shows a schematic for a basic
Multi-Layer Perceptron of three layers. The network consists of three layers: input layer,
hidden layer and an output layer. The input layer is fed with the data available in the
problem. The hidden layers are used by the network to learn the important features that
are contained in the input data. The output layer provides a final response that might be a
class label in problems of classification or continuous values in general forecast/prediction
problems. It is important to note that there are no limitations on the number of layers
nor the number of neurons in a network. However, in feed-forward networks, there are no
interconnections among neurons within the same layer and thus the data is transmitted
only in the forward direction.

Input #1

Input #2

Input #3

Input #4

Output

Hidden
layer
(h1)

Hidden
layer
(h2)

Hidden
layer
(h3)

Input
layer (x)

Output
layer (y)

Figure 2.1: Multi-Layer Perceptron Neural Network

To summarize the figure, each neuron h1
j in the first hidden layer (L1) is connected to

each input neuron in the input layer x = x1, x2, . . . , xn, each of which have specific weights
associated to each input-hidden layer connection wn = w1j, w2j, . . . , wnj and a bias term
θij. The weighted sum of the inputs is then calculated using the following formula:

zj =
n∑
i=1

xiwij + θij (2.1)

8

The value of zj is then passed through an activation function f(zj), that is the key decision
making unit, which depending on the task to be accomplished can take different forms.
Consider for instance the following ‘log-sigmoid’ activation function:

f(zj) =
1

1 + e−zj
(2.2)

then the output of h1
j is computed as

h1
j =

1

1 + e−(
∑n
i=0 xiwij+θij)

(2.3)

The output from each node in the hidden layer is computed and the resulting values are
used as inputs for the following layer. The outputs from the last hidden layer is considered
as inputs for the output layer. For classification softmax layer is used as the output layer
as follows:

yi = softmax(oi) =
exp(oi)∑
j exp(oj)

(2.4)

2.3 Activation Functions

Table 2.1 shows the corresponding equation and graphical representation of the output
that are obtained for each one of the most popular activation functions used in neural
network models. The first type of activation function is the linear function, which is easy
to compute but unable to learn complex nonlinear behavior. The binary step is an acti-
vation function that is usually used to compute the output of a classification network and
the result of the function is either 0 or 1. In contrast, the three following rows, in table
1, represent the most popular activation functions used to describe non-linearities to the
network. The sigmoid function computes an S-shaped output, which will return an output
between 0 and 1 depending on the value of the weighted sum of the inputs. The tanh is also
an S-shaped function, though instead of the output being between 0 and 1 it ranges from
-1 to 1. The output range that the tanh function computes is often more desirable than the
sigmoid due to the fact that it is zero-centered. The advantage is that the negative inputs
will be mapped strongly negative and the zero inputs will be mapped near zero in the

9

tanh graph. Lastly, the rectified linear unit (ReLU) is currently the most used activation
function in current neural network applications (Nair and Hinton [2010]). There are two
main advantages of using ReLU as activation for units in deep neural networks as follows:
i- the non-linearity of the function will allow the network to create sparse representations
which results in transferring only important information through the network and ii- the
form of the activation function dictates a linear dependency of the gradient with respect
to the error that does not decay rapidly to zero as in the case of sigmoids thus avoiding
the vanishing gradient problem (Glorot and Bengio [2010]).

It is important to mention that any of the activation units presented in Table 1 may
be used in any of the layers of the network, either hidden or output. In addition, to all
the previous layers, in many classification problems it is often desired to make the output
vector a probabilistic distribution over n different classes to account for the presence of noise
and stochastic disturbances. Such probabilistic classification can be generally addressed
by applying softmax activation units in the output layers. The formula of the softmax
function is obtained by normalizing zi, where zi is defined as

zi =
∑

xiwi + θi (2.5)

which then is applied to the softmax activation function as

yi = f(zi) =
exp(zi)∑
j exp(zj)

(2.6)

A strong prediction will result in only one category having a value close to 1, while a weak
prediction will have the probability distributed among several categories.

2.4 Autoencoder Neural Networks (AE-NNs)

A traditional AE-NN is a neural network model composed of two parts: encoder and
decoder, as shown in Figure 2.2. An AE is trained in an unsupervised fashion to extract

10

Name Equation Lab

Linear f(z) = az + b

Binary Step f(z) =

0 for z < 0

1 for z ≥ 0

Sigmoid f(z) = 1
1+e−z

Tanh f(z) = tanh(z) = 2
1+e−2z − 1

Rectified Linear
Unit (ReLU)

f(z) = max(0, z) =

0 for z < 0

z for z ≥ 0

Table 2.1: Commonly used activation functions and plots

11

x1

x2

x3

x4

x5

x̂1

x̂2

x̂3

x̂4

x̂5

Latent
Space
(z)

Input
layer
(x)

Output
layer
(x̂)

fe(x) fd(z)

Figure 2.2: Traditional single layer Autoencoder Neural Network (AE-NN)

underlying patterns in the data and to facilitate dimensionality reduction. The encoder is
trained so as to compress the input data onto a reduced latent space defined within a hidden
layer and the decoder uncompresses back the hidden layer outputs into the reconstructed
inputs. Let us consider the inputs to an AE-NN X = [x1 x2 x3 . . .xN]T ∈ RN×dx , then the
operation performed by the encoder for a single hidden layer between the input variables
to the latent space z ∈ Rdz variables (latent variables) for time sample i can be represented
as follows:

zi = fe(Wexi + be) (2.7)

where fe is a chosen non-linear activation function for the encoder, We ∈ Rdz×dx is an
encoder weight matrix, be ∈ Rdz is a bias vector. The decoder reconstructs back the input
variables from the feature or latent space zi ∈ Rdz as per the following operation follows:

x̂i = fd(Wdzi + bd) (2.8)

where fd is a chosen activation function for the decoder, Wd ∈ Rdx×dz and bd ∈ Rdx is a
decoder weight matrix and a bias vector respectively. The ‘tanh’ function is used for both
transforming the inputs into the latent variables and for reconstructing back the inputs

12

from the latent variables as an example here. The AE-NN is trained based on the following
minimization problem:

lAE(x,WdWex) =
1

2N
||x− x̂||22 =

1

2N

N∑
s=1

(
xs − x̂s

)2 (2.9)

where N is the number of samples.

2.5 Long-Short Term Memory (LSTM) Units

The LSTM unit is composed of three gated units and a memory cell Hochreiter and Schmid-
huber [1997]. Figure 2.3 shows a single LSTM unit that includes four major gates: the
forget gate (ft), the input gate (it), the output gate (ot) and the update gate (gt). The
key component of the LSTM unit is the memory cell (ct ∈ Rdh×1) that is responsible for
storing critical long term dependencies learned over time. The input gate (it) is responsi-
ble for evaluating which part, if any, of the past historical data should be kept. Thus, the
objective of the input gate is to allow the network to keep only relevant information from
the previous time steps and discard the rest for a sample i.

Subsequently, the information that is worth keeping is determined by the memory
cell (ct). The process of identifying information and storing in the memory cell consists
of two parts: new information that is recorded and information that is discarded. The
information that should be discarded from previous cell state cit−1 is determined by the
forget gate (ft), which is responsible for forgetting previously stored cell state values that
have lost their relevance. Then new relevant information is added and existing cell-state
values are updated by first selecting which values to update using the input gate i it and
the output from the input gate is then multiplied by the new information generated by
the update gate g i

t . Ultimately, the output ht is computed at every time step from
the information contained in the memory cell and it is further gated by an output gate
according to its relative importance or relevance. The mathematical equations describing
these gating operations are as follows:

13

Forget
Gate
ft

Update
Gategt Input

Gate
it

Output
Gate
ot

σ σ tanh σ

× +

× ×

tanh

ct−1

Cell

ht−1

Hidden

xtInput

ct

ht

ht

Figure 2.3: Schematic of a LSTM memory cell

i it = σ(Wix i
t + Rih i

t−1 + bi)

g i
t = tanh(Wgx i

t + Rgh i
t−1 + bg) (2.10)

c i
t = f it � c i

t−1 + i it � gt i (2.11)

where σ() and tanh() are the element-wise sigmoid and hyperbolic tangent functions re-
spectively.

o i
t = σ(Wox i

t + Roh i
t−1 + bo)

h i
t = o i

t � tanh(c i
t) (2.12)

where R = [Rf Ri Rg Ro]
T ∈ R4dh×dh are known as recurrent weights, W = [Wf Wi Wg

Wo]
T ∈ R4dh×dx are all the input weights, b = [bf bi bg bo]T ∈ Rdh×1 are the bias

parameters.

14

2.6 Generalization, Regularization and Dropout

One of the major challenges for neural network models is to provide them with the abil-
ity to predict accurate results for inputs that have not been used for model calibration.
This capacity of models to predict with data never seen before during model calibration
is referred to as generalization. To achieve good model generalization ability, the data is
generally divided into three sets, a training set, a validation set and a test set. During
the training procedure, the neural network is presented with the training data only and
the model parameters are estimated so as to minimize a loss function. Validation data-set
is used to choose the optimal hyper-parameters for a particular structure of the neural
network. After minimizing the loss function, the generalization error is evaluated by using
the trained neural network on test dataset. In order to evaluate the performance of the
model, the gap between the testing and training error is particularly assessed in order to
identify whether the model might be under-fitting or over-fitting the information. The
under-fitting problem arises when the model is not able to reduce the training error to an
acceptable standard. On the other hand, over-fitting arises when the model over fits the
noisy data and thus becomes very sensitive to noise and consequently unable to generalize
accurately.

When training a model, the common practice is to simultaneously monitor the training
error and validation error until either one of them stops decreasing. If the errors achieved
are not satisfactory the training procedure will continue with the goal of improving the
model’s feature extraction capabilities or by taking actions to prevent over-fitting. Several
techniques have been developed to prevent over-fitting in neural networks, including regu-
larization, early stopping and dropout.

Regularization is a broad concept that has been applied in many statistical models in
a number of ways. However, in deep neural networks regularization refers to penalizing a
particular norm of a parameter/s within the objective function of the optimization problem,
e.g. the sum of square errors between predictions and data, with the goal of eliminating
some of the parameters that are required to fit the data. Therefore, in order to calculate

15

the total gradient of the objective function, the gradients of both the error function and the
regularization functions have to be calculated. Mathematically, in the objective function
the regularization term is added as follows:

J(θ) = Error + αR(θ) (2.13)

where α is a hyper parameter that weights the norm penalty R(θ). Typically, in deep
neural networks two types of norm are used for regularization of the parameters i.e. L1

and L2 norms.

The main difference between these two norms is that L1 generally leads to a sparse rep-
resentation where many parameters are left unchanged in the training procedure, whereas
the L2 norm tends to distribute the changes required for minimization of the objective more
equally among the parameters. The early stopping algorithm is a simple way for preventing
over-fitting when training deep neural networks. In this method of regularization, both the
training error and the validation error are simultaneously monitored to ensure a certain
balance between them at the solution. In theory, at the start of training, both errors will
start decreasing. Then, if after certain time the validation error will start increasing but
the validation error does not improve, the network is not trained any further (Prechelt
[1998]).

Dropout was developed as a way to inexpensively prevent over-fitting in deep neural
networks with large number of parameters (Srivastava et al. [2014]). The theory behind
dropout is based on randomly dropping units in the neural network or preventing units
from adapt during the training phase with the expectation that the model will generalize
better in the absence of information. Technically, during each iteration or batch of itera-
tions during the training procedure the value of each individual neuron is either kept based
on a calculated probability p (hyper parameter) or dropped out by reducing its value to
zero and cutting all the incoming and outgoing information to the neuron. It is important
to denote that the process of dropping a neuron is only done during the training phase but
when the model is tested for generalization the hyper parameter p value associated to the
neuron that was dropped is changed back to 1 as the neuron is used. Some of the most

16

important advantages for dropout is that it is a computationally inexpensive operation
, it is able to work well with any type of model (feedforward, recurrent, etc.) and it is
compatible with other regularizers.

17

Chapter 3

Deep Learning for Classification of
Profit-based Operating Regions in
Industrial Processes

Overview1

A classification approach is proposed for finding ranges of process inputs that result in
corresponding ranges of a process profit function using Deep Learning. Two Deep Learn-
ing Tools are used to formulate models for use in classification, based on either supervised
learning or unsupervised learning approaches. The supervised learning models are based
on Long Short Term Memory Networks (LSTM) and Multi-Layer Perceptron (MLP) Net-
works while the unsupervised learning model consists of an Autoencoder Neural Network
(AE-NN) connected to a Support Vector Machine classifier. An algorithm referred to as
Sequential Layer-wise Relevance Propagation for Pruning (SLRPFP) is proposed and ap-

1Adapted from Agarwal, Piyush, et al. "Deep learning for classification of profit-based operating
regions in industrial processes." Industrial & Engineering Chemistry Research 59.6 (2019): 2378-2395

Piyush Agarwal and Hector Budman. "Classification of profit-based operating regions for the ten-
nessee eastman process using deep learning methods.IFAC-PapersOnLine, 52(1):556–561, 2019"

18

plied to the aforementioned models for selecting relevant inputs and for pruning the Neural
Networks (NNs) and its inputs such that the test accuracy at every step of the proposed
sequential algorithm is maintained or even improved. It is also shown that the selected
inputs from the proposed algorithm (SLRPFP) provides important process insights on
the productivity i.e. profit-based objective function. The approaches are illustrated for
the Tennessee Eastman Process (TEP) and for an industrial vaccine manufacturing pro-
cess (industrial process). The efficacy of the proposed supervised and unsupervised deep
learning approaches over linear model-based classification methods that are based on lin-
ear Dynamic Principal Component Analysis (DPCA) combined with Multi-class Support
Vector Machines (MSVM) classification are shown by comparing the performance for both
TEP and a vaccine manufacturing process.

3.1 Introduction

The work proposes supervised and unsupervised learning approaches to identify regions of
process inputs that result in corresponding regions, i.e ranges of values, of process profit.
This type of classification problem can help in identifying input variables that significantly
affect defined profit function as well as for identifying ranges of inputs’ values that result in
high/low profit. Linear multivariate statistical models such as Principal Component Anal-
ysis (PCA) and Partial Least Squares (PLS) have been previously used for classification
problems such as fault diagnosis. Shams et al. [2011b], Kresta et al. [1991], Wise and Gal-
lagher [1996], MacGregor et al. [1994], Li et al. [2011]. However, these methodologies may
not be sufficiently accurate to model highly non-linear dynamic behavior that is common
in chemical processes. The non-linear Kernel PLS based classification method has been
proposed for similar problems but the results are sensitive to the selection of parameters
that define the non-linear kernel functions Rosipal et al. [2003]. Moreover, Support Vector
Machines (SVMs) classification models have been used before for non-linear classification
problems but their computational complexity increases with data samples. Also, it is dif-
ficult to provide physical interpretation of the SVM results since SVM does not compress
the data into a lower dimensional space which generally facilitates interpretations. This
work uses novel deep learning tools that have the ability to compress data into a lower

19

dimensional space Hinton and Salakhutdinov [2006] while accurately describing non-linear
behaviour.

Deep learning techniques involve the use of multi-layered neural network (NN) models
that are calibrated with process data. Although NNs were proposed several decades ago
Minsky and Papert [1972] the interest in them was previously limited following the recog-
nition that they required large datasets for training, learning of parameters is slow and the
optimization required for model calibration often converged to a local minima of the loss-
objective function. In particular, it was recognized that these convergence problems were
due to the use of gradient based algorithms with random initialization of parameters Glo-
rot and Bengio [2010]. The resurgence of interest in NNs stems from a significant increase
in computational power along with several theoretical developments that address some of
the aforementioned limitations in learning of NNs. These developments involve new NNs
architectures, such as Auotencoder NNs (AE-NN) Poultney et al. [2007], Long short term
memory NNs (LSTM-NN) Hochreiter and Schmidhuber [1997], Convolutional NNs (CNNs)
Chellapilla et al. [2006], General Adversial Networks (GANs) Goodfellow et al. [2016] and
novel “greedy” learning approaches Bengio et al. [2007] that are used to learn these deep
NNs efficiently. In these greedy approaches each layer of the multi-layered (deep) NNs
is pre-trained in an unsupervised fashion with the goal to provide good initial guesses for
further tuning from the first layer (input) to the last layer (outputs) in a supervised manner.

Although deep learning modeling techniques have been applied extensively in the area
of speech recognition and vision problems they have not been investigated, to the best
knowledge of the authors, for the type of classification problems i.e. classification of profit-
based operating regions as considered in this work. The current work investigates the
ability of deep learning techniques to two case studies: the Tennessee Eastman problem
(TEP) that has been widely used for comparison of control and fault detection approaches
and an industrial study involving a fermentation process used in vaccine manufacturing. Lv
et al. [2016] and Heo and Lee [2018] recently applied deep learning NNs for fault diagnosis
in the Tennessee Eastman Problem and reported significant improvements in detection and
diagnosis compared to linear Dynamic Principal Component Analysis (DPCA), Modified

20

Partial Least Squares (MPLS) and independent component analysis (ICA) based models.
However, classification problems as presented in this work were not addressed in these
earlier works.

A key difference between the two case studies is that while the TEP is a continuous sys-
tem operated around nearly constant operating points, the fermentation process is a batch
operation involving finite sets of data and large changes in operating conditions thus neces-
sitating a modified approach as compared to the continuous case. In general data analysis
for batch processes pose additional challenges such as unsynchronized and unequal batch
lengths of process datasets. Also, seasonal changes such as changes in environmental tem-
perature, pressure and feed composition or production motivated termination of batches
by operators in a plant often result in non-uniform process operation for different batches.
The uneven length duration causes additional numerical challenges for empirical modeling.
In addition, critical operational changes and certain offline measurements e.g. the time for
change from batch to fed-batch mode and the acquisition times of certain measurements
may occur at different times for different batches. Many different methodologies have been
previously used to address the issue of unequal and unsynchronized input variable profile
such as Indicator Variable (IV) Method, Correlation Optimization Warping (COW) and
Dynamic Time Warping (DTW). In indicator variable method, a variable is chosen to
represent the maturity of the evolving batch and the batch trajectories are aligned using
interpolation. Another method to deal with batches of differing duration is called Dynamic
time warping (DTW) which make use of a distance measure to compresses and expands
the similar patterns such that similar features are aligned. In this work DTW is used as
a pre-processing step to align the batches for industrial vaccine manufacturing batch pro-
cess. Few studies for aligning batch polymerization and fermentation datasets have been
reported in Ündey et al. [2002, 2003].

A desirable property of a machine learning algorithm is to have the ability for providing
process insight. In view of the large amount of data that are regularly collected from indus-
trial processes and considering that this data is often highly correlated, the compression
of data into a lower dimensional space is very useful for gaining process understanding,

21

for process visualization and for reducing the sensitivity of regressed models to noise and
model structure error. Linear multivariate statistical methods such as PCA and PLS have
been used to model correlated data but are not sufficiently accurate to represent highly
non-linear correlations among inputs and between inputs to outputs. Non-linear PLS has
been used but it is susceptible to the choice of the non-linear kernel functions. Alterna-
tively SVM has been used for non-linear problems but it is computational demanding for
large data sets and it cannot provide process understanding or visualization since it does
not perform data compression. On the other hand Deep Learning NN architectures have
the ability to deal with correlated data and can provide process insight since they perform
data compression similar to other multivariate statistical methods Hinton and Salakhutdi-
nov [2006].

Dynamic correlation is a key feature of time-series data. Long Short Term Memory
NN (LSTM-NN) is a recurrent neural network (RNN) that utilizes a different units known
as “memory cells" which maintains information for long periods of time and are capable
of describing dynamically correlated data. LSTMs have proved to be effective to over-
come the vanishing gradient problem that occurs during training of models with the use
of different memory gates (input, output and forget gates). However, LSTM models and
generally all other NN architectures have a large number of parameters which makes them
computationally expensive and prone to data over-fitting. “Pruning" techniques have been
proposed to eliminate irrelevant nodes, i.e. nodes that do not contribute significantly for
minimizing the loss function. For example, Han et al. Han et al. [2015, 2016] trained
the NN with additional L1/L2 penalty functions to eliminate neurons Collins and Kohli
[2014] thus reducing the computational complexity. Most reported pruning methods are
based on eliminating nodes while minimizing a non-linear loss function thus potentially
converging to local minima. Instead, we propose in this study a novel method for prun-
ing input variables of the NN by an algorithm to be referred to as Sequential Layer-wise
Relevance Propagation for Pruning (SLRPFP) Agarwal and Budman [2019], preliminary
results of which have been published earlier and have been extended further in this work,
that is based on evaluation of the averaged-relative relevance of input variables. Beyond its
ability of pruning input variables and the network it will also be shown that this proposed

22

methodology provides information on the inputs that have large and significant impact on
profit and can be used to identify regions of input conditions that results in high or low
profit for a defined profit-based objective function.

Following the above, three deep learning based classification models are proposed in this
work : i) a supervised learning method that uses either an LSTM network or an Multi-Layer
Perceptron (MLP) network with input-pruning by proposed algorithm (SLRPFP) and ii)
an unsupervised classification model that uses an Autoencoder neural network (AE-NN)
for feature extraction and SVM for classification. These deep learning NN classification
models are then compared to a linear DPCA model combined with an SVM classifier. This
work presents the following novel contributions: i) the use of the deep learning algorithms
for profit based classification on an industrial vaccine manufacturing process (batch pro-
cess), ii) a pruning approach (SLRPFP algorithm) combined with a threshold selection
algorithm and its impact on classification accuracy, iii) a study to compare the perfor-
mance of supervised and unsupervised deep learning methods with a linear unsupervised
classification approach for both simulated and an industrial dataset case studies and iv)
derivation of process insights regarding which inputs have large effect on profit function
based on the proposed relevance-based pruning algorithm (SLRPFP) both for continuous
(TEP) and an industrial batch process.

The rest of this chapter is organized as follows: 3.2 provides a brief overview on different
NN architectures such as LSTM-NN, AE-NN, MLP-NN along with Layer-wise Relevance
Propagation (LRP) for computation of relevances of input variables. The proposed al-
gorithm for pruning is presented in 3.3. 3.4.1 and 3.4.2 briefly describes the Tennessee
Eastman Benchmark Process (TEP) and the fermentation process for vaccine manufactur-
ing, discusses the supervised and unsupervised deep learning methods for the classification
of different ranges of productivity costs and shows the results of the comparison of the two
deep learning approaches and the linear DPCA based method. Finally, 3.5 summarizes the
work and provides the concluding remarks.

23

3.2 Preliminaries

This section briefly reviews LSTM classification NN and a method to compute relevances
for input variables using NNs.

3.2.1 Long Short-Term Memory Neural Networks (LSTM-NN)

LSTM-NN are a special deep learning architecture of recurrent neural networks (RNNs)
capable of learning long-term correlations. A schematic of a vanilla LSTM cell is shown in
Figure 3.1. The functionality is somewhat similar to auto-regressive dynamic models that
are widely used for modelling multivariate time-series with the addition of different memory
gates to mitigate the problem of vanishing/exploding gradients that occurs when training
RNNs by gradient descent algorithms Hochreiter and Schmidhuber [1997], Chung et al.
[2014]. The four memory gates that allows the LSTM NN to learn long term dependencies
by selectively memorizing the relevant information and forgetting the redundant features
to the cell state for a sample i as c i

t ∈ Rdh×1 corresponding to the output/class-label are
input i it , forget f

i
t , update g i

t and output o i
t gates. Consider the input at time t as x i

t ,
t = 1, 2, ..., T ∈ Rdh×dx . The LSTM cell determines the amount of past information to be
discarded from the previous cell state c i

t−1. Element-wise sigmoid activation function in f it
(refer forget gate) is a number between 0 and 1 for each of the corresponding elements of
c i
t−1 as:

f it = σ(Wfx i
t + Rfh i

t−1 + bf) (3.1)

Subsequently, it is required to add new relevant information and update the existing
cell-state values. This is implemented by first selecting which values to update using the
input gate i it and the output from the input gate is then multiplied by the new information
generated by the update gate g i

t as follows:

i it = σ(Wix i
t + Rih i

t−1 + bi)

g i
t = tanh(Wgx i

t + Rgh i
t−1 + bg) (3.2)

24

Forget
Gate
ft

Update
Gategt Input

Gate
it

Output
Gate
ot

σ σ tanh σ

× +

× ×

tanh

ct−1

Cell

ht−1

Hidden

xtInput

ct

ht

ht

Figure 3.1: Schematic of a LSTM memory cell

The update of the cell-states are carried out by incorporating the new information and by
forgetting the redundant features according to:

c i
t = f it � c i

t−1 + i it � gt i (3.3)

where σ() and tanh() are the element-wise sigmoid and hyperbolic tangent functions re-
spectively. Wf ,Wi & Wg are the input weight matrices, Rf ,Ri & Rg, are the recurrent
weights and � is a Hadamard product. Finally, the output value h i

t ∈ Rdh×1 of the LSTM
cell is based on the updated cell-state values as shown below:

o i
t = σ(Wox i

t + Roh i
t−1 + bo)

h i
t = o i

t � tanh(c i
t) (3.4)

where R = [Rf Ri Rg Ro]
T ∈ R4dh×dh are known as recurrent weights, W = [Wf Wi Wg

Wo]
T ∈ R4dh×dx are all the input weights, b = [bf bi bg bo]T ∈ Rdh×1 are the bias

parameters. A sequence to label classification using LSTM units is implemented using the
outputs at the last sequence element (hiT ∈ Rdh×1). In this work, the LSTM outputs are
used as inputs to a fully-connected layer as shown in Figure 3.2. The fully connected layer
has the same number of output nodes as the number of defined classes. The last layer

25

Figure 3.2: Sequence to label classification using LSTM-NN

consists of a softmax layer which translates the outputs f(hiT) of the fully-connected layer

that satisfies softmax(f(hiT)) ∈ [0, 1] and
p∑

k=1

(softmax(f(hiT))) = 1, where p is the number

of total class labels. The class k is decided based on the largest softmax(f(hiT)) value.

3.2.2 Layer-wise Relevance Propagation (LRP)

Layer-wise Relevance Propagation (LRP) was introduced by Bach et al., (2015)Bach et al.
[2015] to assess the relevance of each input variable or features with respect to outputs.
It is based on a layer-wise relevance conservation principle where each relevance f(xi), i =

1, 2, ..., n, where n is the number of samples, is calculated by propagating the output scores
towards the input layer of the network. Previously, it has been used in the area of health-
care for attributing a relevance value to each pixel of an image to explain the relevance in a
image classification task using deep NNs Yang et al. [2018]. LRP has also been implemented
to explain the predictions of a NN in the area of sentiment analysis using LSTMs Arras
et al. [2017] but it has not been studied for pruning input nodes as in the current study.
To compute the relevance of input variables in LSTM-NN, the time-series for each input
variable are organized in data packets while the class corresponding to each packet is
available. Subsequently the score value of the corresponding class for a specific packet

26

f(xi), computed during the training of the NN model, is propagated through the network
towards the input. Depending on the nature of the connection between layers and neurons,
a layer-by-layer relevance score is computed for each intermediate lower-layer neuron. The
relevances computed for LSTM-NN classification model are averaged over time since the
model is working on a time horizon, i.e. recursive in nature, so there is no meaning to
relevances at each interval and is presented later in this chapter in 3.4.1 and 3.4.2. While
relevances for MLP-NN model as shown in 3.4.2 are computed for each variable at each
time-step. Different LRP rules have been proposed for attributing relevance for the input
variables. In this work we use ε rule Bach et al. [2015] for computing relevances as is given
by:

Ri←j =
wijxi

zj + ε.sign(zj)
Rj (3.5)

where ε is used as a stabilizer to prevent numerical instability when zj is close to zero and
wij are the weights connecting lower layer neuron i and upper-layer neuron j.

3.3 Proposed Methodology: Sequential Layer-Wise Rel-
evance Propagation for Pruning (SLRPFP)

This section proposes a novel method for pruning input variables and thereby reducing
the size of NNs thus reducing the number of parameters to be estimated. The proposed
algorithm is based on identifying relevant inputs for a particular classification task thus
eliminating the non-contributing input variables. Algorithm 1 illustrates the steps for the
implementation of Sequential Layer-wise Relevance for Pruning (SLRPFP) for identifying
the important input variables and Algorithm 2 describes the methodology to determine
the threshold for eliminating the irrelevant variables corresponding to the profit-based ob-
jective function.

The following section presents case-studies to demonstrate the effectiveness of the pro-
posed procedure to prune the input variables and derive important process insights based
on defined profit-based objective function.

27

Algorithm 1 Sequential Layer-wise Relevance Propagation for Pruning (SLRPFP)
1: Calibrate the NN on the training dataset and compute the classification accuracy on

the test data.
2: Evaluate average relative relevance of input variables using all correctly classified sam-

ples using LRP.
3: A threshold value related obtained as per the procedure described in Algorithm 2 is

used as the maximum average relevance below which the input variables are considered
irrelevant and are discarded.

4: Repeat step 1 i.e. re-train the NN with the remaining variables. Select the optimal
number of hidden layer neurons by using validation data and early stopping technique
so as to maintain the same or higher test accuracy.

5: Stop the procedure when the relevances of remaining input variables are above the
computed threshold value.

3.4 Results and Discussions

Two case studies are presented: the Tennessee Eastman Process (TEP) and an industrial
vaccine manufacturing process (Sanofi Pasteur: antigen manufacturing process). While
the TEP study uses simulated data the vaccine manufacturing process is based on actual
industrial data. The key difference between the studies is that the TEP is continuous
whereas the antigen manufacturing process is operated in batch mode. It is shown that
the proposed algorithm is useful in acquiring information on inputs that have large and sig-
nificant effect on profit. The relative advantages of deep learning models over models based
on Dynamic PCA (DPCA) and Batch-Dynamic PCA (BDPCA) (Vaccine Manufacturing
Process) are also presented.

3.4.1 Case Study 1: Tennessee Eastman Process (Simulated Case
Study)

The TEP involves different unit operations including a vapor-liquid separator, a reactor,
stripper a recycle compressor and a condenser. Four gaseous reactants (A, B, C and D)

28

Algorithm 2 Determining Threshold for Sequential Layer-wise Relevance Propagation
1: Evaluate Relevances Rc(x; fc)j = [Rc1(x1; fc), Rc2(x2; fc), ..., Rcn(xn; fc)]j ∈ Rn, i =

1, 2, .., n for each input feature xi are calculated for the jth sample with respect to a
classification task.

2: Average the relevance scores over all the correctly classified samples. Therefore, the
final input relevances with respect to the overall classification task c can be calculated
as follows:

Rc =
1

Nc

Nc∑
j=1

|Rc(x; fc)j| (3.6)

where Nc is the number of correctly classified samples in the training dataset. Fur-
thermore, the least relevant input features are pruned based on the average relevance
scores for all input variables calculated with Equation 3.6. In practise a threshold of
λ×max(Rc) is chosen to prune the irrelevant variables where λ is an hyper-parameter
that is determined by using the validation dataset (heuristically λ is chosen as 0.01 as
the starting value).

3: Relevance of input variables below the threshold are removed from the dataset and the
network is re-trained until the same or higher validation accuracy is achieved. If the
desired validation accuracy is not achieved, the threshold is decreased.

forms two liquid products streams (G and H) and a by-product (F). A schematic of the
Tennessee Eastman process is illustrated in Figure 3.3. Downs and Vogel [1993] reported
the original simulator for this process that has been widely used as a benchmark for control
and monitoring studies.

Although several TEP simulators are available, in this work the one developed by
Larsson et al. [2001] was used. We have slightly modified the original control settings in
order to simulate the process for different ranges of profit since the goal in the current study
is to classify the inputs according to their resulting profit. The simulator involves 52 input
variables of which 3 manipulated variables (Compressor Recycle Valve (XMV(5)), Stripper

29

Figure 3.3: Tennessee Eastman plant process
(Downs & Vogel, 1993)

Steam Valve (XMV(9)) and Agitator Speed XMV(12)) were discarded initially (number of
input variables = 50). The process profit for this case study is determined by the operating
costs of the plant i.e. cost of productivity (COP). Downs and Vogel presented an equation
for COP (operating costs) of the following form Ricker [1995]:

COPt =(0.0536× XMEAS(20)t) + (0.0318× XMEAS(19)t) + ...

(0.4479× XMEAS(10)t)
[
(2.209× XMEAS(29)t) + (6.177× XMEAS(31)t) + ...

(22.06× XMEAS(32)t) + (14.56× XMEAS(33)t) + (17.89× XMEAS(34)t) + ...

(30.44× XMEAS(35)t) + (22.94× XMEAS(36)t)
]

+ (4.541× XMEAS(46)t)[...

(0.2206× XMEAS(37)t) + (0.1456× XMEAS(38)t) + (0.1789× XMEAS(39)t)]

(3.7)

where COP(t) is in $/hr. To simulate different ranges of cost values, different process faults
were introduced that result in corresponding changes in cost. Afterwards 8 datasets were
generated, 1 normal operation and 7 each involving one known fault (IDV(1)-IDV(7), refer

30

COP ($/hr) Low (High Profit) Intermediate High (Low Profit)

Case 1 > 89.68 89.68− 142.6 < 142.6

Case 2 > 108 108− 130 < 130

Table 3.1: Profit-based defined classes for COP

Table S1). The respective datasets were produced for a total simulation time of 800 hours,
i.e. a 100-hour duration for each dataset. Each fault was activated at the start of the
corresponding 100-hour time period and data samples were collected at a sampling rate of
100 samples/hour (total number of samples 8 × 105 per dataset). Each of these datasets
resulted in various ranges of COP values and were considered as the different classes to be
targeted (refer Table 3.1).

50 100 150 200 250 300

Data

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

D
e

n
s
it
y

Distribution of Cost

of Productivities (COP)

Figure 3.4: Distribution of COP values

Since the definition of the classes may be often subjective according to the economic
goals set for the process, we examine two different cases that are defined in Table 3.1.
The major difference between Case 1 and Case 2 is that they differ in the percentage of
overlap between classes. The overlap between classes is calculated from the training data
based on simulated frequency of occurrences of COP values. According to the histogram of
productivity cost shown in Figure 3.4, case 1 corresponds to very low overlap while case 2
shows significant overlap between classes. Each dataset is divided into datasets for training

31

(75%) and for testing (25%). The dimensions of the training dataset is 50 × 100 × 4808:
the number of variables are 50, 100 time-steps of past and current values are considered
for each variable, and 4808 data packets, each corresponding to an average operating cost
value. The dimensions of the test data is 50×100×1536. The calibration dataset is mean-
centered and normalized by the standard deviation for each variable. The test dataset is
mean centered and scaled according to the same means and variances that were used for
training.

1 2 3

Target Class

(a)

1

2

3

O
u

tp
u

t
C

la
ss

 Confusion Matrix

87
5.7%

7
0.5%

0
0.0%

92.6%
7.4%

7
0.5%

1170
76.2%

4
0.3%

99.1%
0.9%

0
0.0%

11
0.7%

250
16.3%

95.8%
4.2%

92.6%
7.4%

98.5%
1.5%

98.4%
1.6%

98.1%
1.9%

1 2 3

Target Class

(b)

1

2

3

O
u

tp
u

t
C

la
ss

 Confusion Matrix

89
5.8%

5
0.3%

0
0.0%

94.7%
5.3%

1
0.1%

1178
76.7%

2
0.1%

99.7%
0.3%

0
0.0%

6
0.4%

255
16.6%

97.7%
2.3%

98.9%
1.1%

99.1%
0.9%

99.2%
0.8%

99.1%
0.9%

Figure 3.5: Confusion Matrices for Step 1 and Step 9 of the proposed method SLRPFP.
(a) Confusion Matrix for Step 1. (b) Confusion Matrix for Step 9.

Two deep learning modeling approaches that are used for classification in this case study
are: a supervised approach involving LSTM-NN + SLRPFP and an unsupervised approach
based on the combination AE-NN + SVM. It is to be noted that only the input variables
remaining after pruning are used as inputs in the unsupervised approach. Both of these
are compared to a widely used multivariate statistical method that combines DPCA with
an SVM classifier. The confusion matrix is used to summarize the percentages of correct
and incorrect classifications for each class and an average of these values for a particular
classification model. The aforementioned approaches are simulated and implemented using

32

0 5 10 15 20 25 30 35 40 45 50

Number of Input Variables

-0.04

-0.02

0

0.02

0.04

0.06

0.08

0.1

0.12

A
v
e
ra

g
e
d
 R

e
le

v
a
n
c
e
s
 o

f
In

p
u
t
V

a
ri
a
b
le

s

0 5 10 15 20 25 30 35 40 45

Number of Input Variables

-0.04

-0.02

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

A
v
e
ra

g
e
d
 R

e
le

v
a
n
c
e
s
 o

f
In

p
u
t
V

a
ri
a
b
le

s

0 5 10 15 20 25 30 35 40 45

Number of Input Variables

-0.02

0

0.02

0.04

0.06

0.08

0.1

0.12

A
v
e
ra

g
e
d
 R

e
le

v
a
n
c
e
s
 o

f
In

p
u
t
V

a
ri
a
b
le

s

0 5 10 15 20 25 30 35 40

Number of Input Variables

-0.02

-0.01

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

A
v
e
ra

g
e
d
 N

u
m

b
e
r

o
f
In

p
u
t
V

a
ri
a
b
le

s

Figure 3.6: Average relevance of input variables for different iterations (SLRPFP). (Step
1-4)

MATLAB®.

LSTM + SLRPFP Model (Supervised Classification)

The LSTM classification model for TEP consists of different layers namely: an input layer,
an LSTM layer, dropout layer, a fully connected layer and a softmax layer. The hidden
layer consisted of 80 units was tuned using a validation dataset (20% for the test-set) to
minimize the loss error. The model performed well with a test accuracy of 98.11% for Case
1 and 89.7% for Case 2 on the test data. Confusion Matrix for Case 1 is shown in Figure
3.5(a). Subsequently, the proposed pruning algorithm presented in the previous section
was implemented to reduce the size of the network and to identify the most relevant inputs
for the different output classes. It should be noted that for LSTM-NN classification model,

33

0 5 10 15 20 25 30 35

Number of Input Variables

-0.02

-0.01

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

A
v
e
ra

g
e
d
 R

e
le

v
a
n
c
e
s
 o

f
In

p
u
t
V

a
ri
a
b
le

s

0 5 10 15 20 25 30

Number of Input Variables

-0.01

-0.005

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

A
v
e
ra

g
e
d
 R

e
le

v
a
n
c
e
s
 o

f
In

p
u
t
V

a
ri
a
b
le

s

0 5 10 15 20 25 30

Number of Input Variables

-0.05

0

0.05

0.1

0.15

0.2

A
v
e
ra

g
e
d
 R

e
le

v
a
n
c
e
s
 o

f
In

p
u
t
V

a
ri
a
b
le

s

0 5 10 15 20 25

Number of Input Variables

-0.005

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

A
v
e
ra

g
e
d
 R

e
le

v
a
n
c
e
s
 o

f
In

p
u
t
V

a
ri
a
b
le

s

Figure 3.7: Average relevance of input variables for different iterations (SLRPFP). (Step
5-8)

the relevances are averaged over time since the model is working on a time horizon, i.e.
recursive in nature, so there is no meaning to relevances at each interval. The sequential
elimination of non-contributing input variables are shown in Figure 3.6, 3.7 and 3.8. The
number of relevant inputs was reduced from n = 50 to n = 26 for Case 1 and n = 24 for Case
2. Input variables with high averaged relevance scores are interpreted to have significant
effect on profit-based objective function i.e. given by 3.7. Figure 3.8 displays all the input
variables that have large impact on the defined profit-function. Note that with every single
iteration of the proposed sequential algorithm, the corresponding testing accuracy increases
for both Case1 and Case2 (see Table 3.2). Figure 3.5 illustrates the confusion matrices for
Step-1 and Step-9 (the final step) for Case 1. This figure demonstrates the enhancement
in test accuracy by reducing the number of irrelevant input variables with respect to the

34

Figure 3.8: Average relevance of input variables for final iteration (SLRPFP). (Step 9)

profit-based objective function. This improvement is due to a reduction in over-fitting of
noisy data during training of the simplified network as compared to the original larger
network used before pruning. It is also observed that there is a significant decrease in
the total number of parameters of NN models from 37875 to 10840 for Case 1 and from
60500 to 11402 for Case 2. (see Table 3.2). Estimation of less number of parameters is
also beneficial as it eases online implementation of deep-learning models. A significant re-
duction in the number of input variables for classification of profit-based operating regions
were obtained following the application of the SLRPFP algorithm (see Algorithm 1 and 2).

Beyond the simplification of the network, a significant added benefit of the pruning algo-
rithm is that it provides physical understanding about the process profitability based solely
on process data. For example, it is observed that variables XMEAS(20), XMEAS(10),

35

Table 3.2: Implementation of SLRPFP for pruning input variables in TEP using LSTM
model

Steps
Number of

input variables
Test Accuracy

Number of
parameters

Case 1 Case 2 Case 1 Case 2 Case 1 Case 2
Step 1 50 50 98.11% 89.7% 37875 60500
Step 2 48 36 98.44% 90.82% 33390 17450
Step 3 44 33 98.57% 90.95% 28665 19635
Step 4 41 28 98.63% 91.21% 24540 18535
Step 5 37 25 98.83% 93.03% 17650 12825
Step 6 33 24 98.89% 93.71% 16850 11402
Step 7 30 - 98.96% - 11480 -
Step 8 27 - 99.02% - 11000 -
Step 9 26 - 99.09% - 10840 -

XMEAS(32), XMEAS(34), XMEAS(35), XMEAS(36), XMEAS(38) and XMEAS(39) that
were identified as significant by the current relevance analysis are also present in the ana-
lytical expression describing the operating costs in the process (Equation 3.7). Since the
datasets were generated by introducing known disturbances, the effect of the latter on
input variables must be understood to explain the effects of input variables on the COP
(cost of productivity). Changes in IDV(1) i.e. changes in the A/C ratio and IDV(6) i.e.
changes in A will affect XMEAS(4) that is the addition of A and C. Thus, changes in both
IDV(1) and IDV(6) will affect the ratio between components A and C. This ratio should
be maintained constant if productivity is to be kept constant. For example, to maintain
the A/C ratio constant in the presence of a reduction in IDV(6) (feed A), the sum of A and
C (XMEAS(4)) must increase to provide more A and the purge rate (XMEAS(10)) must
be increased to get rid of excess C. Similarly IDV(7) affects the feed rate of C which can
be compensated by manipulating XMEAS(4) to maintain the ratio A/C constant. The
composition of B is affected by IDV(2) which affects COP through the purge costs by
means of XMEAS(24) and XMEAS(30). IDV(3) affects the feed temperature of compo-

36

1 2 3

Target Class

1

2

3

O
ut

pu
t C

la
ss

 Confusion Matrix

114
7.4%

4
0.3%

0
0.0%

96.6%
3.4%

10
0.7%

1123
73.1%

10
0.7%

98.3%
1.7%

1
0.1%

9
0.6%

265
17.3%

96.4%
3.6%

91.2%
8.8%

98.9%
1.1%

96.4%
3.6%

97.8%
2.2%

(a) Autoencoder + SVM

1 2 3

Target Class

1

2

3

O
ut

pu
t C

la
ss

 Confusion Matrix

112
7.0%

100
6.3%

4
0.3%

51.9%
48.1%

27
1.7%

932
58.4%

56
3.5%

91.8%
8.2%

12
0.8%

108
6.8%

246
15.4%

67.2%
32.8%

74.2%
25.8%

81.8%
18.2%

80.4%
19.6%

80.8%
19.2%

(b) DPCAl=20 + SVM

Figure 3.9: Confusion Matrices for unsupervised approaches (Case 1)

nent D which is controlled by manipulating the reactor coolant flow (XMV(10)). IDV(5)
disturbs the temperature of the condenser cooling water and is maintained at set-point by
manipulating the separator cooling water flow (XMV(7)). The two variables stripper level
(XMEAS(15)) and separator level (XMEAS(12)) are not affecting the steady-state values
of COP Larsson et al. [2001] but may have significant dynamic effects during a 100-hour
period.

Autoencoder + SVM (Unsupervised Classification)

To compare the performance of the supervised learning approach i.e. the LSTM model
in 3.4.1 with an unsupervised learning approach, an AE was trained with the inputs that
were found relevant following the pruning of the LSTM-NN. A single layer Autoencoder NN
consists of 1000 neurons was calibrated for 1500 epochs. Reconstruction errors of 4.13% and
5.12% were obtained using ?? for the calibration and test dataset respectively. An MSVM
classification model was built using the latent representation of the input variables from the

37

Figure 3.10: Distribution of PRN (ELISA) productivity

trained AE. The test accuracy evaluated for this classification model was 97.8% (shown in
the right corner of Figure 3.9a) for Case 1 and 92.72% for Case 2. This demonstrates that
the trained AE-NN could be also used for classification but the supervised deep learning
classification perform marginally better.

DPCA + SVM (Unsupervised Classification)

Aforementioned models are compared with a linear unsupervised classification approach,
i.e. based on DPCA combined with an SVM classifier, that is widely used in the process
industries. The number of lags d = 20 was selected using the method described in Ku
et al. [1995]. The selected principal components explains 85% of variance of the input
data. Then an MSVM was applied to the scores resulting from the DPCA for both the
training and testing datasets. This resulted in 80.8% of classification accuracy of the test-
ing dataset for Case 1 (shown in Figure 3.9b) and 68.8% for Case 2.

Hence the deep learning models perform significantly better than the classification
algorithm that combines linear DPCA with MSVM thus corroborating the need for the
non-linear deep learning classification models.

38

3.4.2 Case Study 2: Industrial Vaccine Manufacturing Process

Bordetella pertussis antigens contribute to the formulation of several pediatric vaccines,
e.g. whooping cough, which are used across the world. Large variability in the manufactur-
ing process in the process operated by Sanofi Pasteur may cause shortages in the worldwide
supply from time-to-time. Vaccine antigens are not generally primary metabolism prod-
ucts. Hence, the production of these proteins is not necessarily correlated to microorganism
growth and productivity may be low even if a significant amount of bacterial growth takes
place. Therefore, it is essential to monitor the productivity to detect unfavorable process
conditions. While operational improvements have been made, there are still difficulties in
cell culture control and monitoring. For decomposing the three-way batch data, extensions
of PCA and PLS techniques have been extended to Multiway PCA (MPCA) and Multi-
way PLS (MPLS) (MacGregor et al. [1994], Nomikos and MacGregor [1995]). On the other
hand these algorithms are based on linear models and it is argued that non-linear mod-
elling techniques may provide better inference of productivity in batch processes due to
their ability to deal with inherent non-linear correlations in the historical process datasets.
The current study assesses the use of deep learning models for classification of productiv-
ity classes with respect to regions of input values. The proposed methodology of pruning
input variables (SLRPFP) provides understanding of the sources of variability during the
fermentation process and the potential of uncovering mechanisms which would facilitate
implementing pro-active process control techniques are presented in subsequent sections.

Sanofi Pasteur (Antigen Manufacturing Process)

The manufacturing process of the whooping cough vaccine involves two major phases:
upstream and downstream. The upstream phase involves two parallel trains of three biore-
actors each as shown in Figure 3.11 where fermentation of the cells is conducted. The
downstream phase involves a series of purification steps where the pure antigens are syn-
thesized from the product of the fermentation processes. Two parallel 20-L fermenters
(initial fermentation stage) containing mainly Component Pertussis broth and growth fac-
tors are inoculated and grown for 22 to 25 hours. Subsequently, the cultures are transferred
to two parallel 200-L fermenters (intermediate fermentation stage) for 22 to 25 hours, and

39

Figure 3.11: Schematic of vaccine manufacturing process at Sanofi Pasteur, Toronto,
Canada

then to two parallel 2000-L fermenters (production fermentation stage) that are operated
for up to 56 hours. All fermenters work under the same operating conditions in terms of
temperature (36 ◦C), dissolved oxygen (35%) and pH (7.2) levels, which are continuously
monitored and controlled in closed-loop. In the final production fermenters (2000-L), sup-
plement feed media is added when the initial supply of the key nutrient (glutamate) is
exhausted and at that point the operation changes from batch to fed-batch. The depletion
of nutrients is detected by a significant sudden decrease in oxygen consumption which is
accompanied by a corresponding spike in dissolved oxygen. These fermentation steps are
followed by harvesting, which involves the centrifugation of the fermentation culture. The
cell paste, coming from the centrifugation, is collected into a tank for further purification,
and the supernatant to be referred as centrate is filtered to ensure the complete removal
of the live cells.

40

This case study classifies the resulting productivity based on information of the two
2000-L fermenters to be referred to as F3 and F6. There are 11 process variables measured
for both F3 and F6 fermenter. Data collected from 295 batches (over a period of 4-years)
were considered for this study. About 240 batches were selected as training dataset and the
rest (55 batches) were selected as testing dataset at random. The goal of the classification
problem is to find input conditions that will result in either low or high levels of the
productivity of Pertactin (PRN) that is a key antigen composing the acellular whooping
cough vaccine. The level of the antigen is determined at the end of the fermentations
by ELISA (enzyme-linked immunosorbent assay). The ELISA measurement is performed
only on a sample collected from the combined stream of F3 and F6 after the centrifugation
step. The two classes for the productivity of antigen that are targeted for classification
are defined by the manufacturer, refer to Table 3.3. The distribution of productivity is
shown in Figure 3.10. This classification task is extremely important for elucidating which
process inputs are most relevant for low or high productivity of antigen and for gaining
understanding about the possible causes of low productivity.

Table 3.3: Classes for productivity of Pertactin

Productivity of Pertactin (g/batch) Low High

Case ≤ 11.5 > 11.5

Although the vaccine contains several antigens, the focus in this work is on the produc-
tion of the Pertactin (PRN) antigen since it is produced in very small quantities relative
to the amount required in the vaccine and thus it is a potential bottleneck for the process.

Data-preparation

295 batches (ELISA batches) were selected from batch data obtained from approximately
last 4 years. Some missing data occur for several batches. Missing data for process variables
were estimated using a sparse-optimisation based algorithm Agarwal and Tangirala [2017b],
that estimates missing data-points using the Fourier basis functions as the sparse basis.
This algorithm has been applied previously for re-construction of causal networks Agarwal

41

and Tangirala [2017a]. As mentioned in the introduction, synchronization among batches
is a key challenge for correct comparison of batch data collected from different batches.
The batches were synchronised using the Dynamic Time Warping concept so as to have an
even-length batch duration for all selected batches. Since NN models require large number
of samples for the training process, additional low-resolution batches are generated from
the 295 batches by re-sampling the profiles of process variables at slower sampling rates.
The concept of re-sampling to generate more data for training has been recently reported
by Tulsyan et al. [2019] for a Statistical Process Monitoring (SPM) application. In view
that the sampling time for each process variable in the original dataset is 2 minutes, for
generating the additional data the process variables were sampled every 15 samples (∼ 30
minutes) in order to generate 15 low-resolution batches from a single batch data. This
re-sampling operation resulted in 4425 samples in total, out of which 3600 samples are
used for training and the other 825 samples as the test data-set. The training and testing
dataset are normalised using min-max algorithm (Equation 3.8) such that entire range of
values are mapped between 0 to 1.

xnorm =
x−min(x)

max(x)−min(x)
(3.8)

MLP + SLRPFP (Supervised Classification)

It should be noticed that this problem is substantially different from the continuous TEP
problem discussed below since here the profit related variable is only measured once after
the completion of the batch/fed-batch operation. Thus, for the current study it is more
relevant to extract information from the entire time profiles of the input variables rather
than exploiting local dynamic correlations as done for the TEP study for which the costs are
measured at each time interval. Thus, it was hypothesized that a fully connected MLP NN
that connects the information among inputs and between inputs to outputs occurring at
all times during the operation may provide better inference of the end process profitability
(productivity). Hence, an MLP neural network was developed consisting of an input layer,
two hidden layers that use tanh as the non-linear activation function and a softmax based

42

1 2

Target Class

1

2

O
u

tp
u

t
C

la
s
s

 Confusion Matrix

30

3.6%

150

18.2%

16.7%

83.3%

20

2.4%

625

75.8%

96.9%

3.1%

60.0%

40.0%

80.6%

19.4%

79.4%

20.6%

1 2

Target Class

1

2

O
u

tp
u

t
C

la
s
s

 Confusion Matrix

35

4.2%

145

17.6%

19.4%

80.6%

12

1.5%

633

76.7%

98.1%

1.9%

74.5%

25.5%

81.4%

18.6%

81.0%

19.0%

Figure 3.12: MLP + SLRPFP: Test dataset accuracy before (left) and after SLRPFP
(right) for industrial process

classification layer. This network was initially trained with the normalized training dataset.
The number of nodes, mini-batch sizes for training and epochs were selected to minimize
the cross-validation error that was based on 20% of the testing set. The input layer consists
of 1760 input nodes, the first hidden layer consists of 100 neurons and second hidden layer
consists of 2 neurons with a mini-batch size of 5 samples for 10000 epochs. This model
resulted in an accuracy of 79.4% on the testing dataset as shown in the right corner of the
confusion matrix in Figure 3.12 (left). Subsequently, the SLRPFP pruning algorithm was
applied to the MLP model to compute a relevance value for each input variable and at each
time interval of the batch. Also, this increased the test accuracy from 79.4% to 81%(shown
in Figure 3.12 (right)).In contrast with the continuous TEP problem for which an average
relevance over time was calculate for the current batch study since the inputs to the model
change significantly during the batch and the property being classified (Pertactin level)
is obtained only at the end of the batch it is more informative to calculate the relevance
of each input at each time interval (see Algorithm 1). Since the entire time profiles of
the input variables are fed simultaneously to the network, pruning of the network is done

43

Aeration
F3

00:00:00 04:00:00 08:00:00 12:00:00 16:00:00 20:00:00 24:00:00 28:00:00 32:00:00 36:00:00 40:00:00 44:00:00 48:00:00 52:00:00

Time (hrs)

-0.25

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

A
v
e

ra
g

e
d

 R
e

le
v
a

n
c
e

 o
f

In
p

u
t

V
a

ri
a

b
le

-1

-0.5

0

0.5

1

1.5

2

2.5

3

N
o

rm
a

li
z
e

d
 p

ro
fi
le

 o
f

In
p

u
t

V
a

ri
a

b
le

Avg. G-batch Relevances Avg. B-batch Relevance

Avg. G-batch gradient Avg. B-batch gradient

Avg. G-batch profile Avg. B-batch profile

Aeration
F6

00:00:00 04:00:00 08:00:00 12:00:00 16:00:00 20:00:00 24:00:00 28:00:00 32:00:00 36:00:00 40:00:00 44:00:00 48:00:00 52:00:00

Time (hrs)

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

A
v
e

ra
g

e
d

 R
e

le
v
a

n
c
e

 o
f

In
p

u
t

V
a

ri
a

b
le

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

3

N
o

rm
a

li
z
e

d
 p

ro
fi
le

 o
f

In
p

u
t

V
a

ri
a

b
le

Avg. G-batch Relevances Avg. B-batch Relevance

Avg. G-batch gradient Avg. B-batch gradient

Avg. G-batch profile Avg. B-batch profile

Figure 3.13: Averaged Time-based Relevance of Aeration profile for both High and Low
PRN productivity batches

with respect to each input variable value at each time interval during the batch. Final
relevances of input variables (after all pruning steps) for a class k are computed using the
scores of train, validation and test samples that are correctly classified for a particular class
using LRP for each input at each time interval. Through the analysis of relevances (see
Algorithm Algorithm 1 and 2), a considerable number of input variables were found to be
irrelevant with respect to the classification thus reducing the number of relevant variables
from 1760 to 443.

Figure 3.12 demonstrates the initial and final iteration of SLRPFP until the relevance
of all input variables are above a set threshold value (see Algorithm 2). Similar to Case
Study 1 the pruning of the network results in higher test accuracy (improvement of 1.6%).
Beyond the capability of identifying relevant inputs and pruning the network, the inter-

pretation of the relevances can provide, as shown for Case Study 1, important physical
understanding about the effect of inputs process productivity. In order to facilitate such
understanding, the relevance scores are calculated with respect to each of the two classes,
i.e. low and high range of PRN levels. Relevance scores of each input-profile for both
high (green bars) and low (red bars) PRN productivity classes are shown for few process
variables (such as pH1, aeration and agitation) in Figures 3.13,3.14,3.15 and 3.16. The

44

Agitation
F3

00:00:00 04:00:00 08:00:00 12:00:00 16:00:00 20:00:00 24:00:00 28:00:00 32:00:00 36:00:00 40:00:00 44:00:00 48:00:00 52:00:00

Time (hrs)

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

A
v
e

ra
g

e
d

 R
e

le
v
a

n
c
e

 o
f

In
p

u
t

V
a

ri
a

b
le

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

3

N
o

rm
a

li
z
e

d
 p

ro
fi
le

 o
f

In
p

u
t

V
a

ri
a

b
le

Avg. G-batch Relevances Avg. B-batch Relevance

Avg. G-batch gradient Avg. B-batch gradient

Avg. G-batch profile Avg. B-batch profile

Agitation
F6

00:00:00 04:00:00 08:00:00 12:00:00 16:00:00 20:00:00 24:00:00 28:00:00 32:00:00 36:00:00 40:00:00 44:00:00 48:00:00 52:00:00

Time (hrs)

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

A
v
e

ra
g

e
d

 R
e

le
v
a

n
c
e

 o
f

In
p

u
t

V
a

ri
a

b
le

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

3

N
o

rm
a

li
z
e

d
 p

ro
fi
le

 o
f

In
p

u
t

V
a

ri
a

b
le

Avg. G-batch Relevances Avg. B-batch Relevance

Avg. G-batch gradient Avg. B-batch gradient

Avg. G-batch profile Avg. B-batch profile

Figure 3.14: Averaged Time-based Relevance of Agitation profile for both High and Low
PRN productivity batches

averaged-standardized variable profiles for both high and low PRN batches are plotted
with bold green and red lines along with 2*standard-deviation. As observed from the
variances in Figures 14-17 there is large variability among the different batches which in
a separate work have been related to metabolic changes due to variability in media com-
position Budman et al. [2013]. It should be remembered that the relevances indicate the
relative contribution of each input variable to the productivity classes. When separate rel-
evances are calculated for each one of the two classes, the relevance of each input reflects
its relative positive or negative contribution to the probability to belong to the class for
which the relevance is calculated. To verify the same, derivatives with respect to softmax
probabilities were calculated and are shown with every relevance plots. It was found that
the relative relevances for each class follows the same trend as of the gradients with re-
spect to softmax probabilities. Accordingly, the physical/biological interpretations of the
calculated relevances are as follows:
i - According to Figure 3.13 high aeration levels towards the end of the fermentation process
both for fermenters F3 and F6 are significantly (positively) correlated with the probability
to be within the high class of productivity, i.e. higher aeration increases the probability
to be within the high productivity class. On the other hand Figure 3.13 also shows that

45

JacketTemperature
F3

00:00:00 04:00:00 08:00:00 12:00:00 16:00:00 20:00:00 24:00:00 28:00:00 32:00:00 36:00:00 40:00:00 44:00:00 48:00:00 52:00:00

Time (hrs)

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

A
v
e

ra
g

e
d

 R
e

le
v
a

n
c
e

 o
f

In
p

u
t

V
a

ri
a

b
le

-1

-0.5

0

0.5

1

1.5

2

2.5

3

N
o

rm
a

li
z
e

d
 p

ro
fi
le

 o
f

In
p

u
t

V
a

ri
a

b
le

Avg. G-batch Relevances Avg. B-batch Relevance

Avg. G-batch gradient Avg. B-batch gradient

Avg. G-batch profile Avg. B-batch profile

JacketTemperature
F6

00:00:00 04:00:00 08:00:00 12:00:00 16:00:00 20:00:00 24:00:00 28:00:00 32:00:00 36:00:00 40:00:00 44:00:00 48:00:00 52:00:00

Time (hrs)

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

A
v
e

ra
g

e
d

 R
e

le
v
a

n
c
e

 o
f

In
p

u
t

V
a

ri
a

b
le

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

3

N
o

rm
a

li
z
e

d
 p

ro
fi
le

 o
f

In
p

u
t

V
a

ri
a

b
le

Avg. G-batch Relevances Avg. B-batch Relevance

Avg. G-batch gradient Avg. B-batch gradient

Avg. G-batch profile Avg. B-batch profile

Figure 3.15: Averaged Time-based Relevance of Jacket Temperature profile for both High
and Low PRN productivity batches

the aeration rates are not as significantly correlated to the probability to be within the low
productivity class. Thus in bad batches variations in aeration are not clearly correlated to
productivity
ii - According to Figure 3.14 the agitation rates in the fermenters are significantly (pos-
itively) correlated to the probability to be within the low productivity class between fer-
mentation time of 20 hours to 32 hours. This is a particularly important observation which
indicates that the growth in the low productivity batches is delayed as compared to the
high productivity batches. The increase in agitation rate after 20 hours indicates that
growth started to increase at that time in the low productivity batches since increased
growth will require increased supply of oxygen through increased agitation (as indicated
by the relevances’ results) to maintain the dissolved oxygen target. Although, increased
aeration could have also supply the additional required oxygen, a particular split oxygen
control strategy is implemented in the process where the controller uses first the agitation
to increase oxygen demand until the agitation reaches a saturation limit and only afterward
it will start to use the aeration rate to satisfy the demand. The delayed increase in growth
is clearly shown in Figure 3.18b where biomass values as measured by optical density are
shown for a few low and high productivity batches. At this point optical density cannot

46

Seal
F3

00:00:00 04:00:00 08:00:00 12:00:00 16:00:00 20:00:00 24:00:00 28:00:00 32:00:00 36:00:00 40:00:00 44:00:00 48:00:00 52:00:00

Time (hrs)

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

A
v
e

ra
g

e
d

 R
e

le
v
a

n
c
e

 o
f

In
p

u
t

V
a

ri
a

b
le

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

3

N
o

rm
a

li
z
e

d
 p

ro
fi
le

 o
f

In
p

u
t

V
a

ri
a

b
le

Avg. G-batch Relevances Avg. B-batch Relevance

Avg. G-batch gradient Avg. B-batch gradient

Avg. G-batch profile Avg. B-batch profile

Seal
F6

00:00:00 04:00:00 08:00:00 12:00:00 16:00:00 20:00:00 24:00:00 28:00:00 32:00:00 36:00:00 40:00:00 44:00:00 48:00:00 52:00:00

Time (hrs)

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

A
v
e

ra
g

e
d

 R
e

le
v
a

n
c
e

 o
f

In
p

u
t

V
a

ri
a

b
le

-1

-0.5

0

0.5

1

1.5

2

2.5

3

N
o

rm
a

li
z
e

d
 p

ro
fi
le

 o
f

In
p

u
t

V
a

ri
a

b
le

Avg. G-batch Relevances Avg. B-batch Relevance

Avg. G-batch gradient Avg. B-batch gradient

Avg. G-batch profile Avg. B-batch profile

Figure 3.16: Averaged Time-based Relevance of Seal Temperature profile for both High
and Low PRN productivity batches

be measured online and it is available for only few batches. Hence, the latter observation
cannot be corroborated for all batches that were investigated. A possible explanation for
the variability is the occurrence of different levels of oxidative stress due to changes in
media composition as reported in a separate studyZavatti et al. [2016].
iii - It can be noted from Figure 3.15 that the jacket temperature in F3 fermenter does not
contribute much to the classification model, on the other hand higher jacket temperature
in F6 is favourable for the batch to be classified as the higher PRN batch. The above
observation is confirmed through personal communication with Sanofi Pasteur staff which
found that PRN specific production rates were higher at high temperature levels.
iv - In Figure 3.16 it can be observed that higher seal temperature at the supplementation
and end of fermentation period increases the probability of a batch to be a High PRN
batch. The seal temperature is monitored to ensure sterilization-in-place of the impeller.
The seal ensures that nothing enters the motor that drives the impeller inside the fer-
menter. In general higher seal temperature is highly correlated to the temperature inside
the fermenter which is correlated to higher productivity of antigen.

It should be noticed that in the current case study, in contrast with the simulator

47

based TEP study, not all inputs, e.g. disturbances, are known or measured. Thus, it is not
possible as for the Case Study 1 to assess through the relevances all the input variables
that can significantly affect productivity. For example, it is expected that growth media
composition changes will surely affect the productivity but this cannot be identified with
the relevances since these changes cannot be realistically measured due to the complex
composition of the media. Another important observation from the relevances is regarding
differences in relevances between the two parallel F3 and F6. Although these fermenters
are supposed to behave identically, based on manufacturing experience and differences in
growth curves shown in 3.18a, they respond differently. These differences may be possibly
related to different performance of the impeller, operator related variations, etc. Thus we
can not expect similar relevance of input variables in both of them.

1 2

Target Class

1

2

O
u

tp
u

t
C

la
s
s

 Confusion Matrix

33

4.0%

147

17.8%

18.3%

81.7%

52

6.3%

593

71.9%

91.9%

8.1%

38.8%

61.2%

80.1%

19.9%

75.9%

24.1%

1 2

Target Class

1

2

O
u

tp
u

t
C

la
s
s

 Confusion Matrix

13

1.6%

167

20.2%

7.2%

92.8%

0

0.0%

645

78.2%

100%

0.0%

100%

0.0%

79.4%

20.6%

79.8%

20.2%

Figure 3.17: LSTM + SLRPFP: confusion matrix of test dataset before (left) and after
(right) SLRPFP

For comparison purposes LSTM, AE + SVM and BDPCA + SVM classification models
are investigated for this case study.

48

LSTM + SLRPFP Model (Supervised Classification)

The LSTM model for Sanofi Pasteur batch datasets consists of an input layer, followed by
a dropout layer, a fully-connected layer and a softmax layer. The hidden layer consists of
8 neurons and the model is trained with a mini-batch size of 1000 samples for maximum
of 6500 epochs. The testing accuracy achieved for this model was 75.9% on the same test-
dataset as the one used in the MLP model in the previous section. The SLRPFP (see 1)
algorithm was applied to prune the irrelevant variables (pH2F3 and Jacket TemperatureF3).
From the relevances for each variable shown in Figure 3.19 it is observed that the variable
pH2F3 and Jacket TemperatureF3 do not contribute to the overall LSTM classification
model. Subsequently, it was found that following pruning of the two input variables the
test accuracy increased from 75.9% to 79.8%. The confusion matrix of test-dataset for
both before and after pruning are shown in Figure 3.17. The obtained testing accuracies
are acceptable since the expected error in the measurement of antigen is of the order of at
least ±10%

It is further noticed that averaged relevances for each variable at each time-step com-
puted from the MLP model in the previous sub-section and overall averaged relevance for
each input variable from the LSTM model indicate the same variables i.e. pH2F3 and
Jacket temperature in F3 as non-relevant for classification. This corroborates the signif-
icance of each input variable with respect to the productivity and that different models
lead to the same conclusions. It is also evident that the testing accuracies in Case Study
1 are lower than the testing accuracies in this case study. However, this is not surprising
if one considers that in the TEP problem all the inputs and disturbances are available for
model calibration whereas in Case Study 2 some of the disturbances are not measured, e.g.
changes in media composition that cannot be exactly measured for each batch.

Autoencoder + SVM (Unsupervised Classification)

To compare the performance of supervised deep learning models i.e. the MLP and the
LSTM model in Section 3.4.2 and 3.4.2 with an unsupervised learning approach, an AE

49

0 5 10 15 20 25 30 35 40 45

Time (hrs)

(a)

0

2

4

6

8

10

12

O
D

Optical Density measurements for two fermentors (F3 & F6)

F3

F6

F3

F6

(a) OD for F3 & F6 fermenter

00:00:00 04:00:00 08:00:00 12:00:00 16:00:00 20:00:00 24:00:00 28:00:00 32:00:00 36:00:00 40:00:00 44:00:00 48:00:00 52:00:00

Time (hrs)

(b)

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

N
o

rm
a

li
z
e

d
 A

e
ra

ti
o

n
 P

ro
fi
le

s

Agitation
F3

PRN batches <11

PRN batches > 11

16:00:00 18:00:00 20:00:00 22:00:00
0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

(b) Normalized agitation profiles

Figure 3.18: (a) Difference in the growth profile for two fermenters; (b) Increase in agitation
profiles around 18 hours because of delayed increase of growth in low PRN batches

was trained with the pruned training dataset used for training MLP-NN and LSTM-NN. A
single layer AE-NN consists of 1000 neurons was calibrated for 1500 epochs. A reconstruc-
tion error of 7% was evaluated using ?? for the calibration dataset. A MSVM classification
model was built based on the outputs from the trained AE. The test accuracy was 78.18%
which corroborates an earlier observation in Section 4.1.2 that the supervised modeling
approach performs marginally better than the unsupervised one.

BDPCA + SVM

The deep learning models were compared with linear unsupervised BDPCA + SVM ap-
proach. BDPCA was chosen for comparison since it was reported to perform better than
Multiway Principal Component Analysis (MPCA) for monitoring batch processes Chen
and Liu [2002]. The method for determining number of lags d is described in Ku et al.,
(1995)Ku et al. [1995] for each batch and an average time lag davg = 15 is selected. Estima-
tion of the average loading vectors for each batch is carried out by evaluating an averaged

50

pH1
F3

pH2
F3

DO F3

Aera
tio

n F3

Agita
tio

n F3

Tem
perature

F3

TankW
eight

F3

Acid
Q

uantit
y F3

Pre
ss

ure F3

Ja
ck

etT
em

pera
tu

re F3

Seal F3
pH1 F6

pH2
F6

DO F6

Aera
tio

n F6

Agitation
F6

Tem
perature

F6

TankW
eight

F6

AcidQ
uantity

F6

Pre
ss

ure F6

JacketTem
perature

F6

Seal F6

0 5 10 15 20

Number of Input Variables

-0.03

-0.02

-0.01

0

0.01

0.02

0.03

A
ve

ra
ge

d
R

el
ev

an
ce

 o
f I

np
ut

 V
ar

ia
bl

es

Figure 3.19: Averaged Relevance of all Input Variables from the LSTM model

dynamic co-variance matrix SavgXdXd as follows:

SavgXd Xd =
(N − davg + 1)

∑N
i=1 SiXdXd

J(N − davg)
(3.9)

where J = 22 (11 process variables from each fermenter) are the number of process variables
monitored during the fermentation process; N = 240 are the number of batch-datasets used
for calibration and SiXdXd is the co-variance matrix for each batch. An average number of
principal components nprincompavg = 18 are selected (shown in Figure 3.20a) such that it
explains 90% of the variance on average for each batch. Subsequently, the test dataset is
projected onto the selected average principal components and the obtained scores are used
as the inputs to an MSVM classification model. The classification accuracy for the training
and testing dataset were 66.7% and 70.91% (illustrated in Figure 3.20b) respectively which
are significantly lower than the values obtained with the deep learning models, e.g. 90.3%
for training and 79.8% for testing with the MLP model.

51

0 50 100 150 200 250

Number of fermentation batches (calibration dataset)

0

5

10

15

20

25

30

35

40

45

N
u

m
b

e
r

o
f

P
ri
n

c
ip

a
l
C

o
m

p
o

n
e

n
ts

 f
o

r
B

D
P

C
A

Number of principal components

Mean of principal components

(a) Avg. principal components (BDPCA)

1 2

Target Class

1

2

O
u

tp
u

t
C

la
s
s

 Confusion Matrix

4

7.3%

8

14.5%

33.3%

66.7%

8

14.5%

35

63.6%

81.4%

18.6%

33.3%

66.7%

81.4%

18.6%

70.9%

29.1%

(b) Confusion Matrix (BDPCA)

Figure 3.20: (a) Selection of avg. number of principal components in BDPCA; (b) Confu-
sion Matrix for test dataset (BDPCA)

3.5 Conclusion

This chapter presents a novel neural network (NN) pruning algorithm referred to as Sequen-
tial Layer-wise Relevance Propagation for Pruning (SLRPFP) based on relevance of input
variables. The proposed method first computes the relative relevance scores for all input
variables followed by eliminating the input variables which are below a certain threshold
value. It significantly reduces the number of parameters to be estimated and it improves
the performance of the classification model by avoiding data over-fitting. An added benefit
is that it reduces the computational load thus facilitating online implementation in con-
tinuous processes.

Also, the pruning methodology provides important physical insights on the system re-
garding the inputs that have positive and negative effect on the profit function and to
detect significant changes in process phenomena, e.g. variability in cell growth for different

52

fermentations in the vaccine manufacturing process.

This work also demonstrated the superiority of deep learning approaches with both
supervised (LSTM and MLP neural networks) and unsupervised (AE based model) clas-
sification models as compared to linear multivariate models. The efficacy of the proposed
method is demonstrated for both a continuous (Tennessee Eastman process) and a batch
fermentation process (an industrial antigen manufacturing process).

53

Chapter 4

Explainability: Relevance based Dynamic
Deep Learning Algorithm for Fault
Detection and Diagnosis in Chemical
Processes

Overview1

The focus of this work is on Statistical Process Control (SPC) of a manufacturing process
based on available measurements. Two important applications of SPC in industrial set-
tings are fault detection and diagnosis (FDD). In this work a deep learning (DL) based
methodology is proposed for FDD. We investigate the application of an explainability con-
cept to enhance the FDD accuracy of a deep neural network model trained with a data
set of relatively small number of samples. The explainability is quantified by a novel
relevance measure of input variables that is calculated from a Layerwise Relevance Propa-
gation (LRP) algorithm. It is shown that the relevances can be used to discard redundant

1Adapted from Agarwal, Piyush, et al. "Explainability: Relevance based Dynamic Deep Learning
Algorithm for Fault Detection and Diagnosis in Chemical Processes" Computers & Chemical Engineering,
Volume 154 (2021)

54

input feature vectors/ variables iteratively thus resulting in reduced over-parametrization
and over-fitting of noisy data, increasing distinguishability between output classes and su-
perior FDD test accuracy. The efficacy of the proposed method is demonstrated on the
benchmark Tennessee Eastman Process.

4.1 Introduction

The fourth industrial revolution also known as ‘Industry 4.0’ and Big Data paradigm has
enabled the manufacturing industries to boost its performance in terms of operation, profit
and safety. The ability to store large amount of data have permitted the use of deep learn-
ing (DL) and optimization algorithms for the process industries. In order to meet high
levels of product quality, efficiency and reliability, a process monitoring system is needed.
The two important aspects of Statistical Process Monitoring (SPM) are fault detection and
diagnosis (FDD). Normal operation of process plants can be detected by determining if the
current state of the process is normal or abnormal where abnormal refers to a situation
where a fault has occurred. This problem is referred to as “Fault Detection". Following the
detection of abnormality in the process, the next step is to diagnose the specific fault that
has occurred. This step is referred to as “Fault Diagnosis/ Classification". The presence
of noise, correlation, non-linear process dynamics and high dimensionality of the process
inputs greatly hinders the FDD mechanism in process plants. Previously, traditional mul-
tivariate statistical methods such as PCA, PLS and its variants Wise et al. [1990], Kaistha
and Upadhyaya [2001], Harmouche et al. [2014], Yuan et al. [2018] have been extensively
used for fault detection and prognosis. However, the inherent non-linearity in the process
pose challenges while using these linear methods and non-linear techniques can provide
better accuracy. To this end, recent DL methods have shown considerable improvement
over traditional methods. DL fault detection and classification techniques have been widely
researched for applications in several engineering fields Agarwal and Budman [2019], Agar-
wal et al. [2019]. In chemical engineering, machine learning techniques have been applied
for the detection and classification of faults in the Syschem plant, which contains 19 dif-
ferent faults Hoskins et al. [1991] and for the TEP problem. Beyond their application
in the process industries Several studies on DL approaches have been conducted for the

55

prevention of mechanical failures. For example DL models have been used for detecting
and diagnosing faults present in rotating machinery Janssens et al. [2016], Jia et al. [2016],
motors Sun et al. [2016], wind turbines Zhao et al. [2018b], rolling element bearings Gan
et al. [2016], He and He [2017] and gearboxes Jing et al. [2017], Chen et al. [2015]. Many
DL studies have been recently conducted on TEP using DL models.

Although DL based models have better generalization capabilities, they are poor in
interpretation abilities because of their black box nature. Using these methods it is diffi-
cult to identify the root cause of faults i.e. input variables that are most correlated to the
occurrence of the faults by significantly deviating from their normal trajectories following
the occurrence of the fault. Following the development of complex novel neural network
architectures, there is an increasing interest in investigating the problems associated with
DL models. For example, to understand how a particular decisions are made, which input
variable/feature is greatly influencing the decision made by the DL-NN models, etc. This
understanding is expected to shed light on why biased results can be obtained, why a wrong
class is predicted with a higher probability in classification problems etc. Explainable Arti-
ficial Intelligence (XAI) is an emerging field of study which aims at explaining predictions
of Deep Neural Networks (DNNs). Several different methods have been proposed in order
to explain the predictions by assigning a relevance or contribution to each input variable
for a given sample. Methodologies that are used to assign scores to each input feature with
respect to a particular task can be classified into two class of methods: perturbation based
methods and backpropagation based methods. Perturbation based methods perturb the
individual input feature vectors (one by one) and estimate the impact on the output Zeiler
and Fergus [2014], Zhou and Troyanskaya [2015] . On the other hand backpropagation
methods are based on backward propagation of the probabilities calculated by Softmax
output neurons in case of classification problem through different layers of the NN back
to the input layer. Most perturbation methods are computationally expensive and often
underestimate the relevance of the input features. To this end, different backward prop-
agation methods have been proposed in the XAI literature for explaining the predictions
such as Layer-wise Relevance Propagation (LRP) Bach et al. [2015], LIME Ribeiro et al.
[2016], SHAP values Lundberg and Lee [2017], DeepLIFT Shrikumar et al. [2017]. LRP

56

as a explainability technique has been successfully used in many different areas such as
healthcare, audio source localization, biomedical domain and recently also in process sys-
tems engineering Montavon et al. [2019], Agarwal and Budman [2019], Agarwal et al. [2019]
and have been shown to perform better than both SHAP and LIME Rios et al. [2020]. In
this work, we use LRP for explainability of the network by evaluating the relevance of
input variables. LRP was proposed by Bach et al., 2015 Bach et al. [2015] to explain the
predictions of DNNs by back-propagating the classification scores from the output layer
to the input layer. In particular, for a specific output class c, the goal of LRP is to deter-
mine the relevance Rc(xi; fc) of the individual input variables/ feature vectors Rc(x; fc) =

[Rc1(x1; fc), Rc2(x2; fc), Rc3(x3; fc), .., Rci(xi; fc), .., Rcn(xn; fc)] ∈ Rn, i = 1, 2, .., n of each
input feature xi to the output fc(x).

Xie and Bai, 2015 proposed neural network based methodology as a solution for the
diagnosis problem in the Tennessee Eastman simulation that combines the network model
with a clustering approach. The classification results obtained by this method were sat-
isfactory for most faults. Both Wang et al., 2018 Wang et al. [2018] and Spyridon et al.
, 2018 Spyridon and Boutalis [2018] proposed the use of Generative Adversarial Networks
(GANs), as a fault detection scheme for the TEP. GANs are an unsupervised technique
composed of a generator and a discriminator trained with the adversarial learning mech-
anism, where the generator replicates the normal process behavior and the discriminator
decides if there is abnormal behavior present in the data. This unsupervised technique can
detect changes in the normal behavior achieving good detection rates. Lv et al., 2016 Lv
et al. [2016] proposed a stacked sparse autoencoder (SSAE) structure with a deep neural
network to extract important features from the input to improve the diagnosis problem
in the Tennessee Eastman simulation. The diagnosis results applying this DL technique
showed improvements compared to other linear and non-linear methods. To account for dy-
namic correlations in the data, Long Short Term Memory (LSTM) units have been recently
applied to the TEP for the diagnosis of faults Zhao et al. [2018a]. A model with LSTM
units was used to learn the dynamical behaviour from sequences and batch normalization
was applied to enhance convergence. An alternative to capture dynamic correlations in
the data is to apply a Deep Convolutional Neural Networks (DCNN) composed of convo-

57

lutional layers and pooling layers Wu and Zhao [2018].

The fault detection problem in the current work is formulated as a binary classification
problem where the objective is to classify whether the current state of the process plant
is normal or abnormal while the fault diagnosis problem is formulated as a multi-class
classification problem to identify the type of fault. Then, the application of the concept
of explainability of Deep Neural Networks (DNNs) is explored with its particular appli-
cation in FDD problem. While the explainability concept has been studied for general
DNN based models as mentioned above, it has not been investigated before in the context
of FDD problems. In this work, the relevance of input variables for FDD are interpreted
using LRP and the irrelevant input variables’ for the supervised classification problem are
discarded. It is shown that the resulting pruning of the input variables results in enhanced
fault detection as well as fault diagnosis test accuracy. Lastly, we show that the use of
a Dynamic Deep Supervised Autoencoder (DDSAE) NNs along with the pruning of the
network for both fault detection and diagnosis further improves the overall classification
ability as compared to other methods reported before.

To conduct a fair comparison of the proposed algorithm to previously reported meth-
ods, careful attention should be given to the data used as the basis for comparison. For
example, there is a vast literature on FDD for the TEP problem that uses differing amounts
of data. In this work, we have used a standard dataset as a basis for comparison which fur-
ther challenges the training of DL models and accuracy of FDD with a DL model and that
has been used for comparison in other studies. The proposed DL based detection method
with Deep Supervised Autoencoder (DSAE) or Deep Dynamic Supervised Autoencoder
(DDSAE) is compared to several techniques: linear Principal Component Analysis (PCA)
Zhang [2009], Yin et al. [2012], Lau et al. [2013], Shams et al. [2010], Dynamic Principal
Component Analysis (DPCA) Chiang et al. [2000], Yin et al. [2012], Ku et al. [1995], Rato
and Reis [2013], Odiowei and Cao [2009] , Independent Component Analysis (ICA) Hsu
et al. [2010] and with two other recently reported methods that use DL models based
on Sparse Stacked Autoencoder NNs (SAE-NN) Lv et al. [2016] and Convolutional NN
(CNN)) Chadha and Schwung [2017] for the same data set. For the Fault Diagnosis prob-

58

lem, the proposed method is compared with Support Vector Machines (SVM) Kulkarni
et al. [2005], Chiang et al. [2004], Mahadevan and Shah [2009], Random Forest, Structure
SVM, and sm-NLPCA (architecture used: Stacked Autoencoder). It will be shown that the
proposed relevance based method with DSAE or DDSAE networks significantly increases
the average fault detection and diagnosis accuracy over other methods.

The following chapter is organized as follows. The mathematical modelling tools includ-
ing basic Autoencoder (AE), Deep Supervised Autoencoder (DSAE), its dynamic version
Dynamic Deep Supervised Autoencoder (DDSAE) neural networks and Layerwise Rele-
vance Propagation (LRP) for computing the relative importance of input variables for
explaining the predictions of DNNs are introduced in Section 4.2. The developed method-
ology for both Fault Detection and Diagnosis (FDD) is presented in Section 4.3. The
application of the proposed method to the case study of Tennessee Eastman Process and
comparisons to other methods are presented in Section 4.4 followed by conclusions pre-
sented in Section 4.5.

4.2 Preliminaries

This section briefly reviews the fundamentals of a Supervised Deep Autoencoder Neural
Networks (DSAE-NNs), Dynamic Deep Supervised Autoencoder (DDSAE-NNs) and Layer-
wise Relevance Propagation (LRP).

4.2.1 Deep Supervised Autoencoder Classification Neural Net-
works (DSAE-NNs)

The overall goal is to learn a function that predicts the class labels in one-hot encoded form
yi ∈ Rm from inputs xi ∈ Rdx . The operation performed by the encoder for a single hidden
layer between the input variables to the latent variables zi ∈ Rdz can be mathematically
described as follows:

zi = fe(Wexi + be) (4.1)

59

Figure 4.1: Schematic of a single layer Supervised Autoencoder Neural Network (SAE-NN)

The latent variables are used both to predict the class labels and to reconstruct back the
inputs x as follows:

x̂i = fd(Wdzi + bd) (4.2)

ŷi = fc(Wczi + bc) (4.3)

where fc is a non-linear activation function applied for the output layer. Wc ∈ Rm×dz

and bc ∈ Rm are output weight matrix and bias vector respectively. The training of an
Deep Supervised Autoencoder Neural Network (DSAE-NN) model, schematically shown
in Figure 4.1, is based on the minimization of a weighted sum of the reconstruction loss
function and the supervised classification loss corresponding to the first and second terms
in (Equation (4.4)) respectively. The reconstruction loss function in Equation (4.4) is
ensuring that the estimated latent variables are able to capture the variance in the input
data while the classification loss is ensuring that only those non-linear latent variables are
extracted that are correlated with output classes. Mean squared error function is used as

60

a reconstruction loss and softmax cross-entropy as the classification loss.

lDSAE = λ1

N∑
s=1

Lsr(xs,WdWexs) +
N∑
s=1

Lsp(WcWexs,ys)

=
λ1

N
||xs − x̂s||22 +

1

N

N∑
s=1

m∑
c=1

−ys,clog(ps,c)

=
1

N

[
λ1||xs − x̂s||22 +

N∑
s=1

m∑
c=1

−ys,clog(ps,c)

]
(4.4)

ps,c =
e(ˆys,c)∑m
c=1 e

(ˆys,c)
(4.5)

where λ1 is the weight for the reconstruction loss Lr, m is the number of classes, ys,c is a
binary indicator (0 or 1) equal to 1 if the class label c is the correct one for observation
s and 0 otherwise, ˆys,c is the non-normalized log probabilities and ps,c is the predicted
probability for a sample s of class c. Moreover, to avoid over-fitting, a regularization term
is added to the objective function in Equation 4.4. Hence, the objective function for Deep
Supervised Autoencoder NNs used for Fault Detection (number of classes m = 2, normal
or faulty) is as follows:

min
W

lDSAE = min
1

N

[
λ1||xs − x̂s||22 + λ2

N∑
s=1

m∑
c=1

−ys,clog(ps,c) + λ3

∑
L

∑
k

∑
j

W2[L]
kj

]
(4.6)

where W[L]
kj are the weight matrices for each layer L in the network (L = 1 in this

example) and the weights on the individual objective functions λ1, λ2, λ3 are chosen using
validation data.

4.2.2 Dynamic Deep Supervised Autoencoder Classification Neu-
ral Networks (DDSAE-NNs)

The static DSAE-NN presented above assumes that the sampled data are independent to
each other, and hence, temporal correlations are ignored. To account for the correlations

61

in time between the data samples, a Dynamic Deep Supervised Autoencoders (DDSAE)
model has been proposed by using a dynamic extension matrix. Accordingly, the original
DSAE-NN model can be extended to take into account auto-correlations in time correlated
data by augmenting each sample vector with the previous l observations and stacking the
data matrix with the resulting vectors, each corresponding to different time intervals.

The dynamic augmentation of the input data matrix XD by stacking previous l obser-
vations to input data matrix X is as follows:

XD =
[
xDl+1 x

D
l+2 x

D
l+3 . . .x

D
N

]T ∈ R(N−l)×((l+1)dx) (4.7)

where xDn = [xn xn−1 xn−2 . . .x1], where xn is a Rdx dimensional vector of all the input
feature vectors/ variables. The different time window length is chosen to build DDSAE
models, in which the best classification performance is the final time window length. The
following objective function (Equation 4.8) is minimized with training data XN−l+1

D =

{x}N−l+1
i=1 ,yD = {y}N−l+1

i=1 , where N − l + 1 is the total number of samples:

min
W

lDDSAE = min
1

(N − l + 1)

[
λ1||xDs − x̂Ds ||22 + λ2

N−l+1∑
s=1

m∑
c=1

−ys,clog(ps,c) + λ3

∑
L

∑
k

∑
j

W2[L]
kj

]
(4.8)

Note that the number of samples for the augmented dynamic matrix for the training
data decreases as compared to the static DSAE case.

4.2.3 Layer-wise Relevance Propagation (LRP)

Layer-wise Relevance Propagation (LRP) was introduced by Bach et al. [2015] to assess
the relevance of each input variable or features with respect to outputs using a trained
NN. It is based on a layer-wise relevance conservation principle where each relevance
[Rc(xi; fc)]j, i = 1, 2, ..., n, where n is the number of input variables/ feature vectors
(xi, i = 1, 2, ..., n) for a jth sample where j = 1, 2, ..., N , where N is the total number

62

of samples in the training dataset, is calculated by propagating the output scores for a
particular task c towards the input layer of the network. Previously, it has been used in
the area of health-care for attributing a relevance value to each pixel of an image to explain
the relevance in a image classification task using DNNs Yang et al. [2018], to explain the
predictions of a NN in the area of sentiment analysis Arras et al. [2017], to identify the
audio source in reverberant environments when multiple sources are active Perotin et al.
[2019], and to identify EEG patterns that explain decisions in brain-computer interfaces
Sturm et al. [2016]. In process systems engineering LRP has been recently applied by
the authors for the first time for FDD problems. The method was used for identifying
relevant input variables and pruning irrelevant input variables (input nodes) with respect
to a specific classification task for both Multi-layer Perceptron (MLP) NN and Long-Short
Term Memory (LSTM) NN by Agarwal and Budman [2019], Agarwal et al. [2019].

To compute the relevance of each input variable xi, i = 1, 2, ..., n for the DSAE-NNs
and DDSAE-NNs models (used in this work), are trained for both fault detection and fault
classification using the training dataset χ : {Xl,yl} and χD : {Xl

D,ylD} (χD: dynamic
version of χ) respectively. Subsequently, the score value fc of the corresponding class
for the jth sample is back-propagated through the network towards the input. Depending
on the nature of the connection between layers and neurons, a layer-by-layer relevance
score is computed for each intermediate lower-layer neuron. Different LRP rules have been
proposed for attributing relevance for the input variables. In this work, we use the ε epsilon
ruleBach et al. [2015] for computing relevances that are given as follows:

Rl←u =
∑
u

xlwlu∑
l xlwlu + ε

Ru (4.9)

where ε is used to prevent numerical instability when zu is close to zero and wlu are the
weights connecting lower layer neurons l and upper-layer neurons u. As ε becomes larger,
only the most salient explanation factors survive the absorption. This typically leads to
explanations that are sparser in terms of input features and less noisy Montavon et al.
[2019].

Let us consider a simple example for the propagation of relevances from the output

63

Figure 4.2: Left figure: Represents forward contribution of each node to the output layer;
Right figure: Represents the relevance propagation from output layer to the input layer

layer to the input layer of a NN as shown in Figure 4.2. For each layer l in a network with
L total layers, 1, . . . ,m, . . .M are the nodes in layer l − 1, and 1, . . . , n, . . . N nodes are
the nodes in the layer l. zln is the pre-activation function value of the node, wl−1

mn is the
weight connecting nodes m and n and al−1

m is the output of a node post activation function
for a node m in layer l − 1. Then, the relevance for a sample at node m in layer l − 1 is
calculated as follows:

Rl−1
m =

∑
n

al−1
n wl−1

nm∑
m a

l−1
m wl−1

mn

Rl
n (4.10)

Usually the contribution of relevance for a node m comes from all the nodes n of a given
layer l. However, specifically the propagation of relevance from the the output softmax
(last) layer to the layer before the last one, we consider the contribution coming from the
target node only.

Relevances Rc(x; fc)j = [Rc1(x1; fc), Rc2(x2; fc), ..., Rcn(xn; fc)]j ∈ Rn, i = 1, 2, .., n for
each input feature xi are calculated for the jth sample with respect to a classification task
c in the training dataset χ or χD. Since the goal is to prune the irrelevant input features
DNNs based on estimated relevance scores using LRP, it is important to average the rel-
evance scores over all the correctly classified samples in the training dataset. Therefore,

64

the final average input relevances with respect to the overall classification task c can be
calculated as follows:

Rc =
1

Nc

Nc∑
j=1

|Rc(x; fc)j| (4.11)

where Nc is the number of correctly classified samples in the training dataset. Further-
more, the least relevant input features are pruned based on the average relevance scores for
all input variables calculated with Equation 4.11. In practise a threshold of λ×max(Rc) is
chosen to prune the irrelevant variables where λ is an hyper-parameter that is determined
by using the validation dataset (heuristically λ is chosen as 0.01 as the starting value).
Relevance of input variables below the threshold are removed from the dataset and the
network is re-trained until the same or higher validation accuracy is achieved. It is to be
noted that the DNN has to be re-trained with the set of remaining input variables after
pruning and the testing accuracy increases with successive iterations as shown later in
Section 4.4. For the dynamic augmented input matrix χD shown in Equation 4.7, the
final input relevances (combining effects of individual lagged variables) with respect to the
overall classification task c is:

Rc =
1

Nc

Nc∑
j=1

l+1∑
i=1

|Rci(xi; fc)|j (4.12)

where l is the number of time lag window included in the dataset Xl
D.

4.3 Proposed Fault Detection and Diagnosis Methodol-
ogy based on DSAE-NNs and DDSAE-NNs

Both the Deep Supervised Autoencoder NN (DSAE-NN)and Dynamic Deep Supervised
Autoencoder NN (DDSAE-NN) are used for FDD and are the basis for the explainable-
pruning based methodology presented in the previous section. The proposed fault detection

65

algorithm is first used to extract deep features to detect if the process is operating in a
normal or faulty region. Then, a fault diagnosis algorithm is applied in case the sample
indicates faulty operation to identify the particular fault and possible root-cause of the
occurring fault in the process using an DDSAE-NN. Since the latter is iteratively trained
by using the LRP based pruning procedure that provides explainability of input variables
the resulting DDSAE-NN model will be referred to as xDDSAE-NN.

4.3.1 Fault Detection Methodology

First, a DSAE-NN is trained using the training data (Xl,yl). The fault detection process is
formulated as a binary classification problem. Often, this binary classification task for Fault
Detection is susceptible to a ‘class imbalance problem’ because of the unequal distribution
of classes in the training dataset. For example, the number of training samples for the
normal operating region may be far less than the samples for abnormal operating region
or vice-versa. To address this class imbalance problem an extra weight δ is introduced in
the loss functions in Equation 4.13 and Equation 4.14 is as follows:

min
W

lDSAE = min
1

N

[
λ1

N∑
i=1

||xs − x̂s||22 − λ2

N∑
s=1

(δys,1 log(ps,1) + ys,2 log(ps,2)) + λ3

∑
L

∑
k

∑
j

W
2[L]
kj

]

(4.13)

min
W

lDDSAE = min
1

N

[
λ1

N∑
i=1

||xDs − x̂
D
s ||22 − λ2

N∑
s=1

(δys,1 log(ps,1) + ys,2 log(ps,2)) + λ3

∑
L

∑
k

∑
j

W
2[L]
kj

]

(4.14)

For example, if there are more data samples of faulty operation than samples for nor-
mal operation higher weights would be assigned to the samples belonging to the normal
operating region class. The value of δ dictates a trade-off between false positives and
true negatives and is considered as an additional hyper-parameter to the model that is
ultimately chosen using the validation data-set. Initially the DSAE-NN is trained on the
training dataset Xl,yl using all the input-variables. The best performing model is chosen

66

using a validation dataset Xv,yv. Then, the LRP is implemented to explain the predic-
tions of the chosen DSAE-NN with a set of hyper-parameters by computing the relevance
of each input variable. Relevances Rc(x; fc)j = [Rc1(x1; fc), Rc2(x2; fc), ..., Rcn(xn; fc)]j ∈
Rn, i = 1, 2, .., n for each input feature xi are calculated for the jth sample with respect
to a classification task c in the training dataset χ or χD. Since the goal is to prune the
irrelevant input features DNNs based on estimated relevance scores using LRP, it is impor-
tant to average the relevance scores over all the correctly classified samples in the training
dataset. Therefore, the final input relevances with respect to the overall classification task
c can be calculated as follows:

Rc =
1

Nc

Nc∑
j=1

|Rc(x; fc)j| (4.15)

where Nc is the number of correctly classified samples in the training dataset. Further-
more, the least relevant input features are pruned based on the average relevance scores for
all input variables calculated with Equation 4.15. In practise a threshold of λ×max(Rc) is
chosen to prune the irrelevant variables where λ is an hyper-parameter that is determined
by using the validation dataset (heuristically λ is chosen as 0.01 as the starting value).
Relevance of input variables below the threshold are removed from the dataset and the
network is re-trained until the same or higher validation accuracy is achieved. It is to
be noted that the DNN has to be re-trained with the set of remaining input variables
after pruning and the testing accuracy increases with successive iterations as shown later
in Section 4. For the dynamic augmented input matrix χD shown in Equation 4.7, the
final input relevances (combining effects of individual lagged variables) with respect to the
overall classification task c is:

Rc =
1

Nc

Nc∑
j=1

l+1∑
i=1

|Rci(xi; fc)|j (4.16)

67

where l is the number of time lag window included in the dataset Xl
D. Subsequently, the

eXplainable DSAE (xDSAE) neural network is re-trained using the reduced training dataset
{Xl,yl} → {Xl

r,ylr} at each iteration. The premise for reducing the dimensionality of the
input data by discarding less relevant inputs is that the information content can often be
represented by a lower dimensional space, implying that only a few fundamental variables
are sufficient to account for the variation in the data that are most informative about the
identification of faults and normal regions. Once all the relevant input variables that are
significant to the classification task are chosen, an eXplainable DDSAE-NN (xDDSAE-
NN) is trained with the remaining inputs and the reduced training data matrix Xl

r is
augmented with the lagged variables of the remaining input variables Xl D

r . The process
of discarding input feature vectors is iterative and xDDSAE-NN is iteratively retrained
using the validation dataset. This approach has multiple advantages over other reported
methods used for fault detection as follows:

1. Improvement in test classification accuracy.

2. Identification of an eXplainable empirical model

3. Synthesis of a smaller network with fewer parameters

4.3.2 Fault Diagnosis Methodology

After detecting that the process has deviated from the normal operation and a fault has
occurred, it is desired to diagnose the type of fault. For fault diagnosis, a similar method-
ology to the one used for fault detection is applied for the classification of the type of
fault. First, the static DSAE is used to extract deep features and predict the type of fault
in a process plant. For this task one-hot encoded outputs are utilized as the labels for
training the model. Initially, the DSAE-NN is trained on the training dataset Xl,yl using
all the input-variables. The best performing model is chosen using a validation Xv,yv.
LRP is subsequently implemented to explain the predictions of the selected DSAE-NN by
computing the relevance of each input variable. The irrelevant features are removed by
comparing the relevances to a threshold. Then an xDSAE NN is trained using the reduced

68

training dataset Xl
r,ylr by successive iterations of pruning of irrelevant inputs and model

re-training until the relevance of all the remaining input variables are above the threshold.
Since data collected from chemical processes have strong dynamic/temporal correlations,
the input data matrix X is augmented with observations at l previous time steps for each
input feature dimension (refer Equation 4.7) and a DDSAE-NN is trained. The iterative
procedure of discarding input variables from the reduced dynamic matrix Xl D

r is imple-
mented and pruning and re-training is applied as long as validation accuracy continue to
increase after discarding features. The decision of adding lagged variables only to the re-
maining input variables of the final iteration of xDSAE model is justified by the fact that
the input variables that were eliminated do not have an instantaneous effect of xk on fault
detection. Then, since the pruned input variables at current time are auto-correlated in
time to previous values (xk ∝ f(xk−1,xk−2, ..,xk−n)), if current values are not correlated
to the model outputs then their corresponding previous values (lagged variables) are also
not correlated to these outputs.

4.3.3 Proposed Methodology for FDD

The proposed methodology for FDD is schematically described in Figure 4.3 and it is
summarized by the following steps.

1. Pre-process the input data. Xraw → Xl.

2. Build a DSAE-NN that maps the input vectors into the latent feature space by using
a DSAE model structure. The goal is to extract discriminative features that capture
the latent manifold in the input data that are most correlated with the output classes.
The parameters are optimized using a combination of the reconstruction error, L2

regularization error and binary softmax cross-entropy error of the input data (refer
Equation 4.13).

3. Select the best performing model architecture (number of layers and nodes) along
with the set of hyper-parameters that include learning rate, batch size, and all other

69

Figure 4.3: Flowchart for fault detection and diagnosis based on explainable DNN

70

weighting (λ1, λ2, λ3 and δ) parameters using the validation dataset.
(
Xv,yv

)
.

4. Evaluate the classification accuracy using the chosen trained DSAE model in Step 3
for testing dataset

(
Xt,yt

)
. If the model in testing is satisfactory, the model will be

used for further analysis; if unsatisfactory, return to Step 3 to redesign the DSAE-NN
model.

5. Compute input relevances using the LRP method on the training and validation
dataset and discard irrelevant input features from the dataset Xl,Xv and Xt.

6. Repeat steps 3,4 and 5 until relevances of all input variables are above the threshold
and no improvement over the validation accuracy is achieved for xDSAE NN.

7. Build xDDSAE model using the reduced input dataset Xl
r computed in Step 6 along

with augmenting l lagged variables.

8. Select the best performing model architecture (number of layers and nodes) using
the validation dataset

(
Xv
r ,yvr

)
.

9. Repeat steps 3,4 and 5 until relevances of all input variables are above the threshold
and no improvement of the validation accuracy is achieved.

10. For online process monitoring: When a new data vector Xnew becomes available,
import it into the model after normalizing to determine whether the current state of
the process is in normal or abnormal operating region and to determine the type of
fault that is responsible for the deviation.

71

Figure 4.4: Schematic: Tennessee Eastman plant process (Downs and Vogel, 1993)

4.4 Case Study: Tennessee Eastman Process

In this section the proposed methodology is implemented for FDD and the performance is
compared with different approaches in the literature on the benchmark Tennessee Eastman
Process (TEP). The Tennessee Eastman plant has been used widely for testing several pro-
cess monitoring and fault detection algorithms Chiang et al. [2000], Lau et al. [2013], Rato
and Reis [2013], Xie and Bai [2015], Ricker [1996], Bathelt et al. [2015], Kulkarni et al.
[2005], Larsson et al. [2001]. The TEP involves different unit operations including a vapor-
liquid separator, a reactor, stripper a recycle compressor and a condenser. Four gaseous
reactants (A, B, C and D) forms two liquid products streams (G and H) and a by-product
(F). A schematic of the Tennessee Eastman Process is illustrated in Figure 4.4. Downs
and Vogel (1993)Downs and Vogel [1993] reported the original simulator for this process

72

Table 4.1: Measured and manipulated variables (from Downs and Vogel, 1993)

Variable Name Variable Number Units Variable Name Variable Number Units

A feed (stream 1) XMEAS (1) kscmh Reactor cooling water outlet temperature XMEAS (21) ◦ C
D feed (stream 2) XMEAS (2) kg h−1 Separator cooling water outlet temperature XMEAS (22) ◦C
E feed (stream 3) XMEAS (3) kg h−1 Feed %A XMEAS(23) mol%
A and C feed (stream 4) XMEAS (4) kscmh Feed %B XMEAS(24) mol%
Recycle flow (stream 8) XMEAS (5) kscmh Feed %C XMEAS(25) mol%
Reactor feed rate (stream 6) XMEAS (6) kscmh Feed %D XMEAS(26) mol%
Reactor pressure XMEAS (7) kPa guage Feed %E XMEAS(27) mol%
Reactor level XMEAS (8) % Feed %F XMEAS(28) mol%
Reactor temperature XMEAS (9) ◦C Purge %A XMEAS(29) mol%
Purge rate (stream 9) XMEAS (10) kscmh Purge %B XMEAS(30) mol%
Product separator temperature XMEAS (11) ◦C Purge %C XMEAS(31) mol%
Product separator level XMEAS (12) % Purge %D XMEAS(32) mol%
Product separator pressure XMEAS (13) kPa guage Purge %E XMEAS(33) mol%
Product separator underflow (stream 10) XMEAS (14) m3 h−1 Purge %F XMEAS(34) mol%
Stripper level XMEAS (15) % Purge %G XMEAS(35) mol%
Stripper pressure XMEAS (16) kPa guage Purge %H XMEAS(36) mol%
Stripper underflow (stream 11) XMEAS (17) m3 h−1 Product %D XMEAS(37) mol%
Stripper temperature XMEAS (18) ◦C Product %E XMEAS(38) mol%
Stripper steam flow XMEAS (19) kg h−1 Product %F XMEAS(39) mol%
Compressor Work XMEAS (20) kW Product %G XMEAS(40) mol%
D Feed Flow XMV (1) kg h−1 Product %H XMEAS(41) mol%
E Feed Flow XMV (2) kg h−1 A Feed Flow XMV (3) kscmh
A + C Feed Flow XMV (4) kscmh Compressor Recycle Valve XMV(5) %
Purge Valve XMV (6) % Separator pot liquid flow XMV (7) m3h−1

Stripper liquid product flow XMV (8) m3h−1 Stripper Steam Valve XMV (9) %
Reactor cooling water flow XMV (10) m3h−1 Condenser cooling water flow XMV (11) m3h−1

and has been widely used as a benchmark process for control and monitoring studies (sim-
ulator available at http://depts.washington.edu/control/LARRY/TE/download.html).
The process simulator involves a total of 52 measured variables including 22 process (out-
put) variables, 11 manipulated variables and 19 composition measurements. A complete
list of output measurements and manipulated variables are presented in Table 4.1. Ad-
ditional details about the process model can be found in the original paper Downs and
Vogel [1993] and descriptions of the different control schemes that have been applied to
the simulator can be found in Ricker [1996] and its revised version Bathelt et al. [2015].
Several data-driven statistical process monitoring approaches have been reported for the
detection and diagnosis of disturbances in the Tennessee Eastman simulation. There are
20 different process disturbances (fault types) in the industrial simulator (shown in Table
4.2) though only 17 were used in this work to be consistent with other methods in the

73

Table 4.2: Process Faults for classification in TE Process

Fault Description Type

IDV(1) A/C feed ratio, B composition constant (stream 4) step
IDV(2) B composition, A/C ratio constant (stream 4) step
IDV(3) D Feed Temperature step
IDV(4) Reactor cooling water inlet temperature step
IDV(5) Condenser cooling water inlet temperature (stream 2) step
IDV(6) A feed loss (stream 1) step
IDV(7) C header pressure loss reduced availability (stream 4) step
IDV(8) A, B, C feed composition (stream 4) random variation
IDV(9) D Feed Temperature random variation
IDV(10) C feed temperature (stream 4) random variation
IDV(11) Reactor cooling water inlet temperature random variation
IDV(12) Condenser cooling water inlet temperature random variation
IDV(13) Reaction kinetics slow drift
IDV(14) Reactor cooling water valve sticking
IDV(15) Condenser Cooling Water Valve stiction
IDV(16) Deviations of heat transfer within stripper random variation
IDV(17) Deviations of heat transfer within reactor random variation
IDV(18) Deviations of heat transfer within condenser random variation
IDV(19) Recycle valve of compressor, underflow stripper and steam valve stripper stiction
IDV(20) unknown random variation

literature. Each of these methods has shown different levels of success in detecting and di-
agnosing the faults considered in the simulations. Several statistical studies have reported
faults 3, 9 and 15 as unobservable or difficult to diagnose due to the close similarity in the
responses of the noisy measurements used to detect these faults Lau et al. [2013], Shams
et al. [2010], Chiang et al. [2000], Du and Du [2018] and therefore these 3 faults were not
considered in the current study.

The training data consists of 500 samples of normal data and 480 samples for each fault.
The testing dataset has 960 samples for both faulty and normal operation data. For the
faulty testing dataset, the fault is introduced at 160 time-sample. A part of the training
data {Xl,yl} is used as the validation dataset {Xv,yv} for tuning the hyper-parameters
(learning rate, weights: λ, λ1, λ2, λ3 and δ, number of epochs,layers and nodes in each
layer) for both DSAE/ xDSAE and DDSAE/ xDDSAE DNNs for all iterations. These
hyper-parameters, such as number of layers, number of neurons in each layer, classifica-
tion weights, learning rate, time-horizon etc. are selected using validation data. It should

74

be noticed that the data were divided into 3 sets: training, validation and testing data.
The weights of the network are obtained for a certain set of hyper-parameters with the
training data and the validation data is then used to compare networks with different
hyper-parameters to select the best set. The hyper-parameter search is implemented using
keras-tuner in Python. Firstly, a grid of hyper-parameters is defined, for example number
of encoder layers = [1,2,3,4,5,6,7], number of neurons units for each of these layers ranging
from 2 to 400, learning rate = [1e−1,2e−1,3e−1, 1e−2], value of weights in the objective
function, etc. Keras-tuner trains the model using different combinations of these hyper-
parameters values and the averaged validation accuracy is evaluated at every epoch. The
models are trained with a few epochs in the start and the selected models with high vali-
dation accuracy are chosen to be trained for more epochs with a early stopping technique.
The best run with highest validation accuracy and the combination of hyper-parameters
for the run are used to evaluate test accuracy.

The network architectures and test accuracy for both fault detection and diagnosis are
presented in Table 4.4 and 4.5 respectively. For example, for a particular entry in Table 4
of an architecture as 52-5-10-5-52 the notation is as follows. The first number represents
the number of neurons in the input layer, subsequently the second layer consists of 5 neu-
rons and the bottleneck layer of autoencoder consists of 10 neurons. Another dense layer
network is attached to the bottleneck layer of 10 neurons with an output layer of 2 neu-
rons for fault detection (refer to Figure 4.1). This dense network is used for classification.
The decoder layers are also connected to the bottleneck layer with 5 neurons and finally
the output layer has 52 neurons for the reconstruction of inputs. After applying the LRP
procedure to the static fault detection model, it is found that only 24 out of 52 variables
are the most important for obtaining the highest testing accuracy for detecting the correct
state of the process plant. After every iteration of the input pruning-relevance (LRP) based
procedure, it is shown in Table 4.4 that the removal of irrelevant input variables results in
successive improvement of fault class separability. To account for the dynamic information
after identifying the 24 most relevant process variables, the reduced input data matrix {Xl

r}
is stacked with lagged time stamps and an DDSAE NN model is retrained. The best fault
detection test accuracy of 96.43% is achieved by stacking two previous time-stamp process

75

values. The fault detection rates for all the faults are shown in Table 4.6. These results
are compared in the same Table 4.6 with several methods as follows: PCA Lv et al. [2016],
DPCALv et al. [2016], ICAHsu et al. [2010], Convolutional NN (CNN) Singh Chadha et al.
[2019], Deep Stacked Network (DSN) Chadha and Schwung [2017], Stacked Autoencoder
(SAE) Chadha and Schwung [2017], Generative Adversarial Network (GAN) Spyridon and
Boutalis [2018] and One-Class SVM (OCSVM) Spyridon and Boutalis [2018]. It can been
seen from Table 4.6 that the proposed method outperformed the linear multivariate meth-
ods and other DL based methods for most fault modes. For example, for PCA with 15
principal components, the average fault detection rates are 61.77% and 74.72% using T 2

and Q statistic respectively. Since the principal components extracted using PCA captures
static correlations between variables, DPCA (Dynamic PCA) is used to account for tempo-
ral correlations (both auto-correlations and cross-correlations) in the data. Since DPCA is
only an input data compression technique, it must be combined with a classification model
for the purpose of fault detection. Accordingly, the output features from the DPCA model
are fed into an SVM model that is used for final classification. The effect of increasing the
number of lagged variables in the dataset is also investigated following the hypothesis that
increasing the time horizon will enhance classification accuracy. It can be seen in Table
4 that the increasing number of lags and simultaneous pruning improves the classification
accuracy. The average detection rate obtained was 72.35%. ICA (Hsu et al. [2010]) based
monitoring scheme was found to perform better than both PCA and DPCA based methods
with an averaged accuracy of approximately 90%. In addition to the comparison to linear
methods, the proposed methodology was also compared with different DNN architectures
such as CNN (Chadha and Schwung [2017]), DSN (Chadha and Schwung [2017]), SAE-NN
(results reported in Chadha and Schwung,2017) and GAN (Spyridon and Boutalis [2018]),
OCSVM (results reported in Spyridon and Boutalis,2018) reported previously. It can be
seen that the proposed method also outperforms these DNN based methodologies. Also,
the false alarm rate (FAR) i.e. normal samples miss-classified as faulty is 1.46% which is
the lowest as compared to all the other methods. Another metric that is predominantly
used in the area of fault detection is detection delay i.e. number of samples required for
fault detection for the first time. Table 4.3 represents the detection delay for different
faults. It is observed that the detection delay for faults 18 and 20 is significantly high.

76

0 5 10 15 20 25 30 35 40 45 50

Input Variables

-3

-2

-1

0

1

2

3

4

5

A
v
e

ra
g

e
d

 R
e

la
ti
v
e

 R
e

le
v
a

n
c
e

10-4

Figure 4.5: Final Iteration: Averaged Relative Relevance Plot for Fault Detection (DDSAE
Model with 2 lagged input variables as Xl)

Some methods are specifically designed for faster detection rate such as Gajjar et al.Gajjar
et al. [2020] but have lower FDR.

Table 4.3: Detection Delay for different faults

Faults 1 2 4 5 6 7 8 10 11 12 13 14 16 17 18 19 20

Detection
Delay
(samples)

0 10 0 0 0 0 8 17 3 0 11 0 5 16 76 0 68

For fault classification with the static DSAE-NN models it is observed that only 235
out of 363 input variables are the most relevant features for obtaining the highest testing
accuracy in identifying the type of fault. Every iteration of the proposed methodology
conducted for pruning of irrelevant input features increase the classification accuracy as

77

Table 4.4: Network Architecture and iterations for fault detection methodology

Iteration
Network Type
DSAE/ DDSAE

Architecture
Averaged Test Classification Accuracy

(FDR)

1 DSAE 52− 5− 10∗ − 5− 52 91.55%
2 xDSAE 30− 5− 10∗ − 5− 30 93%
3 xDSAE 24− 7− 6∗ − 7− 30 93.23%

1 DDSAE (lag1) 48− 4− 6∗ − 4− 48 93.96%
2 xDDSAE (lag1) 46− 5− 7∗ − 5− 46 95.52%
3 xDDSAE (lag1) 41− 5− 10∗ − 5− 41 95.63%
4 xDDSAE (lag1) 40− 5− 10∗ − 2− 40 95.85%

1 DDSAE (lag2) 72− 4− 10∗ − 4− 72 93.5%
2 xDDSAE (lag2) 70− 2− 10∗ − 2− 70 93.53%
3 xDDSAE (lag2) 54− 4− 10∗ − 4− 54 95.44%
4 xDDSAE (lag2) 50− 6− 12∗ − 6− 50 96.43%

* A dense layer is present where the number of input nodes are shown with an asterisk and
the number of output nodes are 2 (equal to the number of classes).

shown in Table 4.5. After identifying the 33 most relevant process variables with the
static DSAE-NN model, the reduced input data matrix {Xl

r} is stacked with lagged time
stamps {Xl

r} → {XlD
r } and the network is retrained. The best test classification accuracy

of 88.41% is achieved by stacking ten previous time-stamp process values. The confusion
matrices for the first iteration and the final iteration are shown in Figure 4.6 and 4.7
respectively. It can be seen that there is a significant improvement in the average test
classification due to the implementation of proposed methodology. For example: there is
an increase of 38% in degree of separability in IDV(8) and 20% increase in IDV(13).The
averaged test accuracy for fault classification problem is compared with various non-linear
classification algorithms such as Sparse representation, SVM, Random Forest, Structure
SVM, AE based classification (sm-NLPCA) method. As shown in Figure 4.14 the proposed
methodology outperforms other methods by a significant margin. The averaged relative

78

Table 4.5: Network Architecture and iterations for fault diagnosis methodology

Iteration
Network Type
DSAE/ DDSAE

Architecture
Averaged Test Classification

Accuracy (FDR)

1 DSAE 52− 25− 20− 20∗ − 20− 25− 52 81.90%
2 xDSAE 45− 10− 10− 20∗ − 10− 10− 45 82.60%
3 xDSAE 33− 21− 20− 20∗ − 20− 21− 33 83.15%

1 DDSAE (5 lags) 198− 14− 10− 30∗ − 10− 14− 198 83.41%
2 xDDSAE (5 lags) 159− 24− 10− 30∗ − 10− 24− 159 85.14%
3 xDDSAE (5 lags) 155− 24− 8− 30∗ − 8− 24− 155 85.87%
4 xDDSAE (5 lags) 140− 30− 20− 17∗ − 20− 30− 140 86.91%

1 DDSAE (10 lags) 363− 14− 20− 30∗ − 20− 14− 363 83.08%
2 xDDSAE (10 lags) 317− 18− 15− 30∗ − 15− 18− 317 85.04%
3 xDDSAE (10 lags) 293− 24− 18− 30∗ − 18− 24− 293 85.51%
4 xDDSAE (10 lags) 259− 28− 18− 30∗ − 18− 28− 259 87.07%
5 xDDSAE (10 lags) 244− 34− 20− 30∗ − 20− 34− 244 87.86%
6 xDDSAE (10 lags) 235− 38− 21− 30∗ − 21− 38− 235 88.41%

* A dense layer is present where the number of input nodes are shown with an asterisk and the
number of output nodes are 17 (equal to the number of classes).

importance of each relevant input feature Rc (estimated using Equation 4.16) towards the
classification task c (fault classification) is shown in Figure 4.8. An important by-product
of the proposed pruning methodology is that it can explain which input variables signifi-
cantly deviate from their normal trajectories while the fault is occurring or to identify the
root cause of the process fault. Towards that task, averaged input relevances’ values for
the correctly classified samples for a specific process fault are computed using LRP. For
example for Fault 1 (a step change in A/C Feed ratio) the average relative relevance plot
for IDV(1) is shown in Figure 4.9. Then, using this plot which are the variables that will
significantly deviate from their trajectories during normal operation following the occur-
rence of the fault. Figure 4.10 shows the evolution of the IDV(1) relevant input variables

79

1 2 3 4 5 6 7 8 9
1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

Target Class

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

O
u

tp
u

t
C

la
s

s

 Confusion Matrix

790

5.8%

0

0.0%

0

0.0%

0

0.0%

0

0.0%

0

0.0%

5

0.0%

0

0.0%

0

0.0%

1

0.0%

1

0.0%

0

0.0%

3

0.0%

0

0.0%

0

0.0%

0

0.0%

0

0.0%

98.8%

1.2%

0

0.0%

784

5.8%

0

0.0%

0

0.0%

0

0.0%

0

0.0%

0

0.0%

0

0.0%

1

0.0%

2

0.0%

0

0.0%

0

0.0%

5

0.0%

0

0.0%

4

0.0%

0

0.0%

4

0.0%

98.0%

2.0%

0

0.0%

0

0.0%

769

5.7%

0

0.0%

0

0.0%

0

0.0%

0

0.0%

0

0.0%

31

0.2%

0

0.0%

0

0.0%

0

0.0%

0

0.0%

0

0.0%

0

0.0%

0

0.0%

0

0.0%

96.1%

3.9%

0

0.0%

0

0.0%

0

0.0%

799

5.9%

0

0.0%

0

0.0%

0

0.0%

0

0.0%

0

0.0%

0

0.0%

0

0.0%

0

0.0%

0

0.0%

0

0.0%

0

0.0%

0

0.0%

1

0.0%

99.9%

0.1%

0

0.0%

0

0.0%

0

0.0%

0

0.0%

800

5.9%

0

0.0%

0

0.0%

0

0.0%

0

0.0%

0

0.0%

0

0.0%

0

0.0%

0

0.0%

0

0.0%

0

0.0%

0

0.0%

0

0.0%

100%

0.0%

0

0.0%

0

0.0%

0

0.0%

0

0.0%

0

0.0%

798

5.9%

0

0.0%

0

0.0%

0

0.0%

1

0.0%

0

0.0%

1

0.0%

0

0.0%

0

0.0%

0

0.0%

0

0.0%

0

0.0%

99.8%

0.2%

42

0.3%

55

0.4%

0

0.0%

0

0.0%

0

0.0%

1

0.0%

287

2.1%

12

0.1%

6

0.0%

167

1.2%

36

0.3%

5

0.0%

44

0.3%

22

0.2%

15

0.1%

5

0.0%

103

0.8%

35.9%

64.1%

6

0.0%

8

0.1%

0

0.0%

0

0.0%

0

0.0%

0

0.0%

29

0.2%

555

4.1%

5

0.0%

24

0.2%

0

0.0%

0

0.0%

77

0.6%

10

0.1%

16

0.1%

36

0.3%

34

0.3%

69.4%

30.6%

0

0.0%

0

0.0%

84

0.6%

0

0.0%

0

0.0%

0

0.0%

2

0.0%

7

0.1%

586

4.3%

4

0.0%

7

0.1%

6

0.0%

30

0.2%

13

0.1%

12

0.1%

30

0.2%

19

0.1%

73.3%

26.7%

1

0.0%

0

0.0%

0

0.0%

64

0.5%

0

0.0%

1

0.0%

21

0.2%

30

0.2%

8

0.1%

601

4.4%

15

0.1%

6

0.0%

20

0.1%

3

0.0%

11

0.1%

4

0.0%

15

0.1%

75.1%

24.9%

0

0.0%

2

0.0%

0

0.0%

0

0.0%

0

0.0%

0

0.0%

142

1.0%

14

0.1%

10

0.1%

250

1.8%

174

1.3%

4

0.0%

79

0.6%

30

0.2%

0

0.0%

15

0.1%

80

0.6%

21.8%

78.3%

0

0.0%

0

0.0%

0

0.0%

0

0.0%

0

0.0%

0

0.0%

0

0.0%

0

0.0%

3

0.0%

1

0.0%

0

0.0%

772

5.7%

0

0.0%

24

0.2%

0

0.0%

0

0.0%

0

0.0%

96.5%

3.5%

0

0.0%

0

0.0%

0

0.0%

0

0.0%

0

0.0%

0

0.0%

11

0.1%

33

0.2%

12

0.1%

6

0.0%

1

0.0%

0

0.0%

650

4.8%

4

0.0%

18

0.1%

22

0.2%

43

0.3%

81.3%

18.8%

0

0.0%

0

0.0%

0

0.0%

0

0.0%

0

0.0%

0

0.0%

1

0.0%

0

0.0%

23

0.2%

5

0.0%

0

0.0%

26

0.2%

23

0.2%

709

5.2%

1

0.0%

7

0.1%

5

0.0%

88.6%

11.4%

0

0.0%

0

0.0%

6

0.0%

0

0.0%

0

0.0%

0

0.0%

1

0.0%

4

0.0%

8

0.1%

25

0.2%

3

0.0%

3

0.0%

27

0.2%

1

0.0%

686

5.0%

14

0.1%

22

0.2%

85.8%

14.2%

0

0.0%

0

0.0%

0

0.0%

0

0.0%

0

0.0%

0

0.0%

1

0.0%

4

0.0%

9

0.1%

6

0.0%

1

0.0%

0

0.0%

14

0.1%

1

0.0%

7

0.1%

738

5.4%

19

0.1%

92.3%

7.8%

0

0.0%

0

0.0%

0

0.0%

0

0.0%

0

0.0%

0

0.0%

5

0.0%

12

0.1%

13

0.1%

2

0.0%

0

0.0%

0

0.0%

56

0.4%

10

0.1%

31

0.2%

30

0.2%

641

4.7%

80.1%

19.9%

94.2%

5.8%

92.3%

7.7%

89.5%

10.5%

92.6%

7.4%

100%

0.0%

99.8%

0.2%

56.8%

43.2%

82.7%

17.3%

82.0%

18.0%

54.9%

45.1%

73.1%

26.9%

93.8%

6.2%

63.2%

36.8%

85.7%

14.3%

85.6%

14.4%

81.9%

18.1%

65.0%

35.0%

81.9%

18.1%

Figure 4.6: Confusion Matrix for Fault Classification (First Iteration: DSAE Model with
52 input variables)

as a function of time. This figure corroborates that all the identified variables according to
the average relevance analysis do significantly deviate from their nominal operation values
during the occurrence of fault IDV(1). Similarly, an averaged relative relevance plot for
IDV(2) is shown in Figure 4.11 and the input variables identified as significant to detect
this fault are then plotted in Figure 4.12 as functions of time corroborating that the vari-
ables identified as significant in the plot 4.11 are significantly deviating following the fault
from their trajectories during normal operation. Similar diagnostics can be run for all the
other faults for the TEP problem.

80

1 2 3 4 5 6 7 8 9
1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

Target Class

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

O
u

tp
u

t
C

la
s

s

 Confusion Matrix

789

5.9%

0

0.0%

0

0.0%

0

0.0%

0

0.0%

0

0.0%

0

0.0%

0

0.0%

0

0.0%

0

0.0%

1

0.0%

0

0.0%

0

0.0%

0

0.0%

0

0.0%

0

0.0%

0

0.0%

99.9%

0.1%

0

0.0%

780

5.8%

0

0.0%

0

0.0%

0

0.0%

0

0.0%

3

0.0%

0

0.0%

0

0.0%

1

0.0%

1

0.0%

0

0.0%

0

0.0%

0

0.0%

0

0.0%

4

0.0%

1

0.0%

98.7%

1.3%

0

0.0%

0

0.0%

789

5.9%

0

0.0%

0

0.0%

0

0.0%

0

0.0%

0

0.0%

1

0.0%

0

0.0%

0

0.0%

0

0.0%

0

0.0%

0

0.0%

0

0.0%

0

0.0%

0

0.0%

99.9%

0.1%

0

0.0%

0

0.0%

1

0.0%

789

5.9%

0

0.0%

0

0.0%

0

0.0%

0

0.0%

0

0.0%

0

0.0%

0

0.0%

0

0.0%

0

0.0%

0

0.0%

0

0.0%

0

0.0%

0

0.0%

99.9%

0.1%

0

0.0%

0

0.0%

0

0.0%

0

0.0%

790

5.9%

0

0.0%

0

0.0%

0

0.0%

0

0.0%

0

0.0%

0

0.0%

0

0.0%

0

0.0%

0

0.0%

0

0.0%

0

0.0%

0

0.0%

100%

0.0%

0

0.0%

0

0.0%

0

0.0%

0

0.0%

0

0.0%

790

5.9%

0

0.0%

0

0.0%

0

0.0%

0

0.0%

0

0.0%

0

0.0%

0

0.0%

0

0.0%

0

0.0%

0

0.0%

0

0.0%

100%

0.0%

39

0.3%

6

0.0%

0

0.0%

4

0.0%

0

0.0%

0

0.0%

587

4.4%

6

0.0%

0

0.0%

53

0.4%

57

0.4%

0

0.0%

17

0.1%

1

0.0%

3

0.0%

1

0.0%

16

0.1%

74.3%

25.7%

0

0.0%

1

0.0%

9

0.1%

2

0.0%

0

0.0%

0

0.0%

17

0.1%

573

4.3%

3

0.0%

3

0.0%

9

0.1%

0

0.0%

72

0.5%

4

0.0%

11

0.1%

41

0.3%

45

0.3%

72.5%

27.5%

0

0.0%

2

0.0%

34

0.3%

0

0.0%

0

0.0%

0

0.0%

0

0.0%

20

0.1%

672

5.0%

7

0.1%

0

0.0%

1

0.0%

10

0.1%

1

0.0%

9

0.1%

26

0.2%

8

0.1%

85.1%

14.9%

0

0.0%

0

0.0%

9

0.1%

20

0.1%

2

0.0%

3

0.0%

7

0.1%

0

0.0%

41

0.3%

673

5.0%

7

0.1%

1

0.0%

1

0.0%

1

0.0%

18

0.1%

0

0.0%

7

0.1%

85.2%

14.8%

0

0.0%

0

0.0%

4

0.0%

12

0.1%

0

0.0%

0

0.0%

315

2.3%

8

0.1%

0

0.0%

64

0.5%

329

2.4%

0

0.0%

6

0.0%

2

0.0%

0

0.0%

11

0.1%

39

0.3%

41.6%

58.4%

0

0.0%

0

0.0%

0

0.0%

0

0.0%

0

0.0%

0

0.0%

0

0.0%

0

0.0%

0

0.0%

0

0.0%

0

0.0%

790

5.9%

0

0.0%

0

0.0%

0

0.0%

0

0.0%

0

0.0%

100%

0.0%

0

0.0%

1

0.0%

4

0.0%

0

0.0%

0

0.0%

0

0.0%

3

0.0%

68

0.5%

0

0.0%

0

0.0%

0

0.0%

0

0.0%

631

4.7%

3

0.0%

18

0.1%

37

0.3%

25

0.2%

79.9%

20.1%

0

0.0%

0

0.0%

0

0.0%

0

0.0%

0

0.0%

0

0.0%

4

0.0%

0

0.0%

0

0.0%

0

0.0%

0

0.0%

0

0.0%

9

0.1%

775

5.8%

0

0.0%

1

0.0%

1

0.0%

98.1%

1.9%

0

0.0%

0

0.0%

4

0.0%

0

0.0%

0

0.0%

0

0.0%

4

0.0%

0

0.0%

0

0.0%

0

0.0%

0

0.0%

0

0.0%

8

0.1%

1

0.0%

725

5.4%

31

0.2%

17

0.1%

91.8%

8.2%

0

0.0%

0

0.0%

0

0.0%

0

0.0%

0

0.0%

0

0.0%

0

0.0%

2

0.0%

5

0.0%

1

0.0%

4

0.0%

0

0.0%

27

0.2%

5

0.0%

31

0.2%

699

5.2%

16

0.1%

88.5%

11.5%

0

0.0%

0

0.0%

0

0.0%

0

0.0%

0

0.0%

0

0.0%

2

0.0%

10

0.1%

0

0.0%

0

0.0%

5

0.0%

0

0.0%

13

0.1%

8

0.1%

37

0.3%

23

0.2%

692

5.2%

87.6%

12.4%

95.3%

4.7%

98.7%

1.3%

92.4%

7.6%

95.4%

4.6%

99.7%

0.3%

99.6%

0.4%

62.3%

37.7%

83.4%

16.6%

93.1%

6.9%

83.9%

16.1%

79.7%

20.3%

99.7%

0.3%

79.5%

20.5%

96.8%

3.2%

85.1%

14.9%

80.0%

20.0%

79.8%

20.2%

88.4%

11.6%

Figure 4.7: Confusion Matrix for Fault Classification (Final Iteration: DDSAE Model with
10 lagged input variables)

81

0 50 100 150 200

Input Variables

-0.03

-0.02

-0.01

0

0.01

0.02

0.03

0.04

0.05

A
v
e
ra

g
e
d
 R

e
la

ti
v
e
 R

e
le

v
a
n
c
e

Figure 4.8: Final Iteration: Averaged Relative Relevance Plot for Fault Diagnosis (DDSAE
Model with 10 lagged input variables as Xl)

Variable Relevance Plot for Fault Diagnosis (IDV 1)

0 50 100 150 200

Input Variables

-0.4

-0.2

0

0.2

0.4

0.6

A
v
e

ra
g
e
d
 R

e
la

ti
v
e

 R
e
le

v
a

n
c
e

XMEAS 10
XMEAS 4

XMEAS 18 & 19

XMEAS 16

XMEAS 13

XMEAS 1

XMV 3 & 4

XMV 9

XMV 10

Figure 4.9: Input variable relevance plot for Fault Diagnosis (IDV 1)

82

0 50 100 150 200 250 300 350 400 450

Time Sample

0

0.5

1

M
a

g
n

it
u

d
e

XMEAS(1)

Nominal

IDV(1)

0 100 200 300 400

Time Sample

8

8.5

9

9.5

M
a

g
n

it
u

d
e

XMEAS(4)

Nominal

IDV(1)

0 100 200 300 400

Time Sample

0.2

0.25

0.3

0.35

0.4

M
a

g
n

it
u

d
e

XMEAS(10)

Nominal

IDV(1)

0 100 200 300 400

Time Sample

2550

2600

2650

2700

2750

M
a

g
n

it
u

d
e

XMEAS(13)

Nominal

IDV(1)

0 100 200 300 400

Time Sample

3050

3100

3150

3200

3250

M
a

g
n

it
u

d
e

XMEAS(16)

Nominal

IDV(1)

0 100 200 300 400

Time Sample

64

66

68

70

72

74

M
a

g
n

it
u

d
e

XMEAS(18)

Nominal

IDV(1)

0 100 200 300 400

Time Sample

200

250

300

350

400

M
a

g
n

it
u

d
e

XMEAS(19)

Nominal

IDV(1)

0 100 200 300 400

Time Sample

0

50

100

M
a

g
n

it
u

d
e

XMV(3)

Nominal

IDV(1)

0 100 200 300 400

Time Sample

50

55

60

65

M
a

g
n

it
u

d
e

XMV(4)

Nominal

IDV(1)

0 100 200 300 400

Time Sample

40

60

80

100

M
a

g
n

it
u

d
e

XMV(9)

Nominal

IDV(1)

0 100 200 300 400

Time Sample

38

40

42

44

M
a
g
n
it
u
d
e

XMV(10)

Nominal

IDV(1)

Figure 4.10: Relevant variables contributing to IDV(1) with nominal and abnormal profiles

Variable Relevance Plot for Fault Diagnosis (IDV 2)

0 50 100 150 200

Input Variables

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

A
v
e
ra

g
e
d
 R

e
la

ti
v
e
 R

e
le

v
a
n

c
e

XMEAS(18)

XMV(6) & XMV(9)

XMEAS(22)

XMEAS(19)

XMV(11)

XMEAS(10)

XMEAS(3)

Figure 4.11: Input variable relevance plot for Fault Diagnosis (IDV 2)

83

0 100 200 300 400 500

Time Sample

4400

4500

4600

4700

4800

M
a
g
n
it
u
d
e

XMEAS(3)
Nominal

IDV(2)

0 100 200 300 400 500

Time Sample

0.3

0.4

0.5

0.6

0.7

M
a

g
n

it
u

d
e

XMEAS(10)

Nominal

IDV(2)

0 100 200 300 400 500

Time Sample

62

63

64

65

66

M
a

g
n

it
u

d
e

XMEAS(18)

Nominal

IDV(2)

0 100 200 300 400 500

Time Sample

100

150

200

250

M
a

g
n

it
u

d
e

XMEAS(19)

Nominal

IDV(2)

0 100 200 300 400 500

Time Sample

76

77

78

79

80

M
a

g
n

it
u

d
e

XMEAS(22)

Nominal

IDV(2)

0 100 200 300 400 500

Time Sample

40

60

80

100

M
a

g
n

it
u

d
e

XMV(6)

Nominal

IDV(2)

0 100 200 300 400 500

Time Sample

20

30

40

50

60

M
a

g
n

it
u

d
e

XMV(9)

Nominal

IDV(2)

0 100 200 300 400 500

Time Sample

10

15

20

25

M
a

g
n

it
u

d
e

XMV(11)
Nominal

IDV(2)

Figure 4.12: Relevant variables contributing to IDV(2) with nominal and abnormal profiles

XM
EAS(1

)

XM
EAS(2

)

XM
EAS(3

)

XM
EAS(4

)

XM
EAS(5

)

XM
EAS(6

)

XM
EAS(7

)

XM
EAS(8

)

XM
EAS(9

)

XM
EAS(1

0)

XM
EAS(1

1)

XM
EAS(1

3)

XM
EAS(1

4)

XM
EAS(1

5)

XM
EAS(1

6)

XM
EAS(1

7)

XM
EAS(1

8)

XM
EAS(1

9)

XM
EAS(2

0)

XM
EAS(2

1)

XM
EAS(2

2)

XM
V(1

)

XM
V(2

)

XM
V(3

)

XM
V(4

)

XM
V(5

)

XM
V(6

)

XM
V(9

)

XM
V(1

0)

XM
V(1

1)

Variables

1

2

4

5

6

7

8

10

11

12

13

14

16

17

18

19

20

F
a

u
lt
s

Variable Contribution Heatmap

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 4.13: Variable Contribution Heatmap corresponding to all faults

84

Figure 4.14: Comparison of Fault Classification rate with different methods

Finally, for easier visualization, using these average relative relevances’ values for each
fault a variable contribution heatmap is generated and shown in Figure 4.13 can be cal-
culated using normalized version of relevances from Equation 4.16. In this heatmap the
significance of different variables are color coded to identify the possible root-cause of dif-
ferent variables for each particular fault. For example for fault 1, variables 1 and 3 are
shown as significant in the heatmap and it can be verified from Figure 4.10 that these same
variables deviate the most during faulty operation from their trajectories during normal
operation.

4.5 Conclusion

In this work, an explainability based fault detection and classification methodology is
proposed using both a deep supervised autoencoder (DSAE) and dynamic supervised au-
toencoder (DDSAE) for the extraction of features. A Layerwise Relevance Propagation

85

Table 4.6: Comparison of Fault Detection Rate with different methods with non-incipient
faults only

Fault
PCA

(15 comp.)
DPCA

(22 comp.)
ICA

(9 comp.)
DL

(2017)
DL

(2017)
DL

(2018)
DL

(2018)
DL

(2019)
Proposed

DL

T 2 SPE T 2 I2 AO SAE-NN DSN GAN OCSVM CNN DDSAE
1 99.2% 99.8% 99% 100% 100% 77.6% 90.8% 99.62% 99.5% 91.39% 99.9%
2 98% 98.6% 98% 98% 98% 85% 89.6% 98.5% 98.5% 87.96% 98.2%
4 4.4% 96.2% 26% 61% 84% 56.6% 47.6% 56.25% 50.37% 99.73% 99.7%
5 22.5% 25.4% 36% 100% 100% 76% 31.6% 32.37% 30.5% 90.35% 100%
6 98.9% 100% 100% 100% 100% 82.8% 91.6% 100% 100% 91.5% 99.7%
7 91.5% 100% 100% 99% 100% 80.6% 91% 99.99% 99.62% 91.55% 99.9%
8 96.6% 97.6% 98% 97% 97% 83% 90.2% 97.87% 97.37% 82.95% 94%
10 33.4% 34.1% 55% 78% 82% 75.3% 63.2% 50.87% 53.25% 70.05% 89.1%
11 20.6% 64.4% 48% 52% 70 75.9% 54.2% 58% 54.75% 60.16% 87.7%
12 97.1% 97.5% 99% 99% 100% 83.3% 87.8% 98.75% 98.63% 85.56% 99.4%
13 94% 95.5% 94% 94% 95% 83.3% 85.5% 95% 94.87% 46.92% 95.6%
14 84.2% 100% 100% 100% 100% 77.8% 89% 100% 100 % 88.88% 100%
16 16.6% 24.5% 49% 71% 78% 78.3% 74.8% 34.37% 36.37% 66.84% 94%
17 74.1% 89.2% 82% 89% 94% 78% 83.3% 91.12% 87.25% 77.11% 97.7%
18 88.7% 89.9% 90% 90% 90% 83.3% 82.4% 90.37% 90.12% 82.74% 90.9%
19 0.4% 12.7% 3% 69% 80% 67.7% 52.4% 11.8% 3.75% 70.87% 89.9%
20 29.9% 45% 53% 87% 91% 77.1% 44.1% 58.37% 52.75% 72.88% 89.6%

Average 61.77% 74.72% 72.35% 87.29% 91.70% 77.7% 76.84% 74.04% 62.78% 85.47% 96.43%

(LRP) algorithm is used as the main tool for explaining the classification predictions for
the deep neural networks. The explainability measure serves two major objectives: i) Prun-
ing of irrelevant input variables and further improvement in the test classification accuracy
and ii) Identification of possible root cause of different faults occurring in the process.
The fault detection and classification performance of the proposed DSAE/xDSAE and
DDSAE/xDSSAE DNN models together is tested on the TE benchmark process. The
proposed methodology outperforms both multivariate linear methods and other DL based
methods reported in the literature on the same standard data.

Although this study make use of the powerful feature extraction capability of deep
learning neural network models and XAI (eXplainable AI) their use in industrial processes
must face practical challenges such as availability of data for training and a longer develop-

86

ment time for off-line model calibration because of the sequence of pruning and re-training
steps.

87

Chapter 5

Hierarchical Deep LSTM for Fault
Detection and Diagnosis for a Chemical
Process

Overview1

A Hierarchical algorithm based on a Deep Neural Network (DNN) is proposed for the
detection and classification of faults in industrial plants. The proposed algorithm has
the ability to classify incipient faults that are difficult to detect and diagnose with other
methods. In the proposed hierarchical structure faults are grouped into subsets according
to their similarity thus facilitating detection within each subset. External pseudo-random
binary signals (PRBS) are injected into the system to enhance identification of incipient
faults. The proposed approach is tested on the Tennessee Eastman Process resulting in
significant improvements in classification as compared to both multivariate linear model-
based strategies and non-hierarchical nonlinear model-based strategies.

1Adapted from Agarwal, Piyush, et al. "Hierarchical Deep LSTM for Fault Detection and Diagnosis
for a Chemical Process". Submitted to ISA Transactions. (Under Review)

88

5.1 Introduction

The faults in a chemical plant often propagate along the process, significantly impacting
the profit of chemical plants. Hence it is imperative to detect them soon upon their oc-
currence. The operation of industrial plants employs sensors and control loops to mitigate
the economic losses resulting from these faults. However, in the presence of process faults
and manipulated variable constraints, these control schemes are not sufficiently resilient
to avoid abnormal operation Chiang et al. [2000]. Thus, process faults must be diagnosed
and addressed by implementing a suitable corrective measure.

A typical process monitoring system consists of two parts: fault detection and diagno-
sis methodology. The objective of a fault detection system is to make a binary decision
whether the current state of the process is in normal or faulty operation region. Once
an abnormal operation is detected, the fault diagnosis system is used to infer the type of
fault or identify the root cause of the process fault. In the current study, we perform both
detection and classification with a single algorithm by considering the normal operation
condition as an additional fault class to be identified in the classification step.

Process monitoring schemes rely on estimated process models using historical data to
infer faults. Based on the type of model, the methodologies are divided into two main
approaches: mechanistic model-based (e.g. using first principles models) and data-driven
model-based approaches Chiang et al. [2000]. Data-driven models for FDD, such as the
one used in the current study, are based on a comparison between different sensor measure-
ments under normal operation versus faulty operation Yin et al. [2014a]. Within the class
of data-driven approaches, several reported algorithms are based on multivariate statistical
methods such as Principal Component Analysis (PCA) Zhang [2009], Yin et al. [2012], Lau
et al. [2013], Shams et al. [2010] or its dynamic version such as Dynamic Principal Com-
ponent Analysis (DPCA) Chiang et al. [2000], Yin et al. [2012], Ku et al. [1995], Rato and
Reis [2013], Odiowei and Cao [2009]. These methods assume process behaviour is linear.
However, most chemical processes are inherently non-linear in nature. Thus, non-linear
modeling techniques such as Deep Neural Networks (DNNs) are employed in the current

89

work. In the last decade, a new generation of Deep Neural Networks (DNNs) algorithms
has emerged that capitalizes both the significant increase in computational power and
novel algorithmic developments that facilitate the training and calibration of these net-
works. The use of these algorithms for fault detection in the process industry has recently
received increased attention. However, despite the improvements in detection accuracy
obtained with these techniques, some faults are still difficult to detect and diagnose (incip-
ient faults). The current study focuses on the detection and diagnosis of such difficult to
detect faults while maintaining good detection accuracy for the other faults. The difficult
to observe/detect faults will be referred to as incipient faults.

Lack of observability often arises due to the low signal to noise ratio in the measure-
ments used for fault detection and diagnosis (FDD) and feedback control Isermann [2005]
Shams et al. [2011a]. Specifically, the controller forces the controlled variables to remain
close to their set-points at all times. Further, with the addition of noise, the effects of faults
are masked. Also, the lack of distinguishability between different process faults is related
to the fact that various process faults have a similar effect on the dynamic responses of the
measured variables.

FDD algorithms that rely on data collected from the process operation are referred to
as passive, while active FDD approaches have also been proposed to improve detection
Mhaskar et al. [2006]. Active FDD involves injecting persistently exciting input signals
into the system and using the resulting input-output data for incipient fault detection and
diagnosis. Heirung and Mesbah [2019], Cusidó et al. [2011], Busch and Peddle [2014]. The
disadvantage of active FDD is that it introduces an external disturbance to the process
which may temporarily impact the operation and thus its use should be limited. To the
knowledge of the authors, the combination of active and passive FDD approaches into one
algorithm for detecting a mix of non-incipient and incipient faults have not been studied.

Following the above, the focus of the current work is on developing deep learning tech-
niques for the detection of faults with an emphasis on the detection of incipient faults.
However, faults and their effects on process variables are strongly coupled with each other.

90

Thus, improving detection of incipient faults should be achieved without degrading the de-
tection of the regular faults. Towards this goal, a novel hierarchical classification strategy
based on DNN models is proposed that involves identifying separate models for different
subsets of faults with different degree of difficulty to detect. A combination of both passive
and active FDD approaches are used. The DNN models used for the passive FDD compo-
nent are of Recursive Neural Network (RNN) type to exploit the dynamic information in the
data. It is also demonstrated that the detection accuracy of most faults can be enhanced
by increasing the time horizon of the LSTM based model. While the passive approach
is used in the higher level of the hierarchy, the active approach involving the injection of
external signals is only used in the last level of the hierarchy for detecting incipient faults
that cannot be diagnosed otherwise. It is shown that the passive FDD approach is effective
for identifying most faults but the active approach is required for detecting incipient faults.

All studies in this work are conducted with a standard set of simulated data from the
Tennessee Eastman Process (TEP) for a fair comparison with several algorithms reported
for this systemSpyridon and Boutalis [2018], Lv et al. [2016], Hsu et al. [2010], Singh
Chadha et al. [2019], Chadha and Schwung [2017,?]. Since its introduction, the TEP has
served as a benchmark problem for testing control and fault detection algorithms and it
is thus ideal for comparing existing approaches to our proposed algorithm. It should be
emphasized that due to the difficulty in detecting a set of incipient faults for TEP (faults
3, 9 and 15) many studies on FDD for this system were carried out by ignoring these faults
altogether Lv et al. [2016], Hsu et al. [2010]. For those studies of FDD for the TEP process
that consider all the faults together, the regular faults were detected with different level
of success but the detection of incipient faults was very inaccurate ?. Additional reported
methods applied to TEP are further reviewed in the Results section. The comparison of
our approach to several reported methods shows that our approach provides comparable
or superior FDD accuracy for regular faults but clear superiority for incipient faults.

The main contributions of the current study are:

1. Study of the effect of data horizon in the LSTM based deep learning model on the

91

fault classification ability.

2. Development of a hierarchical structure combining passive FDD with active FDD to
enhance the detection and classification accuracy for incipient faults.

3. A comparison of the proposed method to several other methods that shows compa-
rable or superior FDD accuracy for both regular and incipient faults.

This chapter is organized as follows. Fundamentals used in the work are presented
in Section 5.2. Explanation on the hierarchical structure of the proposed methodology
is presented in Section 5.3. Section 5.4 presents the proposed methodology. Section 5.5
describes the case study. The results and comparisons with previously reported approaches
are presented in Section 5.6 followed by conclusions in Section 5.7.

5.2 Preliminaries

5.2.1 Deep LSTM Supervised Autoencoder Neural Network (LSTM-
SAE NN)

The training of a Deep Supervised Autoencoder Neural Network (DSAE-NN) model is
based on the minimization of a weighted sum of the reconstruction loss function and the
supervised classification loss corresponding to the first and second terms in (Equation
(5.1)) respectively. Addition of unsupervised loss function i.e. reconstruction loss function
improves the generalization of supervised autoencoder model ?. Further, it serves as the
regularization term which constraints the problem in terms of latent variables, thus reduc-
ing over-fitting. while the minimization of the classification loss function i.e multi-class
cross-entropy loss function ensures the non-linear latent variables extracted are the predic-
tors of the output label. The mean squared error function is used as a reconstruction loss
and softmax cross-entropy as the classification loss. The overall goal is to learn a function
that predicts the class labels in one-hot encoded form yi ∈ Rm from inputs xi ∈ Rdx×1.

92

For training DSAE-NN, the following loss function is minimized:

lDSAE =
λ1

N
||xs − x̂s||22 +

1

N

N∑
s=1

m∑
c=1

−ys,clog(ps,c)

(5.1)

In this work, we use LSTM units instead of dense layers for both the encoder and
decoder as shown in Figure 5.1. The goal is to reconstruct and classify input sequences
at time t simultaneously. The encoder transforms the input time sequences using the
Equations 2.10, 2.11 and 2.12 to learn important features and encode these features z ∈
Rdh×1. The decoder function reconstruct the input using the extracted feature vectors. The
operation performed by the encoder for a single LSTM layer between the input variables
to the latent variables zit ∈ Rdh×1 can be mathematically described as follows:

zit = ζe(xit) (5.2)

The latent variables zit are used both to predict the class labels and to reconstruct back
the inputs x as follows:

x̂it = ζd(z
i
t) (5.3)

ŷit = fc(Wczit + bc) (5.4)

where ζe and ζd is the LSTM encoder and decoder function respectively. fc is a non-linear
activation function (softmax layer) for the output layer. Wc ∈ Rm×dz and bc ∈ Rm are
output weight matrix and bias vector respectively.

ps,c =
e(ŷs,c)∑m
c=1 e

(ˆys,c)
(5.5)

where λ1 is the weight multiplying the reconstruction loss Lr in the cost to be minimized,
m is the number of classes, ys,c is a binary indicator (0 or 1) equal to 1 if the class label c is

93

Figure 5.1: Schematic of a Deep LSTM Supervised Autoencoder Neural Network (DLSTM-
SAE NN)

the correct one for observation s and 0 otherwise, ˆys,c is the non-normalized log probabilities
and ps,c is the predicted probability for a sample s of class c. Moreover, to avoid over-fitting,
a regularization term is added to the objective function in Equation 5.1. Accordingly, the
objective function for Deep Supervised LSTM NNs used for FDD is as follows:

min
W

lDSAE = min
1

N

[
λ1||xs − x̂s||22 + λ2

N∑
s=1

m∑
c=1

−ys,clog(ps,c) + λ3

∑
L

∑
k

∑
j

W[L]
kj

2

]
(5.6)

where W[L]
kj are the weight matrices for each layer L in the network and the weights on

the individual objective functions λ1, λ2, λ3 are chosen using validation data.

5.2.2 Model Structure and Specifications

The DLSTM-SAE model used in the current study was developed with training and testing
data sets generated from the Tennessee Eastman Process (TEP) simulation. The data are
extracted from simulations of the system conducted at either the normal state or when
each of the 20 different faults is occurring in the process. It is assumed that at each
sampling interval 52 different variables are measured and organized into a vector. Each

94

such vector of measurements is acquired every 3 minutes. It should be noticed that during
testing of the methods proposed in this study the normal state is considered as a differ-
ent separate class and hence a total of 21 different classes, i.e. 20 faulty plus one normal
operations, are considered for classification. The standard dataset can be downloaded
from http://depts.washington.edu/control/LARRY/TE/download.html. The simula-
tor is ran for 72 hours (training: 24 hours; testing: 48 hours) for each fault generating
1440 samples for each fault class and normal class. The data is then divided between
calibration and validation data sets where the first 480 samples are used as training data
and the rest are used for testing for each class. This results in a total of 10,080 training
samples and 19,200 testing samples. A small fraction of training dataset is used as val-
idation dataset for selecting the optimal hyper-parameters. It is important to note that
the number of training, validation and testing samples vary depending on the time horizon
used in DLSTM-SAE model. The results reported in the following section are based on the
classification accuracy of test dataset, i.e. on data that was not used for model calibration.
The experiments in this paper have been implemented on an Intel Core i7-7700HQ PC
(2.80GHz, 16GB RAM) and NVIDIA GeForce GTX 1060 (6GB) 64Bit Windows 10 oper-
ating system in Python ® environment. The models are developed using Keras Chollet
et al. [2015] (an open deep learning library) on TensorFlow platform. Abadi et al. [2016].
All hyper-parameters such as number of LSTM encoder layers, LSTM units in each layer,
weights and learning rate are optimized using Keras-tuner.

5.3 Hierarchical Structure

The key goal of the work is to improve the detection and diagnosis of incipient faults but
without sacrificing the detection accuracy for the regular (non-incipient) faults. Thus, we
need to increase the sensitivity of the nonlinear FDD algorithm with respect to the in-
cipient faults but without loosing sensitivity with respect to the non-incipient faults. The
sensitivity of nonlinear models such as deep neural networks is highly dependent on the
variability of the data used for calibration. Accordingly, a key data pre-processing step
towards model calibration involves data standardization, i.e. mean centering and normal-

95

ization. It is hypothesized that by building separate models for different groups of faults
it is possible to increase the sensitivity of different models and distinguish-ability between
faults because of the different re-normalization conducted within each group.

Following the above, a hierarchical structure is proposed as shown in Figure 5.2. This
structure includes the following sequential steps for training of the model with a training
data set:

1. The training data is mean centered and normalized

2. The faults are classified into two groups: group 1- easily distinguishable faults and
group 2- difficult to distinguish faults which include the incipient faults along with
normal operation data class.

3. A Deep LSTM-SAE model denoted as M1 is designed for identifying the faults of
group 1 or identifying all faults in group 2 as a single fault.

4. The data for group 2 identified in the previous step is mean centered and re-normalized.

5. A neural network model is designed specifically for group 2 denoted as M2.

6. For faults that are not accurately identified by M2, a PRBS is designed and injected
into locations in the system that are informative about these faults.

Based on the trained hierarchical structure, online detection and diagnosis for any new
sample proceeds as follows:

1. The data corresponding to the sample is mean centered and normalized as in step 1
of the training procedure.

2. The sample is classified as either in group 1 of easy to observe faults or group 2 of
difficult to identify faults.

3. If sample is in group 1 is classified accordingly by model M1. If it is in group 2 it is
re-normalized according to the re-normalization in step 4 of the training procedure.

96

Figure 5.2: Hierarchical structure used for fault detection and diagnosis

4. If the sample is within group 2 is identified by model M2 in step 5 of the training
procedure.

5. If the sample is not identified accurately by the model for group 2, PRBS signals are
injected as specified in step 6 of the training procedure and the corresponding faults
are diagnosed from the resulting data.

It should be noticed that in this algorithm the normal operation is treated as an ad-
ditional fault-class denoted as Class 1. Then, if the incipient faults are characterized by
responses that are very similar to the normal state, a model that is trained to predict
all the faults together will be shown to be unable to accurately discern between these re-
sponses. Also if the incipient faults are grouped along with the normal state as per step
1 of the training procedure they may also be miss-classified as other faults. Hence, the

97

overall classification accuracy for the incipient faults must be assessed after the execution
of the entire hierarchical procedure.

For model M1 the normalized data is fed to a first level model where the softmax layer
of LSTM-SAE NN uses 18 units instead of the 21 units (incipient faults and normal state
grouped as one) as used in the non-hierarchical type model. The structure of model M2 is
similar to model M1 but the difference is that the softmax layer involves only 4 units each
for one of the incipient faults (3,9,15) and for the normal state (fault 0). The PRBS is
injected only when the incipient fault cannot be properly identified with either models M1
or M2. Additional details about the PRBS signal design are given in the following section.

5.3.1 Design: Pseudo-random Binary Signal (PRBS)

Although the hierarchical structure proposed in the previous section enhances the diagnosi-
bility of few faults, detection of incipient faults is still challenging due to lack of excitation
to detect these faults in the presence of noise. This problem is particularly acute in the
TEP since the data-set contains variables that are used in closed-loop control thus exhibit-
ing small variation with respect to their set-point values making it difficult to estimate
the occurrence of faults from such variables. To increase diagnosibility of incipient faults
the use of active fault detection, as reviewed in the Introduction, is proposed for the TEP
process. The lack of diagnosibility/distinguishability of the incipient faults can be viewed
as a problem of inaccurate identification of a model relating variability in measured values
to faults. To improve the identification accuracy it is required to use inputs that suffi-
ciently excite the system dynamics in the presence of noise Ljung [1999] which will result
in larger changes in the measured quantities and larger sensitivity to fault changes. Thus,
it is required to introduce additional excitation to the one available in regular operation
of the system. Accordingly, external forcing signals are injected at particular points of the
control loops, e.g. an excitation signal to the set-points of the loops that involve variables
related to the difficult to detect faults. The addition of such excitation signals in combina-
tion with a separate deep neural network model (second level) in the hierarchical structure
described in the previous section is investigated in the current study for detecting and

98

diagnosing incipient faults that cannot be accurately identified with the regular operating
data collected from the process.

To avoid a large negative impact of the external signals on the profitability of the plant
the input signals should meet certain constraints as follows:

1. Reduce input move sizes (to reduce wear and tear on actuators).

2. Reduce input and output amplitudes, power, or variance.

3. Short experimental time to prevent losses

In a practical implementation, the added excitation signal should result in variations in
the measured quantities that will be large in magnitude relative to the noise. Towards this
goal it is necessary to include information of frequencies lower than the crossover frequency
of the closed loop transfer function Rivera and Gaikwad [1995]. PRBS signals are used
as excitation signals in this study since they have a finite length that can be synthesized
repeatedly with simple generators while presenting favorable spectra. The spectrum at low
frequencies are flat and constant while at high frequencies the spectra drop off. Thus, the
PRBS can be designed to have a specific bandwidth, which can be utilized for exciting the
processes within the required range of frequencies Garcia-Gabin and Lundh. The analytical
expression for the power spectrum of a PRBS is given by:

s(ω) =
A2(R + 1)tcl

R

[
sinωtcl/2

ωtcl

]2

(5.7)

where ω is the frequency, tcl is the clock period (minimum time between a change in levels)
which is a multiple of the sampling time (Ts) and A is the amplitude of the signal. The
sequence repeats itself after T = R × tcl units of time, where R = 2n − 1 and n is the
number of shift registers used to generate the sequence. Thus, for designing the PRBS
signal it is necessary to estimate the amplitude and the frequency range.

2π

T
≤ ω ≤ 2.8

tcl
(5.8)

99

Rivera and Gaikwad, 1995, Rivera and Gaikwad [1995] Lee and Rivera, 2005 and
Garcia-Gabin and Lundh Garcia-Gabin and Lundh provided practical guidelines for es-
timating the range of frequency needed for process closed-loop identification using time
domain information. The primary frequency band of interest for excitation is determined
by the dominant time constants of the system.

ωlow =
1

Sf tol
(5.9)

where tol = 4τ ol + told

ωhigh =
4Sf
tcl

(5.10)

ωhigh ≤ ωN (5.11)

where Sf is a safety factor used to augment the bandwidth of the excitation signal, tol

is the open loop settling time and tcl is the settling time of closed loop process without
considering the time delays. told is the time delay of the open loop process. Also, the upper
value of the frequency must be lower than the Nyquist frequency ωN to avoid aliasing.
Although the magnitude of the signal has not been optimized in the current work, it could
be further optimized by taking a profit function of the plant into consideration for minimal
losses and using the validation data used for the FDD model.

5.4 Results and discussion

In this section, the industrial benchmark TEP is used to validate and demonstrate the
effectiveness of the proposed method. We investigated the multi-class classification per-
formance using a total of 20 fault modes presented in Table 4.2 which involve all of the
compositions, manipulated and measurement variables in the TE process (Table 4.1. For
an individual class IDV(i), the performance was typically evaluated by a confusion matrix
which consists of true positives (TPi), false positives (FPi), true negatives (TNi) and false
negatives (FNi). The notation used in the confusion matrix is as follows:

100

Figure 5.3: Confusion Matrix for the first level model of the hierarchical structure (i.e.
classification of non-incipient faults and considering incipient faults as a normal class)

101

Sparse Representation
SVM

Hierarchical (2015)

Random Forest
SSVM

Proposed DL Method0

10

20

30

40

50

60

70

80

90

100

A
v

e
ra

g
e

 F
a

u
lt

 C
la

s
s

if
ic

a
ti

o
n

 R
a

te
 (

%
)

Figure 5.4: Comparison of averaged fault classification rates (non-incipient faults only)

Counts of
predicted label i

Counts of predicted
label other than i

Counts of real label i TPi TNi

Counts of real label
other than i

FPi FNi

Table 5.1: Confusion Matrix for each fault (IDV(i))

102

PCA+SVM
LSTM-BN MLP TF-DNN

Proposed DL Method0

20

40

60

80

100

A
v

e
ra

g
e

 F
a

u
lt

 C
la

s
s

if
ic

a
ti

o
n

 R
a

te
 (

%
)

Figure 5.5: Comparison of averaged fault classification rates (all faults)

Two main important metrics for quantifying the performance of the proposed process
monitoring methodology are as follows:

• Fault Detection Rate (FDR):

FDR =
number of fault data that have been detected as fault

total number of faulty samples

=
TPi

TPi + FPi
(5.12)

FDR represents the probability that the abnormal conditions are correctly detected
which is an important criterion to compare between different methods in terms of
their detection efficiency. Evidently, a very high FDR is desirable.

• False Alarm Rate (FAR):

103

FAR =
number of normal data that have been detected as fault

total number of normal samples

=
FPi

TPi + TNi

(5.13)

where the class corresponding to normal operation is considered as the positive class.
FAR represents the probability that the normal operation is wrongly identified as
abnormal and thus a very low FAR is desired.

The fault detection results obtained with the hierarchical LSTM SAE NN model are
compared with both linear multivariate statistical methods and deep learning methods re-
ported in previous studies. For a fair comparison between the methods, for studies where
only non-incipient faults were considered the results were compared to fault detection re-
sults obtained from the first level of the hierarchical structure model whereas for studies
where all the faults were considered, the comparisons were done for results obtained from
second level of the hierarchical structure model. The fault detection rate (FDR) for all the
faults is compared for the proposed method, PCA Lv et al. [2016], DPCALv et al. [2016],
ICAHsu et al. [2010], Convolutional NN (CNN) Singh Chadha et al. [2019], Deep Stacked
Network (DSN) Chadha and Schwung [2017], Stacked Autoencoder (SAE) Chadha and
Schwung [2017], Generative Adversarial Network (GAN) Spyridon and Boutalis [2018] and
One-Class SVM (OCSVM) Spyridon and Boutalis [2018]. The fault detection rates for all
non-incipient faults and incipient faults are shown in Table 5.2 and 5.3 respectively for
different methodologies along with the results from the proposed method. It can been seen
from Table 5.2 that the proposed method outperformed the linear multivariate methods
and other DL based methods for most fault modes. For example, for PCA with 15 princi-
pal components, the average fault detection rates are 61.77% and 74.72% using T 2 and Q
statistic respectively. Since the principal components extracted using PCA captures static
correlations between variables, DPCA is used to account for temporal correlations (both
auto-correlations and cross-correlations) in the data. The effect of increasing the number
of time samples in the Tennessee Eastman simulation is also investigated following the hy-
pothesis that increasing the time horizon will enhance classification accuracy. In the case of
DPCA, the number of lags used in the observation matrix is a key parameter. Since DPCA

104

is only a data compression technique it must be combined with a classification model for the
purpose of fault detection. Accordingly, the output features from the DPCA model are fed
into an SVMmodel that is used for final classification. Different time horizons were tried for
training the DPCA model. Based on validation results the best DPCA model was obtained
with 22 lags. The average detection rate obtained was 72.35%. ICA Hsu et al. [2010] based
monitoring scheme perform better than both PCA and DPCA based methods with an av-
eraged accuracy of approximately 90%. It should be noted that all these methods (PCA,
DPCA and ICA) perform poorly for detecting incipient faults. In addition to the compar-
ison to linear methods the proposed methodology was also compared with different DNN
architectures such as CNNChadha and Schwung [2017], DSN Chadha and Schwung [2017],
SAE-NN (results reported in Chadha and Schwung,2017) and GANSpyridon and Boutalis
[2018], OCSVM (results reported in Spyridon and Boutalis,2018) reported previously. It
can be seen that the proposed method also outperforms these DNN based methodologies.
The relative advantage of our method versus these other DNN architectures (Table 4) is
mostly due to the inclusion of the incipient faults within the normal class. This reduces
the confusion between the normal samples with other non-incipient faults. However, the
additional advantage of the proposed method over the other DNN architectures is realized
when the hierarchical structure is used in combination with the PRBS signals as further
discussed below. It should be noted that all these comparisons were based on an identical
data set. Similarly, fault detection rate for all faults are compared with different DL based
models in Table 5.3 including SAE-NN, DSN, GAN, OCSVM, CNN, Optimized LSTM
Zhao et al. [2018a] and LSTM along with attention mechanism ?. It can be seen that
the proposed methodology improves the averaged test classification accuracy for all faults
significantly.

To improve diagnosis of the non-incipient faults the proposed hierarchical structure
was applied where the first level model of the hierarchical structure classifies non-incipient
faults and the second level model classifies incipient faults. For the first level model, there
are 7382 training samples and 17,442 testing samples in total with a time horizon of 150
time-steps. The model consists of 182 encoder LSTM units, followed by 116 LSTM units
for processing of the output of the encoding layer. Thereafter, the output of the second

105

LSTM layer is passed through a dense layer for classification. Hyper-parameters such as
number of layers, number of LSTM units in each layer, classification weights, learning
rate, time-horizon etc. are selected using validation data that are a subset of the train-
ing dataset. The hyper-parameter search is implemented using the keras-tuner. To this
purpose, a grid of hyper-parameters is defined, for example number of encoder layers =
[1,2,3], number of LSTM units for each of these layers ranging from 2 to 200 with an
interval of 2 = [10:2:200], learning rate = [1e−1,2e−1,3e−1, 1e−2], value of weights in the
objective function, etc. The Keras-tuner trains the model using different combinations of
these hyper-parameters values and the averaged validation accuracy is evaluated at every
epoch. The models are trained with a few epochs in the start and the selected models
with high validation accuracy are chosen to be trained for more epochs. The best run with
highest validation accuracy and the combination of hyper-parameters for the run are used
to evaluate test accuracy. A study was also conducted to select the optimal time horizon
for the LSTM based model with the hierarchical structure. It can be seen from Figure
5.7 that the classification averages can be enhanced by extending the length of the time
horizon of past data fed to the LSTM based model. 150 time steps were chosen as the
optimal time-horizon. The Confusion matrix for the level 1 model is presented in Figure 5.3.

The next important design parameter for the second level hierarchical model is the loca-
tion in the process at which the external excitation signal should be introduced to maximize
information about the occurring incipient fault. In this work, this choice is based on the
flow-sheet and by identifying which variables are mostly correlated to the incipient faults
under consideration. Specifically, the excitation signals were added to process set-points
in control loops that are most correlated to the incipient faults. When the selection of
the variable to be excited by a PRBS is not obvious from the process flow-sheet, a more
systematic approach is to use sensitivity analysis, e.g. sensitivity of changes in the variable
connected to the fault to all process variables. Since it may be detrimental to perturb
the set-point continuously by the PRBS signal the latter can be introduced intermittently
into the process. In the current work an excitation signal of length 40 time-steps was
intermittently introduced every 4 hours into the process by assuming that such event will
not impact significantly the profitability of the process (for test data). Changes in the

106

Figure 5.6: Confusion Matrix on test data for the second level model of the hierarchical
structure: a) After adding designed PRBS signal w.r.t. fault 15 b) After adding designed
PRBS signal w.r.t. fault 9 and fault 15

separator temperature set-point will force changes in the condenser temperature. Since
the fault to be identified is stiction in the valve that affects the condenser temperature,
the imposed PRBS in the separator set-point indirectly helps in identifying fault 15. For
fault 9 i.e. random variation in D feed temperature (refer Table 4.2) the PRBS excitation
(ω ∈ [ωcl, ωn] where ωcl = 0.0087 rad/s and ωn = 1.74 rad/s) signal is introduced to the
D feed ratio in order to create a suitable excitation. After developing this PRBS signal,
we added both signals to the process at different times during the simulation. For fault
15, the PRBS signal is designed with a frequency range of ω ∈ [ωcl, ωn] where ωcl = 0.005

rad/s and ωn = 1.74 rad/s
A systematic ablation study is conducted in Table 5.4 in order to demonstrate the gradual
improvements in the results by showing fault detection rates of incipient faults, normal
operation and non-incipient faults for 4 cases: i-without the hierarchical structure with
one DL model, ii- with hierarchical structure and iii- with hierarchical structure and with
addition of one PRBS signal related to fault 15 and iv- with hierarchical structure and
with addition of two PRBS signals related to fault 15 and fault 9. Other than a slight

107

0 1 2 4 5 6 7 8 10 11 12 13 14 16 17 18 19 20

Faults

0

0.2

0.4

0.6

0.8

1

A
v
e

ra
g

e
d

 C
la

s
s
if
ic

a
ti
o

n
 A

c
c
u

ra
c
y

time horizon = 10 time horizon = 100 time horizon = 150

Figure 5.7: Selection of optimal time horizon for Hierarchical LSTM-SAE Level 1 model

decrease in the detection of the Normal operation with the hierarchical structure and the
addition of the two PRBS signals, the improvements in all other faults and in the average
test accuracy are evident.

For the second level model, there are 1,796 training samples and 4,196 testing samples
in total with a time horizon of 150 time-steps. The model consists of 284 encoder LSTM
units in the first hidden layer, second layer consists of 100 LSTM units, followed by 278
LSTM units for processing of the output of the encoding layer. Thereafter, the output of
the third LSTM layer is passed through a dense layer for classification. Hyper-parameters
such as number of layers, number of LSTM units in each layer, classification weights, learn-
ing rate, time-horizon, weights in the loss function etc. are selected using the validation
data which is part of the training dataset. The hyper-parameter search is implemented
again using the keras-tuner. For the second level model, the samples corresponding to fault
0 (normal) and incipient faults are considered. Figure 5.6 (a) shows the confusion matrix
after introducing the PRBS signal that was designed for identifying fault 15 and Figure 5.6
(b) shows the confusion matrix after introducing both PRBS signals that were designed

108

for identifying fault 15 and fault 9. The total FAR calculated using Equation 17 was 2.41%.

The averaged fault classification rate for all non-incipient faults and for all faults (in-
cluding incipient faults) are shown in Figure 5.4 and 5.5 respectively. Figure 5.4 shows
a bar-chart comparison of the proposed method with several non-linear methods such as
Sparse representationWu et al. [2012], SVMYin et al. [2014b], Hierarchical model based
methodXie and Bai [2015], Random Forest, Structural SVM. It can be seen that the Hi-
erarchical Deep RNN based method outperforms other methods with a significant margin.
It should be noted that comparisons made in Figure 5.4 do not consider incipient faults.
In Figure 5.5, the averaged test accuracy of all faults (both incipient and non-incipient
faults) are compared with other DL based methodsLuo et al. [2020]. It can be seen that
the second level hierarchical model combined with the introduction of the designed PRBS
signals significantly improves the classification of the incipient faults and thus the averaged
test accuracy for fault diagnosis increases significantly.

5.5 Conclusions

This work studied the application of a deep learning model within a hierarchical structure
as a way to increase the detection and classification of faults in the Tennessee Eastman
Process (TEP). The TEP simulation contains 20 different faults that were used during this
study to make the classification problem. As previously reported by other researchers, a
subset of these faults - referred to in this study as incipient - are particularly difficult to
diagnose due to low signal to noise ratio and similarities in the resulting dynamic responses
corresponding to different faults.

A comparison between deep learning techniques to a multivariate linear technique for
fault detection such as PCA, DPCA, ICA and other deep learning methods is also pre-
sented. It is observed that Hierarchical LSTM based model is superior to traditional
linear and other deep learning based methods for fault classification due to their ability
to capture nonlinear dynamic behaviour. It was also shown that the classification aver-

109

Table 5.2: Comparison of Fault Detection Rate with different methods with non-incipient
faults only

Fault
PCA

(15 comp.)
DPCA

(22 comp.)
ICA

(9 comp.)
DL

(2017)
DL

(2017)
DL

(2018)
DL

(2018)
DL

(2019)
Prop-

osed DL

T 2 SPE T 2 I2 AO SAE-NN DSN GAN OCSVM CNN HDRNN (LSTM-SAE)
1 99.2% 99.8% 99% 100% 100% 77.6% 90.8% 99.62% 99.5% 91.39% 100%
2 98% 98.6% 98% 98% 98% 85% 89.6% 98.5% 98.5% 87.96% 100%
4 4.4% 96.2% 26% 61% 84% 56.6% 47.6% 56.25% 50.37% 99.73% 100%
5 22.5% 25.4% 36% 100% 100% 76% 31.6% 32.37% 30.5% 90.35% 100%
6 98.9% 100% 100% 100% 100% 82.8% 91.6% 100% 100% 91.5% 100%
7 91.5% 100% 100% 99% 100% 80.6% 91% 99.99% 99.62% 91.55% 100%
8 96.6% 97.6% 98% 97% 97% 83% 90.2% 97.87% 97.37% 82.95% 100%
10 33.4% 34.1% 55% 78% 82% 75.3% 63.2% 50.87% 53.25% 70.05% 42.8%
11 20.6% 64.4% 48% 52% 70 75.9% 54.2% 58% 54.75% 60.16% 100%
12 97.1% 97.5% 99% 99% 100% 83.3% 87.8% 98.75% 98.63% 85.56% 100%
13 94% 95.5% 94% 94% 95% 83.3% 85.5% 95% 94.87% 46.92% 100%
14 84.2% 100% 100% 100% 100% 77.8% 89% 100% 100 % 88.88% 100%
16 16.6% 24.5% 49% 71% 78% 78.3% 74.8% 34.37% 36.37% 66.84% 100%
17 74.1% 89.2% 82% 89% 94% 78% 83.3% 91.12% 87.25% 77.11% 100%
18 88.7% 89.9% 90% 90% 90% 83.3% 82.4% 90.37% 90.12% 82.74% 100%
19 0.4% 12.7% 3% 69% 80% 67.7% 52.4% 11.8% 3.75% 70.87% 40.4%
20 29.9% 45% 53% 87% 91% 77.1% 44.1% 58.37% 52.75% 72.88% 100%

Average 61.77% 74.72% 72.35% 87.29% 91.70% 77.7% 76.84% 74.04% 62.78% 85.47% 93.13%

110

Table 5.3: Comparison of Fault Detection rate with different methods (with all faults)

Fault
DL

(2017)
DL

(2017)
DL

(2018)
DL

(2018)
DL

(2019)
DL

(2018)
DL

(2021)
Prop-

osed DL

SAE-NN DSN GAN OCSVM CNN Optimized LSTM LSTM (attention) LSTM-SAE
1 77.6% 90.8% 99.62% 99.5% 91.39% 68% 100% 100%
2 85% 89.6% 98.5% 98.5% 87.96% 78% 89% 100%
3 79.4% 14.4% 10.375% 7.62% 50.59% 45% 94% 81.58%
4 56.6% 47.6% 56.25% 50.37% 99.73% 75% 99% 100%
5 76% 31.6% 32.37% 30.5% 90.35% 45% 94% 100%
6 82.8% 91.6% 100% 100% 91.5% 75% 100% 100%
7 80.6% 91% 99.99% 99.62% 91.55% 89% 100% 100%
8 83% 90.2% 97.87% 97.37% 82.95% 100% 99% 100%
9 50.6% 16.3% 8.625% 7.125% 49.53% 89% 81% 99.38%
10 75.3% 63.2% 50.87% 53.25% 70.05% 71% 99% 42.84%
11 75.9% 54.2% 58% 54.75% 60.16% 67% 88% 100%
12 83.3% 87.8% 98.75% 98.63% 85.56% 77% 99% 100%
13 83.3% 85.5% 95% 94.87% 46.92% 83% 89% 100%
14 77.8% 89% 100% 100 % 88.88% 56% 99% 100%
15 55.5% 26.7% 12.5% 14% 43.54% 89% 22% 100%
16 78.3% 74.8% 34.37% 36.37% 66.84% 99% 31% 100%
17 78% 83.3% 91.12% 87.25% 77.11% 0% 97% 100%
18 83.3% 82.4% 90.37% 90.12% 82.74% 89% 95% 100%
19 67.7% 52.4% 11.8% 3.75% 70.87% 20% 97% 40.4%
20 77.1% 44.1% 58.37% 52.75% 72.88% 88% 85% 100%

Average 75.355% 65.32% 64.51% 62.78% 79.84% 70.15% 87.85% 93.23%

111

Table 5.4: Ablation study for the proposed method

Faults
Non-Hierarchical

DL NN
Hierarchical DL
NN (no PRBS)

Hierarchical DL NN+
PRBS addition
for fault 15

Hierarchical + PRBS
addition for fault 15

and fault 9

Fault 3 36% 42% 88.7% 81.5%
Fault 9 32% 18% 38.4% 99.3%
Fault 15 12% 30% 99.4% 100%

Normal Operation 18% 25% 100% 98.1%
Average of all
other Faults

85% 87% 93.1% 93.1%

Averaged Test
Accuracy

73.4% 75.90% 90.9% 93.4%

ages can be enhanced by extending the length of the time horizon of past data fed to the
RNN based model. However, most of these improvements in classification occurred for the
non-incipient faults. Therefore, an active fault detection approach was pursued where a hi-
erarchical model structure combined with external PRBS signals was proposed that proved
to be particularly effective for classifying incipient faults. Future studies will address the
trade-off between the impact of the injected PRBS signals on quality and productivity
versus the benefit from early detection of incipient faults.

112

Chapter 6

A Novel Unsupervised Approach for Batch
Process Monitoring using Deep Learning

Overview1

Process monitoring is an important tool used to ensure safe operation of a process plant
and to maintain high quality of end products. The focus of this work is on unsupervised
Statistical Process Control (SPC) of batch processes using Deep Learning (DL). A DL
architecture referred as Multiway Partial Least Squares Autoencoder (MPLS-AE) is pro-
posed and trained using a genetic optimization algorithm with a novel objective function
that directly maximizes the average fault detection rate (FDR). The efficacy of the pro-
posed method is demonstrated on an industrial scale Penicillin process. Comparisons of
the proposed algorithm with linear Multiway Principal Component Analysis (MPCA) and
Multiway Partial Least Squares (MPLS) based fault detection (FD) algorithm, trained
with the same objective as used by the DL model, demonstrates the superiority of the
deep learning based approach. The use of dynamic control limits significantly improves
the detection rates for both the linear and DL models.

1Adapted from Agarwal, Piyush, et al. "A Novel Unsupervised Approach for Batch Process Monitoring
using Deep Learning". Submitted to Computers and Chemical Engineering. (Under Review)

113

6.1 Introduction

Batch fermenters are one of the most common unit operations used in modern indus-
tries for the manufacturing of pharmaceuticals, biotechnological products, semiconductors
etc. Efficient process monitoring is crucial to operate these processes safely and to keep
the critical states of the process, such as temperature, pressure, pH, etc. within their
optimal ranges of operation. Furthermore, accurate process monitoring model will drive
necessary corrective actions to maintain safe operation and optimal productivity. Online
fault detection (FD) is a technique to monitor optimal operation and safety of the pro-
cess. Numerous FD algorithms have been developed in literature so far. FD algorithms
can be broadly classified into three different classes according to the type of model used
for FD: (i) knowledge-based, (ii) model-based and (iii) data-based methods. Data-based
approaches are generally preferred since they do not require accurate mechanistic models
of the process which are often difficult to obtain. For example, biochemical processes are
difficult to model by first principles equations due to insufficient understanding about the
metabolic behaviour of micro-organisms used in the system. Data-based FD algorithms
can be either supervised or unsupervised. In the supervised learning approach, a model is
trained with labeled samples corresponding to normal or faulty operation Agarwal et al.
[2019, 2021] whereas, the unsupervised learning approaches learn patterns directly from
unlabeled data. Thus, the unsupervised approach does not require data that is labeled
with faulty or normal operation status information. From an industrial point of view, this
is an attractive option since most data in an industrial setting is obtained during normal
operation and faulty data may not be available or may be insufficient. Hence, in this work,
we pursue an unsupervised learning approach for statistical process monitoring.

Statistical Process Control (SPC) algorithms are either unsupervised, e.g. principal
component analysis (MPCA) Wise et al. [1990], independent component analysis (ICA)
Kano et al. [2003], or supervised, e.g. partial least squares (MPLS) MacGregor et al.
[1994], qualitative trend analysis (QTA) Maurya et al. [2005], and Fisher discriminant
analysis Chiang et al. [2000]. While MPLS based approaches generally require an output
label indicating fault or normal status associated to each sample for model training, the

114

method can still be used in unsupervised learning by using a dummy variable, instead of
labeled samples, as an output that is indicative of the accumulation of species during the
batch operation Chen and Liu [2002]. Many commercial applications of MPLS for FD in
batch processes use the fermentation time as an output for unsupervised FD learning tasks
when labeled outputs are not available Bylesjö et al. [2006]. However, other indicative vari-
able measurements such as biomass can be used but are often not available at each time
interval. Algorithms based on MPCA or MPLS and its variants (eg. MPCA, MPLS, etc.)
have been extensively demonstrated in fault detection of industrial fermentation processes
Lennox et al. [2001], Ündey et al. [2003], Kourti [2005], Chiang et al. [2006], Goldrick et al.
[2017]. The strength of these algorithms lie in their ability to extract features from input
space that are most informative about the output by compressing a high dimensional input
space into a lower dimensional latent variable space that can be used for FD. However,these
algorithms are based on linear decomposition techniques and fail to accurately extract non-
linear information when applied to nonlinear processes. To mitigate these drawbacks, a
deep learning architecture is selected for the formulation of FD scheme in the current work.

Deep learning models extract non-linear features effectively and have been widely stud-
ied in the literature for developing different FD methodologies. Various deep learning
architectures such as convolutional neural networks (CNN) Chadha et al. [2019], recur-
rent neural networks (RNN) Zhang et al. [2019b], Ren and Ni [2020], and autoencoders
neural networks (AE-NNs) Cheng et al. [2019], Park et al. [2019], Yin et al. [2020] have
been utilized in process monitoring. In particular, autoencoders (AE) are deep neural
networks with the same number of units in the input and output layers with one or more
low-dimensional hidden layers. AE-NNs can be intuitively understood as non-linear PCA
in terms of their ability to compress the input space into a latent variable space. These
networks consists of three parts, namely encoder, decoder and the embedding. Encoder
compresses the input space to produce embedding, then the decoder reconstructs the in-
put from embedding. It is trained in an unsupervised fashion usually by minimizing a
reconstruction loss function Yan et al. [2016], Yu and Zhao [2019]. Denoising autoencoders
and contractive autoencoders are variants of AE-NNs that had been applied to monitor
a continuous chemical process by tracking the H2 statistic metric Yan et al. [2016]. In

115

another work, a two-dimensional deep correlated representation learning (2D-DCRL) has
been proposed to monitor a penicillin batch fermenter Jiang et al. [2019] where an AE
model is implemented to extract the relations between the process variables. Finally, the
canonical correlation analysis (CCA) of 2D matrices is used to capture the dynamic fea-
tures between batches. Two common metrics, Hotelling T 2 and Q-statistics, have been
used to detect faults with AE. In another application, a multi-way Laplacian autoencoder
(MLAE) has been proposed to monitor batch fermentation processes Gao et al. [2020]. In
comparison with traditional AEs, the MLAE considers the local structure of the normal
process data and the stochastic deviations among batches are captured by the Laplacian
matrix of the regularization term which improves the performance of the process monitor-
ing model. In Chen et al. (2020), to capitalize on the feature extraction ability of AE-NNs,
a one-dimensional convolutional autoencoder (1D-CAE) had been applied for monitoring
a penicillin fermentation process Chen et al. [2020]. The 1D-CAE shows a better perfor-
mance than typical DNNs due to its ability to extract features in the data. Although the
above applications of AE-NNs were effective for FD, these methods were trained with a
loss function as input reconstruction error but do not explicitly consider the fault detection
performance. In contrast, in the current work, we propose a novel objective function for
training the AE-NNs that directly considers and improves the average fault detection rate
(FDR).

Specifically, the FD problem in the current work proposes an AE architecture (Multi-
way Partial Least Squares Autoencoder) that is trained with a novel objective function,
tailored for detecting faults efficiently through an unsupervised learning approach. The
idea is to learn the distribution of normal batches in order to differentiate them from the
faulty batches. The algorithm involves two main steps: i- the MPLS-AE is trained to
explain the variation of process variables with respect to an average batch trajectory and
also predict the output variable simultaneously. ii- the control limits are estimated both
on learned latent features and residuals using kernel density estimation at each time inter-
val. In order to demonstrate the advantages of the proposed MPLS-AE methodology for
fault detection, systematic comparisons are conducted with Multiway Principal Compo-
nent Analysis (MPCA) and Multiway Partial Least Squares (MPLS) on an industrial scale

116

Penicillin Simulator. To assess the advantage of the novel loss function over traditional
loss function, both MPLS and MPLS-AE are compared with and without the FDR-based
objective function respectively. Both the MPLS and MPLS-AE models are trained using
the time of fermentation as the dummy output variable. Another important contribution
of the work is to assess whether the consideration of the dummy (indicative) output vari-
able for process monitoring, e.g. fermentation batch age, enhances fault detection accuracy.

The following chapter is organized as follows. The mathematical background of process
monitoring with MPCA, MPLS and a brief description of AE-NNs model are introduced
in Section 6.2. Section 6.3 presents the proposed method for FD, the novel loss function
and description of the penicillin process simulator used in the case study. The application
of the proposed method to a Penicillin batch process and comparisons with the traditional
methods are presented in Section 6.4 followed by conclusions in Section 6.5.

6.2 Preliminaries

This section briefly reviews the fundamentals of MPCA and MPLS and its application
in FD. For each of these methods, the dataset is divided into 3 parts namely training,
validation and test dataset. The general idea is to estimate model parameters using the
training set while the validation set is used to tune the hyper-parameters of each model. For
example, the validation set is used to select the number of principal components for both
MPCA and MPLS and to select the optimal hyper-parameters for deep learning models
such as number of neurons, number of layers, learning rate, batch-size etc. Finally, the
efficacy of the method is evaluated using the test dataset.

6.2.1 Multiway Principal Component Analysis (MPCA)

Multiway PCA is an extension of PCA that operates on data organised in a three dimen-
sional array. For a batch process this array is X3D ∈ Rk×b×j where k is number of samples
in each batch b and j is the number of measured process variables. PCA is performed on

117

an unfolded X ∈ Rkb×j matrix where n = kb is the total number of training samples. PCA
projects the high dimensional correlated input space X onto a lower dimensional orthogo-
nal space while preserving the variance Wise and Gallagher [1996]. The samples are mean
centered and scaled to unit variance prior to applying PCA. The decomposition is defined
as follows:

X =
K∑
k=1

tkpTk + E = TPT + E (6.1)

s.t. PTP = I (6.2)

where T ∈ Rn×K , P ∈ Rj×K and E ∈ Rn×j denote the matrices of scores, loadings and
residuals respectively. K is the number of principal components that are retained based on
a relevant objective function by using the validation dataset. The product TPT describes
the process variability. Two statistical metrics Hotelling T 2 and Q-statistic are used for
process monitoring. T 2 measures the variability of each sample Kourti and MacGregor
[1996] calculated as follows :

T 2
new = tnew

(TTT)−1

n− 1
tTnew (6.3)

where n is the number of normal samples and tnew is the score for a new observation
calculated as follows:

tnew = xnewP(PTP)−1 (6.4)

An abnormal observation, i.e. an observation denoting a faulty condition, can be detected
if T 2

new exceeds the control limit T 2
α Lee et al. [2004b] which can be calculated as follows:

T 2
α =

K(n− 1)

n−K
FK,n−K,α (6.5)

where FK,n−K,α is the F-distribution with n and n − K degrees of freedom and alpha is
the confidence limit. Abnormal samples can also be detected using the sum of squares of
residuals (SPE) or Q-statistic Jackson and Mudholkar [1979] calculated as follows:

Qnew = eneweT
new

enew = xnew − tnewPT (6.6)

118

Since these residuals follow a chi-squared distribution (χ2), the control limit for Q-statistic
Jackson and Mudholkar [1979] is defined as follows:

Qα = θ1

[zα(2θ2h
2
0)0.5

θ1

+ 1 +
θ2h0(h0 − 1)

θ2
1

] 1
h0

V =
EET

n− 1

θi = trace(Vi); i = 1, 2, 3

h0 = 1− 2θ1θ3

3θ2
2

(6.7)

where V is the co-variance matrix of E and zα denotes a normal deviate with significance
level α. The metrics reviewed above are commonly referred to as static control limits since
they assumed that the input data at all time intervals follows the same statistical distribu-
tion. Furthermore, the calculation of T 2

α and Qα assumes that the input data corresponding
to normal operation follows a Gaussian distribution which may not be accurate in practical
problems. To correct for this, a kernel density estimation is used in the proposed work as
explained in Section 3.1.

Online process monitoring can be carried out in two steps: i- Historical data records
of normal operation samples are split between training and validation datasets. Pre-
processing of datasets is carried out as described above by using the mean and variance of
the training dataset. Training dataset is used to estimate scores T and loadings P of the
MPCA model while the validation dataset is used to select the optimal number of principal
components K using a relevant criterion. In this work, the number of principal compo-
nents are selected based on two different objectives: a- the commonly used criterion of
minimizing the reconstruction error (or a pre-determined threshold of explained variance)
and b- maximization of fault detection rate in the validation dataset. The latter will be
shown to be superior in the case study in Section 4.2. Thereafter, the control limits T 2

α and
Qα are evaluated using Eq 6.5 and 6.7. ii- Each newly acquired sample is mean-centered
and normalized based on the training set mean and variance. T 2

new and Qnew of the new
sample are evaluated using Eq 6.3 and 6.6 and abnormality is determined if any one of
these metrics exceeds its control limits.

119

6.2.2 MPLS

Similar to MPCA, MPLS is an extension of traditional PLS for handling three dimensional
data arrays. It estimates the projection of both input X and output variables Y onto
a lower dimensional space by finding multidimensional directions in the input space such
that it maximizes the covariance between X and Y ∈ Rn×p. MPLS extracts the scores of
input and output data such that the covariance between inputs and outputs is maximized
as follows:

X =
K∑
k=1

tkpT
k + E = TPT + E

Y =
K∑
k=1

ukqT
k + F = UQT + F

s.t. max E
{(

T− T̄
)(

U− Ū
)}

=⇒ max corr (T,U)×
√
TTT×

√
UTU (6.8)

where T ∈ Rn×K and U ∈ Rn×K contain the score vectors of input and output variables
and P ∈ Rj×K and Q ∈ Rp×K contain the loading vectors of input and output variables
respectively. E ∈ Rn×j and F ∈ Rn×p are the residuals. In a supervised learning approach
an MPLS model can be trained for FD with both input data and output labels where
the latter are related to the faulty and normal status of each sample. The challenge in
formulating an unsupervised FD MPLS algorithm is that output labels or output mea-
surements at each time interval are not available for training. To address this challenge,
current commercial applications consider an dummy output variable to be predicted by
the MPLS model. For example, the fermentation time has been used in bioreactor ap-
plications as an dummy output variable for training the MPLS model. The rationale for
using MPLS with such dummy variable is that it may result in a more informative repre-
sentation about the normal operation boundary with a smaller number of latent variables
as compared to MPCA. A smaller number of latent variables is expected to result in less
over-fitting of measurement noise. The use of the fermentation time as a dummy variable
is also biochemically motivated by the fact that the cumulative biomass and productivity
are approximately proportional to the fermentation time. The role of the dummy variable

120

towards FD accuracy will be explicitly investigated later in the case study. Similar to
MPCA, to detect abnormal samples, Hotelling T 2 and Q (Qx)-statistics are evaluated and
compared to the control limits using Eqs. 6.3-6.7.

6.3 Proposed Methodology

6.3.1 Multiway Partial Least Squares Autoencoder (MPLS-AE)

Figure 6.1: Schematic of a Multiway Partial Least Squares Autoencoder (MPLS-AE)

Motivated by the MPLS algorithm, we propose an equivalent Deep Learning architec-
ture that can be trained to simultaneously predict output Y along with reconstructing
inputs X. Since maximizing the covariance between scores T and U in MPLS (refer Equa-
tion 6.8) implies maximizing three simultaneous objectives i.e. i- best explanation of inputs
X (given by TTT), ii- best explanation of outputs Y (given by UTU) and iii- greatest rela-
tionship between X and Y (given by correlation between T and U) in Equation 6.8. These
three objectives are equivalent to minimizing a weighted sum of the input reconstruction
error (best explanation of inputs) and the output variable prediction errors (best explana-
tion of outputs) according to Equation 6.9. The weight λ in equation below is equivalent
to maximizing correlation between inputs and outputs. It should be noticed that λ lies

121

between (0, 1) in order to give higher importance to prediction of output variables.

The key idea is to attach a fully connected layer to the bottleneck layer of the AE-
NN as shown in Figure 6.1 to predict the indicative output (dummy) variables. This is
referred henceforth in this study as Multiway Partial Least Squares Autoencoder (MPLS-
AE) NN. In this work, we consider fermentation time (t) as the indicative dummy variable
as considered in commercial MPLS applications for FD Bylesjö et al. [2006]. The MPLS-AE
model is trained based on the following loss function:

JMPLS−AE =
1

n

(n∑
s=1

(
ts − t̂s

)2
+ λ

n∑
s=1

(
xs − x̂s

)2
)

(6.9)

where n, xs, x̂s, ts and t̂s are the number of training samples, an input sample, recon-
structed input sample, output (dummy) variable and predicted output (dummy) variable
respectively. However, the MPLS-AE architecture can be trained by other user-defined
loss functions for specific purposes. In this work we propose a novel objective function
specifically tailored for FD application as described in the next sub-section.

Detection of abnormality with the MPLS-AE model is based on the use of H2 and SPE
metrics instead of the metrics T 2 and Q that are used with the linear methods (MPCA and
MPLS). H2 represents the variability of the latent variables with respect to their historical
means as follows:

H2
k,b =

R∑
dz=1

(zdeepestk,b,dz
− zmeank,dz

)2

zvariancek,dz

(6.10)

where H2
k,b is H2 of the kth sample in the bth batch, zdeepestk,b,dz

is the dthz dimension of
the latent variables of the kth sample in bth batch, zmeank,dz

and hvariancek,dz
are the mean and

variance of the dthz dimension of the kth samples in all training batches, respectively and R
is the number of units in the bottleneck layer of MPLS-AE NN model. SPE is the metric
used to measure the residual error between reconstructed input sample and the original

122

input sample and is calculated as follows:

SPEk,b =
R∑

dz=1

(xbk,dz − x̂bk,dz)
2 (6.11)

where SPEk,b is the SPE of the kth sample in the bth batch, xbk,dz and x̂bk,dz is the dthz
dimension of the kth sample in the bth batch for input and reconstructed input respectively.

Since the input data may not follow a Gaussian distribution, a kernel density estimation
(KDE) Parzen [1962] procedure is used to obtain control limits H2

α and SPEα metrics.
Further, we relax an earlier assumption made for the MPCA and MPLS based FD model
that the distribution of input data does not change with time. Instead, both H2

α and
SPEα are allowed to change with time based on the current estimate of KDE and thus
they will be referred to henceforth as dynamic control limits H2

k,α and SPEk,α. To calculate
these limits, we use Gaussian kernels to estimate the probability distribution function of
univariate data (H2

k and SPEk) for each time interval k as follows:

F (H2
k) =

b∑
i=1

G
(H2

k −H2
i

bw

)
(6.12)

G(xi;σ) ∝ exp
(
− xi

2

2σ2

)
(6.13)

where F (H2
k) is the probability density function, G(xi;σ) is the Gaussian kernel and bw

is a bandwidth parameter that controls the smoothness of the distribution and it is selected
from the Silverman algorithm Silverman [1986]. The H2

k,α for a pre-specified significance
level α is then calculated using the equation below:

1− α =

∫ H2
k,α

min H2
k,train

F (H2
k) dH2

k (6.14)

Similar procedure (Eqs. 6.12-6.14) can be followed to evaluate the residual control limits
SPEk,α.

123

6.3.2 Novel Objective Function for Maximizing Fault Detection
Rate

In previous studies on process monitoring with MPCA and MPLS models, the objective
function to be minimized for selecting the number of principal components, i.e. hyper-
parameters in MPCA and MPLS, is either the mean square error (MSE) of input recon-
struction (refer Equation 6.15) in MPCA or the MSE of output prediction (refer Equation
6.16) in MPLS.

JMPCA =
1

n

b∑ k∑(
xk − x̂k

)2 (6.15)

JMPLS =
1

n

b∑ k∑(
tk − t̂k

)2 (6.16)

where x̂k is a reconstructed input sample and t̂k is a predicted indicative output (dummy)
variable. However, since maximizing the FDR is our main objective, we propose an alter-
native objective function for model training as follows:

It should be emphasized that since all the samples used for training of an unsupervised
learning model correspond to normal operation, T 2

k,train of each sample at time ‘k’ should
be less than the associated control limit i.e. T 2

k,α (Dynamic control limits). An objective
function that is most relevant for fault detection should measure the number of miss-
detected samples, i.e. normal samples detected as abnormal (also known as false alarm rate
(FAR)) and abnormal samples detected as normal, according to the dynamic control limits
proposed above. Hence, a fault detection motivated objective function JMPCA−MPLS,FDR

is proposed for selecting number of principal components in MPCA and MPLS as follows:

JMPCA−MPLS,FDR =
1

n

b∑ k∑([
T 2
k,train − T 2

k,α(t)
]
> 0
)
||
(
[Qk,train −Qk,α] > 0

)
(6.17)

where T 2
k,train and T 2

k,α are a function of scores and nPCs K. These hyper-parameters
are selected using Eq 6.17 for both MPCA and MPLS models. Thus, the nPCs that results

124

in the minimum value of JMPCA−MPLS,FDR in the validation dataset are selected for the
final model.

Similarly, to incorporate FDR explicitly in the loss function for training MPLS-AE
model, the following loss function is proposed in this study:

JMPLS−AE,FDR =
1

n

b∑ k∑([
H2
k,train −H2

k,α

]
> 0
)
||
(
[SPEk,train − SPEk,α] > 0

)
(6.18)

The above loss function (Equation 6.18) evaluates the number of miss-detected samples
with the MPLS-AE model. Hence the loss function is directly related to the (FDR) which
is a function of H2

k,train and Qk,train and consequently these are a function of latent variables
z (refer Eqs. 6.10 and 6.11). The proposed methodology for fault detection is schematically
described in Figure 6.2.

6.3.3 Average Fault Detection Rate (FDR)

Thereafter the average fault detection rate (FDR) can be evaluated based on the average
detection rates of normal and abnormal samples for MPCA and MPLS using metric M1

and metric M2 for MPLS-AE as follows:

M1 :

FDRnormal = 1
nnormal

∑nnormal
k=1

∑b ([T 2
k,b − T 2

k,α] ≤ 0
)
&&

(
[Qk,b −Qk,α] ≤ 0

)
FDRabnormal = 1

nabnormal

∑nabnormal
k=1

∑b ([T 2
k,b − T 2

k,α] > 0
)
||
(
[Qk,b −Qk,α] > 0

)
(6.19)

M2 :

FDRnormal = 1
nnormal

∑nnormal
k=1

∑b ([H2
k,b −H2

k,α] ≤ 0
)

&&
(
[SPEk,b − SPEk,α] ≤ 0

)
FDRabnormal = 1

nabnormal

∑nabnormal
k=1

∑b ([H2
k,b −H2

k,α] > 0
)
||
(
[SPEk,b − SPEk,α] > 0

)
(6.20)

125

Figure 6.2: Flowchart for fault detection based on novel objective function

126

FDR =
nnormalFDRnormal + nabnormalFDRabnormal

nnormal + nabnormal
(6.21)

where nnormal is the number of normal operation samples, nabnormal is the number of sam-
ples with faults, b is the total number of normal batches in the training dataset and H2

k,α

and SPEk,α are the control bounds H2
k,α and SPEk,α of the kth sample, respectively. A

normal operation sample is detected correctly if both T 2
k,b or H2

k,b and Qk,b or SPEk,b are
below their respective control limits. Otherwise the sample will be incorrectly detected as
abnormal. On the other hand, abnormal samples are correctly detected if either H2

k,b or
SPEk,b or both exceed their control limits in case of MPLS-AE and T 2

k,b or Qk,b or both
exceed their control limits in case of MPCA and MPLS. Overall FDR is calculated as the
weighted sum of FDRnormal and FDRabnormal (refer Equation 6.21).

Note: JMPLS−AE,FDR is trained with a GA (genetic optimization algorithm) using the
solution from JMPLS−AE as the initial guess to speed up the search. This implies that the
architecture for both the models are same.

6.3.4 Case study

The IndPenSim code Goldrick et al. [2019] that simulates batch fermentation of Penicillin
is used for the case study. A schematic of the process is shown in Figure 6.3. The fig-
ure also shows the available off-line and online measurements, manipulated variables and
controlled variables. The simulator is available at www.industrialpenicillinsimulation.com.
The total biomass inside the bioreactor is calculated for 4 separate regions: actively grow-
ing regions (A0), non-growing regions (A1), degenerated regions (A2) and autolysed regions
(A3) Goldrick et al. [2015].

127

Growing regions (A0):

dA0

dt
= rb − rdiff −

FinA0

V
dA1

dt
= re − rb + rdiff − rdeg −

FinA1

V
dA2

dt
= rdeg − ra −

FinA2

V
dA3

dt
= ra −

FinA3

V
(6.22)

Total biomass (Xbiomass):

Xbiomass = A0 + A1 + A2 + A3 (6.23)

where ra, rb, re, rP , rdiff , rdeg, Fin and V are the rates of autolysis, branching, extension,
differentiation, degeneration, total flow in and fermenter volume respectively. The dynamic
balances describing production formation and substrate consumption are as follows:
Product formation (P):

dP

dt
= rP − rh −

FinP

V
(6.24)

Substrate consumption (S):

dS

dt
= −YS/Xre − YS/Xrb −msrm − YS/P rP +

FSCS
V

+
FoilCoil
V

− FinS

V
(6.25)

where rP , rh and rm denote the rates of product formation, hydrolysis and maintenance,
respectively, and ms is the substrate maintenance term. Also, YS/X and YS/P indicate the
substrate yield coefficients of biomass and penicillin respectively, and FS, Foil, CS, and Coil
are the sugar and soybean oil feed rate and concentrations respectively.

A dataset of total 700 batches is generated using the simulator. The total fermentation
time of each batch is 230 hours (1150 time samples for each batch) and involves 25
measured input variables. Six different types of faults are considered in this case study.
Different faults occur at different time interval during a batch with varied magnitude as

128

described in Table 6.1. The dynamic profiles of these faults (except for fault number 6
which is a combination of all the other faults) are shown in Figure 6.4. The dataset includes
100 normal operation batches, i.e. batches without fault, and 100 batches for each type
of fault. Batches with normal operation are then divided between training and validation
sets. 80 normal batches are used to train the MPCA, MPLS and MPLS-AE models and
20 batches are used as the validation dataset to obtain the optimal hyper-parameters for
each FD model. The remaining 600 batches are used as the test dataset. First, the three
dimensional training data array (X1 ∈ R1150×25×80) is unfolded to a matrix as described
in Section 2.1 and 2.2 with dimensions X ∈ R92000×25. A row in X represents a sample
data with 25 variables (columns). After unfolding, the training set samples are mean
centered and normalized by the corresponding variance for the MPCA and MPLS models
and normalized between 0 and 1 using min-max normalization for MPLS-AE model.

Figure 6.3: Summary of all model inputs and outputs recorded by IndPenSim

6.4 Results and Discussions

The three FD methods:MPCA, MPLS and MPLS-AE are applied to the Industrial Peni-
cillin Simulator (IndPenSim) and are compared in terms of FDR accuracy, use of static or

129

0 50 100 150 200
time[hr]

20

30

40

50

60

70

A
er
at
io
n
flo
w
ra
te
 [L

/h
r]

Fault 1: Aeration flow rate

Normal
Fault

0 50 100 150 200
time[hr]

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

Pr
es
su
re
 [b

ar
]

Fault 2: Vessel back pressure

Normal
Fault

0 50 100 150 200
time[hr]

0

20

40

60

80

100

120

140

Su
bs
tr
at
e
fe
ed
 ra

te
 [L

/h
r]

Fault 3: Substrate feed rate

Normal
Fault

0 50 100 150 200
time[hr]

0

50

100

150

200

B
as
e
flo
w
 ra

te
 [L

/h
r]

Fault 4: Base flow rate

Normal
Fault

0 50 100 150 200
time[hr]

0

100

200

300

400

500

C
oo
la
nt
 fl
ow

 ra
te
 [L

/h
r]

Fault 5: Coolant flow rate

Normal
Fault

Figure 6.4: Profiles of measured variables in normal and faulty conditions.

Table 6.1: Description of different types of fault

No. fault magnitude time (hr)
1 disturbance in aeration flow rate (L/hr) 20, 20 [20, 24], [100, 110]
2 disturbance in vessel back pressure (bar) 2, 2 [100, 104], [200, 230]
3 disturbance in substrate feed rate (L/hr) 2, 20, 20 [20, 30], [76, 92], [200, 214]
4 disturbance in base flow rate (L/hr) 5, 10 [80, 84], [140, 160]
5 disturbance in coolant flow rate (L/hr) 2 [70, 90]
6 all of the above faults

dynamic control limits and use of the different proposed objective functions for selecting
optimal hyper-parameters. The training, validation and test sets are the same for the three
methods. As discussed in the previous section, the training dataset is used for calibration
of model parameters, the validation set is used to find the optimal hyper-parameters and
the test dataset is used to compare the performance of different methods with different
objective functions (refer Section 6.3.2).

130

6.4.1 MPCA and MPLS with JMPCA and JMPLS

First, the linear MPCA and MPLS are compared to each other in terms of FDR accuracy
(refer Table 2, Model No. 1-4). As mentioned previously in Section 3, MPLS uses the
fermentation time as an indicative output (dummy) variable. An important first goal of
this comparison is to investigate whether the use of the indicative output variable enhances
the FDR accuracy of MPLS versus MPCA that does not use this output variable. Further,
we also compare the use of static versus dynamic control limits with respect to average
detection rate.

Static control limits T 2
α and Qα

Following the methodology presented in Section 6.2, the nPCs K of MPCA or MPLS are
determined by evaluating the traditional objective function reported in other studies (refer
Equation 6.15 and 6.16) on validation set. The nPCs that result in the lowest validation
errors are 16 and 7 for the MPCA and MPLS models respectively (Model No. 1 and 2
in Table 6.2,). Figs. (6.5)-(6.6) show the performance of the MPCA and MPLS models
with static control limits in 6 batches of the test dataset that corresponds to 6 different
faults. MPLS performs better than MPCA for detecting faults with FD test accuracy
of 78.26% and 75.48% for MPCA. It should also be noticed that the nPCs in MPLS is
significantly lower as compared to the nPCs of MPCA resulting in superior FDR for the
test dataset. This result hints at the merit of including the output indicative variable, i.e.
the fermentation time, in MPLS since it results in a smaller number of significant latent
vectors.

Dynamic control limits T 2
k,α and Qk,α

To improve the FDR results, dynamic control limits T 2
k,α and Qk,α were used instead of

the static control limits used above. Gaussian kernel density functions were fitted to
the T 2

k,train and Qk,train of the training dataset at each time interval k to estimate the
control limits T 2

k,α and Qk,α with a pre-specified significance level α = 0.01. nPCs K are
selected using the objective function commonly used as described in section 6.4.1. It was

131

0 50 100 150 200
time[hr]

0

100

200

300

400

500

600

T2

Fault in aeration flow rate

Fault 1
UCLFault limit

0 50 100 150 200
time[hr]

0

50

100

150

200

250

T2

Fault in vessel back pressure

Fault 2
UCLFault limit

0 50 100 150 200
time[hr]

20

40

60

80

100

120

T2

Fault in substrate feed rate

Fault 3
UCLFault limit

0 50 100 150 200
time[hr]

0

200

400

600

800

1000

T2

Fault in base flow rate

Fault 4
UCLFault limit

0 50 100 150 200
time[hr]

0

200

400

600

800

1000

1200

1400
T2

Fault in coolant flow rate

Fault 5
UCLFault limit

0 50 100 150 200
time[hr]

0

200

400

600

800

T2

All faults together

Fault 6
UCLFault limit

Figure 6.5: Plots of T 2
k and static control limits T 2

α for six different faulty batches of the
test dataset based on JMPCA as the objective function (α = 0.01).

observed that the number of principal components are same for both MPCA and MPLS
as obtained with static limits. However, there is a significant increase in the FDR, 83.20%
with MPCA and 84.09% with the MPLS FD model (refer Model No. 3 and 4 in Table 6.2).
This demonstrates that the use of dynamic control limits significantly increase the FDR.
The improvements in FDR accuracy with dynamic bounds arises from the ability of these
bounds to deal with the model nonlinearity. Since MPCA and MPLS are linear models,
following linearization arguments it is evident that different linear models should be used to
approximate the nonlinear process behaviour at each time interval. Different linear models
translate into different control bounds at different time intervals. At the same time, the
superiority of MPLS as compared to MPCA is maintained also with dynamic control limits
since the nPCs of MPLS are less as compared to MPCA. The overall superiority of MPLS
as compared to MPCA motivated the development of a MPLS equivalent deep learning
architecture (MPLS-AE) to capitalize on the advantages of MPLS and the ability of AE
to deal with nonlinear behaviour.

132

0 50 100 150 200
time[hr]

0

20

40

60

80

100

Q

Fault in aeration flow rate

Fault 1
UCLFault limit

0 50 100 150 200
time[hr]

0

5

10

15

20

25

30

Q

Fault in vessel back pressure

Fault 2
UCLFault limit

0 50 100 150 200
time[hr]

0.0

0.5

1.0

1.5

2.0

Q

Fault in substrate feed rate

Fault 3
UCLFault limit

0 50 100 150 200
time[hr]

0

2

4

6

8

Q

Fault in base flow rate

Fault 4
UCLFault limit

0 50 100 150 200
time[hr]

0.0

0.2

0.4

0.6

0.8

1.0

1.2
Q

Fault in coolant flow rate

Fault 5
UCLFault limit

0 50 100 150 200
time[hr]

0

10

20

30

40

50

60

70

Q

All faults together

Fault 6
UCLFault limit

Figure 6.6: Plots of Qk and static control limits Qα for six different faulty batches of the
test dataset based on JMPCA as the objective function (α = 0.01).

6.4.2 MPCA and MPLS with JMPCA−MPLS,FDR

The focus of this subsection is on evaluating the performance of novel objective function
JMPCA−MPLS,FDR, proposed in this work, for linear MPCA and MPLS FD model and com-
pare these with the traditional objective function. Then, we also compare the performance
of FD models based on JMPCA−MPLS,FDR with static and dynamic control limits.

Static control limits T 2
α and Qα

Eqs. (6.3)-(6.7) were used to evaluate T 2
k , Qk, T 2

α, and Qα. The number of principal com-
ponents K for both MPCA and MPLS were selected by evaluating the objective function
JMPCA−MPLS,FDR on validation dataset. It is observed (presented in Table 6.2) that 2 PCs
were found to be optimal in order to minimize the validation error for both the MPCA
and MPLS models. In this case, the MPCA and MPLS models achieve 81.83% and 81.99%
FDR test accuracy respectively. This confirms our earlier argument that the FDR accu-

133

0 50 100 150 200
time[hr]

0

50

100

150

200

T2

Fault in aeration flow rate

Fault 1
UCLFault limit

0 50 100 150 200
time[hr]

0

50

100

150

200

T2

Fault in vessel back pressure

Fault 2
UCLFault limit

0 50 100 150 200
time[hr]

0

50

100

150

200

T2

Fault in substrate feed rate

Fault 3
UCLFault limit

0 50 100 150 200
time[hr]

0

100

200

300

400

500

600

T2

Fault in base flow rate

Fault 4
UCLFault limit

0 50 100 150 200
time[hr]

0

50

100

150

200
T2

Fault in coolant flow rate

Fault 5
UCLFault limit

0 50 100 150 200
time[hr]

0

100

200

300

400

500

600

T2

All faults together

Fault 6
UCLFault limit

Figure 6.7: Plot of T 2
k and dynamic control limits T 2

k,α of six different faulty batches of the
test dataset by using JMPLS as the objective function (α = 0.01).

racy is highly related to the nPCs and the over-fitting of noise. The MPCA model (Model
No. 5; 2 PCs) based on the novel objective function performs better than the MPCA
model (Model No. 1; 16 PCs) based on the commonly used objective function. It was also
observed that Model No. 1 is slightly better for faults 1 and 4. Conversely, Model No. 5
has better performance in all other faults and has lower false alarm rate (by about 10%).
Moreover, the results are consistent in terms of the higher fault detection rates for MPLS
models as compared to MPCA FD models.

Dynamic control limits T 2
k,α and Qk,α

Based on the novel objective function JMPCA−MPLS,FDR with dynamic control limits T 2
k,α

and Qk,α (Model No. 7 and 8), the optimal number of nPCs was 18 and 22 for MPCA
and MPLS model respectively. The use JMPCA−MPLS,FDR with dynamic control limits
resulted in detection rates of 85.62% for MPCA and 85.72% for MPLS. This is consistent
with the result obtained with static control limits. It is also important to note that MPCA

134

0 50 100 150 200
time[hr]

0

25

50

75

100

125

150

175

200

Q

Fault in aeration flow rate

Fault 1
UCLFault limit

0 50 100 150 200
time[hr]

0

20

40

60

80

100

120

140

Q

Fault in vessel back pressure

Fault 2
UCLFault limit

0 50 100 150 200
time[hr]

0

20

40

60

80

100

120

140

Q

Fault in substrate feed rate

Fault 3
UCLFault limit

0 50 100 150 200
time[hr]

0

50

100

150

200

250

300

350

Q

Fault in base flow rate

Fault 4
UCLFault limit

0 50 100 150 200
time[hr]

0

50

100

150

200
Q

Fault in coolant flow rate

Fault 5
UCLFault limit

0 50 100 150 200
time[hr]

0

50

100

150

200

250

300

350

400

Q

All faults together

Fault 6
UCLFault limit

Figure 6.8: Plots of Qk and dynamic control limits Qk,α for six different faulty batches of
the test dataset based on JMPLS as the objective function (α = 0.01).

FD model with dynamic control limits (Model No. 5) detect faults better than MPCA
with static control limits (Model No. 5). The MPLS model based on the novel objective
function JMPCA−MPLS,FDR (Model No. 8) performs better than the FD model with the
traditional objective function JMPLS (Model No. 4) in most of the time segments of the
test dataset. The performance of the best linear FD model (MPLS Model No. 8), where
the proposed objective function JMPCA−MPLS,FDR was used to select the nPCs along with
the use of dynamic control limits is illustrated in Figs. (6.9)-(6.10).

6.4.3 MPLS-AE with JMPLS−AE

In this part of the study, we employ the nonlinear MPLS-AE FD model trained using the
traditional objective function JMPLS−AE that minimizes the weighted sum of the recon-
struction error and the prediction error of the fermentation time (dummy variable). It
should be noted that we have formulated a NN architecture (MPLS-AE) based on predic-

135

Table 6.2: Comparison of (FDR) test accuracy for different models

No. Objective function Model type control limits nPCs FDR %(train/validation/test)
1 JMPCA MPCA static 16 93.03/93.17/75.48
2 JMPLS MPLS static 7 94.24/94.28/78.26
3 JMPCA MPCA dynamic 16 97.47/97.91/83.20
4 JMPLS MPLS dynamic 7 98.02/97.84/84.09
5 JMPCA−MPLS,FDR MPCA static 2 93.92/94.18/81.83
6 JMPCA−MPLS,FDR MPLS static 2 94.47/94.55/81.99
7 JMPCA−MPLS,FDR MPCA dynamic 18 97.49/98.16/85.62
8∗ JMPCA−MPLS,FDR MPLS dynamic 22 97.47/98.20/85.72
9 JMPLS−AE MPLS-AE dynamic 15 98.04/98.66/87.21
10∗ JMPLS−AE,FDR MPLS-AE dynamic 15 98.37/98.84/88.64

*Best linear and non-linear models are highlighted with red colour

tion of an indicative variable (refer Section 3.1) since the latter was found, from the com-
parisons above, to consistently enhance the FDR. The hyper-parameters, such as number
of layers, number of neurons in each layer, learning rate, weights etc. are selected using
validation data. The weights of the network are obtained for each set of hyper-parameters
with the training data and the validation data is then used to compare networks with dif-
ferent hyper-parameters to select the best set among them. The hyper-parameter search
is implemented using the Keras-tuner in Python. To perform this search, a grid of hyper-
parameters is defined, for example number of encoder layers = [1,2,3], number of neurons
units for each of these layers ranging from 2 to 100, learning rate = [1e−1,2e−1,3e−1, 1e−2],
value of weights in the objective function, etc. Then, the Keras-tuner trains the model
using different combinations of these hyper-parameters values and the averaged validation
accuracy is evaluated at every epoch. The models are trained with a few epochs in the
start and the selected models with high validation accuracy are chosen to be trained for
more epochs with a early stopping technique. The best run with highest validation accu-
racy and the combination of hyper-parameters for the run are used to evaluate the test
accuracy. The loss function as a function of the number of latent variables of the hidden
layer of the MPLS-AE network is shown in Figure 6.11. This figure indicates that the loss
function does not significantly decreased beyond 15 latent variables (optimal number of

136

0 50 100 150 200
time[hr]

0

1000

2000

3000

4000

5000

T2

Fault in aeration flow rate

Fault 1
UCLFault limit

0 50 100 150 200
time[hr]

0

200

400

600

800

1000

T2

Fault in vessel back pressure

Fault 2
UCLFault limit

0 50 100 150 200
time[hr]

0

100

200

300

400

500

600

700

800

T2

Fault in substrate feed rate

Fault 3
UCLFault limit

0 50 100 150 200
time[hr]

0

200

400

600

800

1000

T2

Fault in base flow rate

Fault 4
UCLFault limit

0 50 100 150 200
time[hr]

0

200

400

600

800

1000

1200

1400
T2

Fault in coolant flow rate

Fault 5
UCLFault limit

0 50 100 150 200
time[hr]

0

500

1000

1500

2000

2500

3000

3500

T2

All faults together

Fault 6
UCLFault limit

Figure 6.9: Plots of T 2
k and dynamic control limits T 2

k,α for six different faulty batches of
the test dataset based on JMPCA−MPLS,FDR as the objective function for the MPLS model
(α = 0.01).

units). Similar to the procedure described in section 6.4.1, the dynamic control limits H2
k,α

and Qk,α can be obtained by estimating the distribution of H2
k,train and Qk,train at each

time interval. A FDR test accuracy of 87.21% is obtained by the MPLS-AE model using
JMPLS−AE as the loss function.

It should be noticed that the FDR for MPLS-AE is higher than all the other linear
models. This can be attributed to the ability of deep learning models to extract non-linear
features.

6.4.4 MPLS-AE with JMPLS−AE,FDR

Finally, we evaluate the performance of MPLS-AE trained with the proposed loss function
to maximize the FDR given by Equation (6.18) in combination with dynamic control limits.

137

0 50 100 150 200
time[hr]

0

2

4

6

8

Q

Fault in aeration flow rate

Fault 1
UCLFault limit

0 50 100 150 200
time[hr]

0.0

0.1

0.2

0.3

0.4

0.5

Q

Fault in vessel back pressure

Fault 2
UCLFault limit

0 50 100 150 200
time[hr]

0.0

0.1

0.2

0.3

0.4

0.5

Q

Fault in substrate feed rate

Fault 3
UCLFault limit

0 50 100 150 200
time[hr]

0.0

0.1

0.2

0.3

0.4

0.5

Q

Fault in base flow rate

Fault 4
UCLFault limit

0 50 100 150 200
time[hr]

0.0

0.1

0.2

0.3

0.4

0.5
Q

Fault in coolant flow rate

Fault 5
UCLFault limit

0 50 100 150 200
time[hr]

0

5

10

15

20

25

Q

All faults together

Fault 6
UCLFault limit

Figure 6.10: Plots of Qk and dynamic control limits Qk,α for six different faulty batches of
the test dataset based on JMPCA−MPLS,FDR as the objective function for the MPLS model
(α = 0.01).

In order to train MPLS-AE with the proposed objective function, it is essential to evalu-
ate the H2

k,α and SPEk,α by estimating the distribution of H2
k and SPEk through KDE.

Additionally, we need to evaluate the cumulative distribution function for a pre-specified
significance level α (refer Equation 6.14). A Genetic Algorithm (GA) was used for training
the NN. GA is an evolutionary algorithm used to search for the best individual (here, each
individual corresponds to weights of MPLS-AE) from a larger set of individuals (termed
as ’population’). Each individual of the population is subsequently ranked on the basis of
a metric, conventionally termed as ‘fitness’. The purpose of this metric is to assess the
goodness of fit of the predictions made by the model. We use the novel objective function
in this work as a fitness function for training MPLS-AE. The ranked population is then
operated upon by genetic operators (selection, mutation and crossover), resulting in a new
population. This loop runs for a specified number of generations which must be input by
the user at the start of the optimization, along with the number of individuals in a popula-

138

1 3 5 7 9 11 13 15 17 19 21 23 25
number of principle components

0.0000

0.0005

0.0010

0.0015

0.0020

0.0025

JP
LS

−
AE

1

JPLS−AE
1 in validation dataset

Figure 6.11: Loss of the validation dataset with MPLS-AE model using JMPLS−AE as the
objective function to train the network.

tion (population size). After the specified number of generations, the best set of candidate
solution are obtained. We emphasize here that the initial guess for the GA optimization
is the solution obtained in the previous section, i.e. with the model trained with the tra-
ditional objective function. This is done to speed up the solution search. While this may
restrict the optimization result to a neighborhood of the initial guess, it was sufficient to
show improvements due to the use of the new FDR oriented objective even with the same
model architecture (see Section 4.3).

Figs. (6.12)-(6.13) show the performance of MPLS-AE model with dynamic control
limits and JMPLS−AE,FDR for the test dataset. A 88.64% (Model No. 10 in Table 2) FDR

accuracy is obtained with the MPLS-AE model that use JMPLS−AE,FDR thus corroborating
the importance of using this objective to improve detection. In comparison with the Model
No. 9, both MPLS-AE models have a close process monitoring performance in different
types of faulty batches in the test dataset. However, in general, as shown in Table 6.2,
the MPLS-AE trained with the novel objective function JMPLS−AE,FDR results in a higher
FDR. In comparison with the best linear model i.e. the MPLS model with dynamic
control limits (Model No. 8), the MPLS-AE model provides a significant improvement in

139

most parts of the test dataset. For example, in normal samples of fault number 1 and
2 batches, the MPLS-AE achieves 5% and 1% higher FDR accuracy as compared to the
linear MPLS model, respectively. MPLS-AE model is 54% more effective in detecting fault
3 than MPLS.

0 50 100 150 200
time[hr]

0

500

1000

1500

2000

2500

3000

3500

4000

H
2

Fault in aeration flow rate

Fault 1
UCLFault limit

0 50 100 150 200
time[hr]

0

1000

2000

3000

4000

H
2

Fault in vessel back pressure

Fault 2
UCLFault limit

0 50 100 150 200
time[hr]

0

2000

4000

6000

8000

10000

12000

14000

H
2

Fault in substrate feed rate

Fault 3
UCLFault limit

0 50 100 150 200
time[hr]

0

100

200

300

400

H
2

Fault in base flow rate

Fault 4
UCLFault limit

0 50 100 150 200
time[hr]

0

50

100

150

200

250

300

H
2

Fault in coolant flow rate

Fault 5
UCLFault limit

0 50 100 150 200
time[hr]

0

2500

5000

7500

10000

12500

15000

17500

H
2

All faults together

Fault 6
UCLFault limit

Figure 6.12: Plots of H2
k and dynamic control limits H2

k,α for six different faulty batches
of the test dataset based on JMPLS−AE,FDR as the objective function to train MPLS-AE
(α = 0.01).

6.5 Conclusion

In this work, a novel objective function is proposed for unsupervised batch process mon-
itoring. Both linear and non-linear fault detection models were employed and compared
in terms of fault detection capabilities. A Multiway Partial Least Squares Autoencoder
(MPLS-AE) NN architecture was also designed to include an indicative (dummy) output
variable, i.e. batch age, to further enhance the average fault detection rates. The hyper-
parameters of FD models were selected by the minimization of two different objective func-
tions: i- a traditionally used objective function involving reconstruction errors and ii- a

140

0 50 100 150 200
time[hr]

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

SP
E

Fault in aeration flow rate

Fault 1
UCLFault limit

0 50 100 150 200
time[hr]

0.0

0.5

1.0

1.5

2.0

2.5

SP
E

Fault in vessel back pressure

Fault 2
UCLFault limit

0 50 100 150 200
time[hr]

0.0

0.2

0.4

0.6

0.8

1.0

1.2

SP
E

Fault in substrate feed rate

Fault 3
UCLFault limit

0 50 100 150 200
time[hr]

0.0

0.2

0.4

0.6

0.8

1.0

1.2

SP
E

Fault in base flow rate

Fault 4
UCLFault limit

0 50 100 150 200
time[hr]

0.0

0.2

0.4

0.6

0.8

1.0

1.2

SP
E

Fault in coolant flow rate

Fault 5
UCLFault limit

0 50 100 150 200
time[hr]

0

1

2

3

4

5

6

7

SP
E

All faults together

Fault 6
UCLFault limit

Figure 6.13: Plots of SPE2
k and dynamic control limits SPE2

k,α for six different faulty
batches of the test dataset based on JMPLS−AE,FDR as the objective function to train
MPLS-AE (α = 0.01).

novel objective function that is explicitly dependent on the fault detection rate. We demon-
strated that the use of the proposed objective function provides a significant improvement
in fault detection accuracy for both linear and nonlinear models but the improvement is
larger with the nonlinear MPLS-AE. The key reason behind this improvement is that the
metrics used for evaluating detection rates are functions of latent variables and these de-
pend on the objective function used for training. When the objective function is explicitly
related to the detection rate, the resulting latent variables are most informative about the
faults. Both static and dynamic statistical control limits were applied with all methods. A
case study of industrial penicillin batch dataset suggests that the use of dynamic control
limits result in significant improvements in detection for all methods. Furthermore, it was
also found that the proposed MPLS-AE which is trained by the minimization of the novel
objective function along with dynamic control limits performs better than the best MPLS
model. This confirmed the ability of MPLS-AE to tackle nonlinear system dynamics.

141

Chapter 7

Assessing Observability using Supervised
Autoencoders with Application to
Industrial Processes

Overview1

This chapter presents a novel approach to calculate classification observability using a su-
pervised autoencoder (SAE) neural network (NN) for classification. This metric is based
on a minimal distance between every two classes in the latent space defined by the hid-
den layers of the auto-encoder. Quantification of classification observability is required to
address whether the available sensors in a process are sufficient to observe certain outputs
(phenomenon) and whether additional measurements are to be included in the dataset to
improve classification accuracy. Using this metric an approach is proposed for enhancing
the observability of the output classes from input data by selectively choosing the input fea-
tures or variables to the NN which are relevant to the classification task and by discarding
the variables that contribute to overlap between regions of the latent space corresponding

1Adapted from Agarwal, Piyush, et al."Assessing Observability using Supervised Autoencoders with
Application to Tennessee Eastman Process"

142

to different output classes. Large overlap between regions will result in high confusion
between classes and high miss-classification rates. To this end, we use a recently proposed
Layer-wise Relevance Propagation (LRP) to identify input variables that are most relevant
for the classification task and contribute to the overlapping regions corresponding to out-
put classes. The efficacy of the proposed method is illustrated through two case-studies:
the Tennessee Eastman Benchmark Process and Sanofi Vaccine Manufacturing Process.

7.1 Introduction

Identification of inputs that are highly informative and well correlated to an output of
interest, e.g. productivity of a process, is crucial for efficient chemical process monitoring,
improved system knowledge and operational robustness with respect to unknown distur-
bances. An input design space is defined as “the multidimensional combination and inter-
action of input variables and process parameters" Laky et al. [2019], that assures quality
of product within specified operational constraints. Classification of the input variables’
space into distinct regions that result in correspondingly distinct output classes is often
challenging due to the proximity between input values that correspond to different classes
combined with the presence of measurement noise. We focus here on the classification of
regions that differ in terms of economic profit as a function of process inputs. The classifica-
tion is based on a Supervised Autoencoder Neural Networks (SAE-NNs) model. SAE-NNs
are Autoencoders (AE) that predicts both reconstructed inputs as well as outputs. Previ-
ously, SAE-NNs or its variants have been used for image classification and other regression
tasks in a semi-supervised setting i.e. making use of both labelled and unlabelled data
(Epstein and Meir [2019], Seeger [2001]). To accomplish this task the following objective
function is minimized with respect to the weights of the SAE-NN:

lSAE =
N∑
s=1

Lsr(ys, ŷs) + λ1

N∑
i=1

Lsp(xs, x̂s) (7.1)

The addition of the input reconstruction loss Lsr (first term in Equation (7.1)) to the su-
pervised learning related term Lsp for a sample s (second term in Equation (7.1)) in the

143

objective function has been a subject of study as to why better input reconstruction helps
in better classification Rigollet [2007]. This point is explicitly addressed in the current
work. The focus of this work is to provide a robust lower bound on classification observ-
ability (Cobs) of output classes based on inputs fed to the SAE-NNs models. The ability
of classifying regions of the input space that result in corresponding classes of a process
output, e.g. process productivity/profit, depends on the degree of observability of the
output from the measured process inputs. Quantifying observability of the classification
task can help answering several important industrial questions such as: are the available
sensors sufficient to provide acceptable classification accuracy? which sensors are more
informative for the classification task? It should be noticed that observability cannot be
assessed by standard state observability methods since a state model is assumed to be
unavailable. Hence, the novelty of the current proposed method is in assessing observ-
ability directly from input-output data that to the knowledge of the author has not been
thoroughly researched in the literature.

The development of an SAE-NN model to be used for classification involves several
elements: i- feeding the inputs to the encoder, ii- feeding the outputs from the encoder
to a fully connected layer and iii- feeding the outputs from the fully connected layer a
to classification layer consisting of softmax functions. iv- simultaneous training of the
autoencoder and classifier. Due to the data projection (compression) operation achieved
by the encoder, the outputs from the encoder are referred to as latent variables. The
difficulty in observing the output classes from input data is due to the proximity/overlap
among sets of input data, model structure error and noise. Moreover, the support of the
encoder functions corresponding to different output classes define regions in the latent
variable space (output space of the encoder) that may strongly overlap with each other.
This overlap may cause miss-classification of new samples, i.e. samples that were not used
for model training. In this study we perform numerical evaluation of the overlap between
regions in the latent space that correspond to different classes and the observability of
the classes is quantified from the degree of overlap. The overlap is estimated for any two
input data points xi and xj ∈ Rdx based on a distance dij between their projections in
the latent variable space z ∈ Rdz where points xi and xj corresponds to different classes
(dx > dz). If these distances are large enough as compared to certain threshold dij (robust

144

observability distance measure) related to the noise in the input measurements, the classes
are considered to be observable while if the distance is smaller than the threshold the
system is considered unobservable. This observability criterion is mathematically given as
follows:

d = ||zi − zj||22 =

observable, if d > dij.

non-observable, otherwise.
(7.2)

where points zi and zj are projections of xi and xj in the latent space that corresponds to
different output classes.

Quantifying the observability in the latent variable space as opposed to the input space
capitalizes on the lower dimensions of the former as compared to the the latter. Thus,
drastically simplifying the calculation. Also, the latent space is more informative about
productivity since the loss function used to train the model includes the prediction of
productivity. Beyond its use for assessing classification observability, the degree of clas-
sification observability Cobs can be further enhanced by discarding (pruning) inputs that
are not informative for classification (Agarwal and Budman [2019], Agarwal et al. [2019])
and contribute to overlap between regions corresponding to different output classes. The
discarded inputs do not contribute to the classification task and instead they decrease the
classification accuracy since they increase confusion among classes. A metric known as
‘Pruning Index’ (PI) is proposed to identify and prune input variables that contributes
to this overlap or are irrelevant to the classification problem. Eliminating sensors that do
not contribute significantly to classification may help to reduce cost and to reduce miss-
classification resulting from potentially faulty sensors/ irrelevant sensors.

Following the above, the three main contributions of this work: i) Assessment of the use
of the reconstruction error for training the classification model; ii) Derivation of a robust
observability distance measure (RODM) to evaluate the degree of classification observabil-
ity Cobs; iii) Identification of input variables contributing to the overlap. iv) Enhancement
of the observability and classification accuracy by discarding inputs based on the proposed
robust observability bound. The proposed contributions are illustrated through two case-
studies: the Tennessee Eastman Benchmark Process and vaccine manufacturing process at

145

Sanofi Pasteur, Toronto.

The chapter is organized as follows: Section 7.2 provides a brief review on Autoencoder
NNs. Section 7.3 provides the problem description for both TEP and vaccine manufacturing
process case-study. The two algorithms used for quantifying a robust lower bound on
classification observability are presented in Section 7.4. Results and discussions on the
case-studies are shown in Section 7.5 for TEP and Sanofi Process followed by concluding
remarks in Section 7.6.

x1

x2

x3

x4

x5

x̂1

x̂2

x̂3

x̂4

x̂5

Latent
Space
(z)

Input
layer
(x)

Output
layer
(x̂)

fe(x) fd(z)

Figure 7.1: Traditional single layer Autoencoder Neural Network (AE-NN)

7.2 Preliminaries

This section briefly reviews the fundamentals of a Supervised Autoencoder Neural Networks
(SAE-NNs) models.

146

7.2.1 Supervised Autoencoder Classification Neural Networks (SAE-
NNs)

The Supervised Autoencoder Neural Network (SAE-NN) model, shown in Figure ??, is
trained based on the minimization of a combination of the reconstruction loss function and
the supervised classification loss corresponding to the first and second terms in (Equation
(7.6)) respectively. The reconstruction loss function in Equation (7.1 and 7.6) is ensuring
that the calculated latent variables are able to reconstruct the input data with good accu-
racy. The goal is to learn a function that predicts the class labels in one-hot encoded form
y ∈ Rm from inputs x ∈ Rdx . The encoder operation for a single hidden layer between the
input variables to the latent variables z ∈ Rdz is represented as follows:

z = fe(Wex + be) (7.3)

The latent variables are used both to predict the class labels and reconstruct inputs x as
follows:

x̂ = fd(Wdz + bd) (7.4)

ŷ = fc(Wcz + bc) (7.5)

where fc is a non-linear activation function for the output layer. Wc ∈ Rm×dz and bc ∈ Rm

are output weight matrix and bias vector respectively. For training the SAE, the following
loss function is minimized:

lSAE = λ1

N∑
s=1

Lsr(xs,WdWexs) +
N∑
s=1

Lsp(WcWexs,ys)

=
λ1

N

N∑
s=1

||xs − x̂s||22 +
1

N

N∑
s=1

m∑
c=1

−ys,clog(ps,c)

=
1

N

[
λ1

N∑
i=1

||xs − x̂s||22 +
N∑
s=1

m∑
c=1

−ys,clog(ps,c)

]
(7.6)

ps,c =
e(ˆys,c)∑m
c=1 e

(ˆys,c)
(7.7)

147

where λ1 is the weight for the reconstruction loss Lr, m is the number of classes, ys,c is a
binary indicator (0 or 1), 1 if class label c is the correct classification for observation s, ˆys,c

is the non-normalized log probabilities and ps,c is the predicted probability for a sample s
of class c.

-100 -80 -60 -40 -20 0 20 40 60 80

TSNE
x

-100

-80

-60

-40

-20

0

20

40

60

80

100

T
S

N
E

y

Class 1

Class 2

Class 3

-6 -4 -2 0 2 4 6

TSNE
x

-6

-4

-2

0

2

4

6

T
S

N
E

y

Class 1

Class 2

Class 3

Figure 7.2: Left: Projection of input space in 2 dimensions using TSNE for non-overlapping
case (Case 1), Right: Projection of input space in 2 dimensions using TSNE for overlapping
case (Case 2)

7.3 Description of Case Studies

This study was motivated by the intention of Sanofi to measure Off-gas compositions in
the Pertussis vaccine manufacturing process. This exercise was performed with the aim to
investigate whether the off-gas data (eg. Argon, Carbon, Oxygen, Nitrogen, Carbon Emis-
sion Rate (CER) and Oxygen Uptake Rate(OUR)) contribute information in correlating
the quality variables such PRN ELISA and Kjeldahl measurements to the classification of
high productivity versus low productivity batches. The data consist of fermentation pro-
files for 295 batches and 52 batches of both fermentation and off-gas profiles. Owing to this
fact, we first develop the algorithm for evaluating classification observability and test it on
TEP simulator and then the same methodology was applied to the vaccine manufacturing
process.

148

Tennessee Eastman problem: The TEP involves several unit operations including a
vapor-liquid separator, a reactor, stripper, a recycle compressor and a condenser. Four
gaseous reactants (A, B, C and D) form two liquid products streams (G and H) and
a by-product (F). Although several TEP simulators are available, in this work the one
developed by Larsson et al. [2001] was used and a schematic of the process is shown in
Figure 7.3. The original controller settings were modified and different disturbances, i.e.
referred to as faults in the TEP simulator, were introduced in order to generate different
ranges of values of process profit since the goal in the current study is to classify the
inputs according to their resulting process profit. The simulator involves 53 input variables
of which 3 manipulated variables (Compressor Recycle Valve (XMV(5)), Stripper Steam
Valve (XMV(9)) and Agitator Speed XMV(12)) were discarded initially (number of input
variables = 50). Since the process profit for this case study is determined solely by the
operating costs of the plant, this profit will be referred to as cost of productivity (COP).

COP ($/hr) High Profit Intermediate Low Profit

Case 1 > 89.6 89.6− 142.6 < 142.6

Case 2 > 108 108− 130 < 130

Table 7.1: Profit-based defined classes for COP

Also, since the boundaries between classes corresponding to different ranges of COP
values can be chosen arbitrarily, we examine two different cases that are defined in Table
7.1. These cases differ in the overlap between classes. This overlap is calculated from
the training data based on simulated frequency of occurrences of COP values as shown in
Figure 7.4. As shown in this figure, Case 1 corresponds to very low overlap while Case
2 results in significant overlap between classes. The overlap is illustrated by TSNE (t-
distributed Stochastic Neighbor Embedding, Maaten and Hinton [2008]) projections of the
input design space for the high overlap in Figure 7.2.

A total of 8 datasets were generated, 1 normal operation and 7 each involving one known
fault (IDV(1)-IDV(7)) for a total simulation time of 800 hours, i.e. a 100-hour duration
for each dataset. Each fault was activated at the start of the corresponding 800-hour time

149

period and data samples were collected at a sampling rate of 100 samples/hour (total
number of samples 8× 104 per dataset). Out of which 3× 104 samples were considered as
training dataset and 1.5× 104 samples as validation dataset and testing dataset. Each of
these datasets resulted in various ranges of COP values, i.e. different classes (refer Figure
7.4 and Table 1) to be identified by the SAE-NN model.

Figure 7.3: Schematic of Tennessee Eastman plant process (Downs & Vogel, 1993)

7.4 Proposed Methodology

The goal is to find an observability measure which is robust to measurement noise in the
input data. The proposed algorithm is based on calculating a distance measure in the
latent space using SAE with respect to noisy inputs using a boot-strapping approach. The
two algorithms are as follows:

150

50 100 150 200 250 300

Data

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

D
e
n
s
it
y

Distribution of Cost

of Productivities (COP)

Figure 7.4: Distribution of Cost Of Productivities (COP)

1. Algorithm 1 (Robust Observability Distance Measure (RODM)) for the computation
of the RODM (dij, i 6= j).

2. Algorithm 2 (Evaluation of degree of observability Cobs) for the computation of a
degree of observability Cobs which is defined as the percentage of overlap between
points within a neighbourhood of distance (dij, i 6= j) from each point, where i and
j are points in different class labels.

To compute the RODM dij, first a SAE-NN model is trained on the training data
collected from the process. Subsequently a bootstrapping approach is used where the
inputs are perturbed around different nominal values for R number of realizations of white-
noise and the variances in the latent variables resulting from these input perturbations are
evaluated (refer Equations (7.8) and (7.9). Finally, a distance measure is defined as the
maximum of l2 norm of the variance of perturbations in latent variables due to noisy inputs
(refer Equation and (7.10)) across R realizations (see Algorithm 3).

To calculate the degree of classification observability Cobs (see Algorithm 4), we first
evaluate pairwise Euclidean distance matrix D ∈ RN×N where N is the number of samples
in the validation dataset. Afterwards, inter-class samples that are closer than RODM (dij)
are selected (referred as Total percentage overlap (%TOv) in Algorithm 4). Thereafter,
the points which are correctly classified are discarded and the remaining samples are used

151

Algorithm 3 Robust Observability Distance Measure (RODM)
1: Train an SAE classification NN g(WcWex) using an optimal weighting of the recon-

struction and classification loss-functions, where this weighting is found by using a
validation dataset.

2: Perturb the input variables, xl (l = 1, 2, . . . , dx) (mean µxl = 0; variance σ2
xl), with

input perturbations ∆xl. Where ∆xl (l = 1, 2, . . . , dx) are independent normally dis-
tributed (i.i.d) random variables that has mean µ∆xl = 0 and variance σ2

∆xl for R

uncorrelated realizations such that Signal-to-noise ratio (SNR)
σ2
xl

σ2
∆xl

= 10 is main-
tained.

3: Compute the latent feature vectors zk (k = 1, 2, . . . , dz) for R realizations of xl + ∆xl
using the trained SAE model.

4: Estimate the variances of the latent variables resulting from the introduced perturba-
tions to the inputs (noise) for R realizations in the latent space as follows:

V (∆ẑk) = E
[(

∆zk − E
(

∆zk
))(

∆zk − E
(

∆zk
))T]

(7.8)

∆zk =
(
g(We(xi + ∆xi))− g(Wexi)

)
(7.9)

where k = 1, 2, . . . , dz & E is an expectation operator.
5: Robust Observability Distance Measure (RODM) is computed as the maximum of l2

norm of the estimated variance of ∆z for R realizations as:

dij = max
{√

ˆV (∆z1) + ˆV (∆z2) + . . .+ ˆV (∆zk)
}
R

(7.10)

where i 6= j.

152

Algorithm 4 Evaluation of degree of observability Cobs
1: Evaluate pairwise Euclidean distance matrix D ∈ RN×N

2: Determine the indices (indc, where c = 1,2,. . . ,m) of samples corresponding to m different classes.
3: ind = {ind1, ind2, . . . ,indc}; t = 0

4: for i in number of classes (m) do
5: for j in number of classes (m) do
6: if i! = j then
7: t = t+ 1

8: for q in indi.length (samples of class i) do
9: for r in j1.length, where j1 = indj do
10: tovij = list() & covn(u)l(u) = list()
11: if D(ind i(q), ji(r)) < dij then
12: tovij .add = ji(r)

13: end if
14: end for
15: end for
16: end if
17: return n(t) = i

18: return l(t) = j

19: end for
20: end for
21: for i in m(m− 1) i.e. #overlapping regions (i 6= j) do
22: tovij = unique(tovij)
23: end for
24: tov = {tov12,tov13,. . .,tov1m,tov21,tov23,. . .,tovm(m−1)}
25: Total Percentage Overlap (% TOv) is determined by:

%TOv =

∑
i 6=j unique(tov).length

ind.length
(7.11)

26: Total Classification Percentage Overlap (% TCOv) is determined by calculating SAE-NN output prob-
abilities pi,c,where c = (1, 2, . . . ,m) into account.

27: for u in m(m− 1) i.e. #overlapping regions (i 6= j) do
28: for v in the length of tovn(u)l(u) do
29: if pv,l(u) > pv,l\l(u) then
30: covn(u)l(u).add = tov(u, v)
31: end if
32: end for
33: end for
34: cov = {cov12,cov13,. . .,cov1m,cov21,cov23,. . .,covm(m−1)}
35: Total Classification Percentage Overlap (% TCOv) is determined by:

%TCOv =

∑
n(u) 6=l(u) unique(cov).length

ind.length
(7.12)

Cobs = 100%− (%TCOv+ (100%− Training

%Accuracy))

Cobs = %Training Accuracy−%TCOv (7.13)

153

to evaluate the Total Classification Percentage Overlap (%TCOv) as:

%TCOv =

∑
n(u) 6=l(u) unique(cov).length

ind.length
(7.14)

Finally the degree of observability Cobs is calculated as

Cobs = %Training Accuracy−%TCOv (7.15)

The obtained Cobs is evaluated for the worst-case using RODM and represents the lower
bound on the degree of observability i.e. new samples are expected to exhibit equal or
larger classification accuracy.

Figure 7.5: Average Relevance corresponding to correctly classified samples for low over-
lapping case (Case 1)

7.5 Results and Discussion

The following section presents the results of the application of the algorithms of the previous
section to the TEP case-study. The advantage of adding the reconstruction loss function
Lr in Equation (7.6) is also assessed.

154

R
overlap

0 5 10 15 20 25 30 35 40 45 50

Input Measurements

-0.2

0

0.2

0.4

0.6

A
v
e
ra

g
e
 R

e
le

v
a
n
c
e
s

Relevances

Figure 7.6: Average Relevance corresponding to overlapping samples for Case 1

7.5.1 Effect of Reconstruction Error Loss function on classification
accuracy

The first objective of the case study is to investigate whether the addition of the recon-
struction loss Lr term to the supervised loss function Lp (see Equation (7.6)) for training
the classification AE-NN model helps to improve classification accuracy. An SAE-NN with
a single layer was trained with different weights λ1 with a validation dataset. The hyper-
parameters including the weight multiplying the reconstruction loss Lr term in Equation
(7.6) and the dimension of the latent space z were chosen based on the highest classifica-
tion accuracy achieved on the validation set for both cases 1 and 2. It can be observed in
Table 7.3 that for different dimensions of the latent space z, the validation classification
accuracy and test classification accuracy with reconstruction loss function Lr was always
higher than the NN architecture without the reconstruction loss function Lr.

155

1 2 3

Target Class

1

2

3

O
u

tp
u

t
C

la
s

s

 Confusion Matrix

4654

31.0%

216

1.4%

130

0.9%

93.1%

6.9%

21

0.1%

4979

33.2%

0

0.0%

99.6%

0.4%

303

2.0%

0

0.0%

4697

31.3%

93.9%

6.1%

93.5%

6.5%

95.8%

4.2%

97.3%

2.7%

95.5%

4.5%

Figure 7.7: Confusion Matrix for Case 1 (Validation Data-set)

7.5.2 Degree of Classification Observability for the TEP problem

The degree of classification observability Cobs is calculated according to Algorithms 1 and
2, presented in Section 4. First the RODM is calculated for both the cases i.e. Case 1 and
Case 2 using R = 1000 realizations of input perturbations. It can be observed that RODM
is larger i.e dij = 1.14 for Case 1 as compared to Case 2 i.e. dij = 0.5168 which indicates
that Case 1 has higher degree of observability than Case 2. The confusion matrix for Case
1 and the classification overlap (COv) matrix evaluated using both Algorithm 3 and 4 are
shown in Figures 7.7 and 7.8 respectively. The computation of COv matrix explains the
root cause for the miss-classification of samples. The numbers shown in coloured boxes
of COv matrix represents the number of samples that are miss-classified because of the
proximity between each two different regions. The numbers shown below (in the brackets)
shows the total number of samples miss-classified. The degree of classification observability
Cobs for Case 1 is:

Cobs = 97.74%− 2.46% = 95.28%

156

%TCOv: 2.46%

 0

(0)

 52

(216)

cov
12

 0

(130)

cov
13

 14

(21)

cov
21

 0

(0)

0

(0)

cov
23

303

(303)

cov
31

0

(0)

cov
32

 0

(0)

1 2 3

Target Class

1

2

3

O
u

tp
u

t
C

la
s
s

Figure 7.8: Classification Overlap Matrix (COv) for Case 1 (Validation Data-set)

It can be seen that the Cobs (lower-bound) is smaller than the validation data-set accuracy
95.5% (shown in the right corner of Figure 7.7) and 97.5% for the test data-set accuracy
(see Table 7.2). The results for both Case 1 and Case 2 are summarized in Table 7.2.
The results corroborate that Case 1 is easily separable than Case 2 i.e. the degree of
classification observability for Case 1 is much higher than Case 2.

7.5.3 Enhancing Classification Observability

A key application of the degree of observability estimate provided above is for identifying
the input variables that are informative about the classification problem and the variables
that are not informative since they result in overlap between regions of the latent space that
correspond to different classes. Thus, based on the degree of classification observability
Cobs, a method is proposed to enhance the observability by pruning (discarding) input
variables and the corresponding neural network interconnections that are not relevant for
the classification task using Layer wise Relevance Propagation (LRP). Firstly, the average
of relevances of each input variable is assessed using the LRP for both correctly classified
samples (R̄classification) and overlapped samples (R̄overlap). LRP algorithm is based on a

157

Table 7.2: Degree of classification observability (Cobs) for Case 1 and Case 2

cov12 cov21 cov13 cov31 cov23 cov32 dij(i 6= j) % TCOv Cobs

Case 1 52 14 0 303 0 0 1.14 2.46% 95.28%
Case 2 4565 8 48 1931 0 1070 0.5168 43.84% 53.78%

Enhanced Classification Observability

Case 1 54 1 10 240 0 0 1.5818 2.02% 96.16%
Case 2 4542 7 74 774 0 969 0.8654 42.40% 54.47%

Table 7.3: Classification Accuracy for both cases (z ∈ Rdz , dz = 7)

Lr

Weights
Validation
Accuracy

Training
Accuracy

Test
Accuracy

Case 1 0.5 95.53% 97.74% 97.5%
Case 1 0 94.81% 97.12% -
Case 2 0.5 55.94% 97.62% 55.8%
Case 2 0 55.59% 92.05% -

backward propagation of scores obtained at the output layer of each class label to the
input variables through the interconnections of the neural network (Bach et al. [2015],
Agarwal and Budman [2019], Agarwal et al. [2020]). Figure 7.5 and 7.6 shows the average of
relevance of input variables for all correctly classified and overlapping samples respectively.
Secondly, to assess the importance of whether a variable can be discarded or not, we define
a ratio referred to as ‘Pruning Index’ (PI) for an input variable l(l = 1, 2, . . . , dx) as follows:

PIl =

∣∣∣∣∣ R̄l
overlap

R̄l
classification

∣∣∣∣∣×
(

Noverlap

Nclassification

)
(7.16)

where Noverlap are the number of samples that result in overlap in the latent space based on
the RODM defined above and Nclassification are the number of samples correctly classified.
If the ratio is greater than 1 for an input variable, the variable is dropped while if the ratio
PI is smaller than 1 then the variable is deemed important for classification.

158

PIl =

pruned, if PIl ≥ 1.

not pruned, if PIl < 1.
(7.17)

There is a trade-off between the contribution of an input variable to the classification
task and to overlap. PI can be interpreted as the ratio between total relevance of an input
variable to the class overlap to the total relevance of an input variable to classification.
Finally, an SAE-NN is re-trained with the remaining variables using the training data-
set and validated on a validation data-set. For the non-overlapping case (Case 1) 48
variables (two variables were discarded) were used while for the high overlap case (Case 2)
22 input variables were discarded to improve the degree of observability. After discarding
the irrelevant inputs the Cobs was re-calculated using Algorithm 3 and 4. The results
are shown in Table 7.2. It can be seen that the classification observability increased for
both cases. Also, similar to the results shown in Section 7.5.1, the test accuracy and
validation accuracy were higher for both cases with the presence of the reconstruction
loss in the objective function. The key advantages in the elimination of input variables
for classification, especially in Case 2 (22 variables were eliminated), is that it potentially
reduces costs and the risk for miss-classification from potentially faulty measurements while
slightly enhancing the observability of the classes.

7.5.4 Degree of Classification Observability for the Vaccine Man-
ufacturing Process at Sanofi Pasteur, Toronto

Classification observability Cobs is evaluated for 4 years (2014-2018) of fermentation data
and for 52 new batches measuring both fermentation data and off-gas data combined with
4 years of data with respect to PRN antigen.

Case 1: Fermentation data for 295 batches
Case 2: Fermentation data for 295 batches + Fermentation data for 52 new batches +
Off-gas data for 52 new batches.

159

Cobs for Case 1 is 74.48% and for Case 2 is 62%.

The results led to the conclusion that there is no additional information in 52 new
batches (off-gas data) with respect to PRN yield. The following points have to be consid-
ered when analyzing these results:

1. Miss-alignment of off-gas data variables:
There is no a reference trajectory for off-gas data, the off-gas data in 52 new batches
can not be aligned to the same length as of fermentation profiles in 295 batches.

2. Miss-match between fermentation variables for Case 1 and Case 2:

Case 1: Acid Quantity, Pressure, Jacket Temperature, Seal Temperature

Case 2: Antifoam, Supply Quantity

Variables in Case 1 were not available in Case 2 and variables in Case 2 were not
available in Case 1.

3. High weighting of 295 samples:
The model is expected to be biased towards 295 samples for Case 2 as compared
to the 52 new samples that are added since the overall objective is to have high
classification accuracy.

A simple mechanistic balance of oxygen was formulated to understand the lack of
information of the off-gas data about the process productivity.

DO: Dissolved oxygen

dOl
2

dt
= Kla(O

∗
2 −Ol

2)−Oxygen consumed by cell or produced

Ol
2 = DO: Conc. of oxygen in liquid phase

O∗2: Saturated oxygen concentration Kla: Mass-transfer rate

160

Omet
2 : Metabolic conc. of oxygen

dOl
2

dt
= Kla(O

∗
2 −Ol

2)−Omet
2 (7.18)

Omet
2 = O consumed by cells

2 −O produced by cells
2

Og
2: Conc. of oxygen in gas phase

dOg
2

dt
= Oin

2︸︷︷︸
Aeration

− Oout
2︸︷︷︸

off-gas

−Kla(O
∗
2 −Ol

2) (7.19)

Since there is a control of DO = Ol
2

dOl
2

dt
= 0 = Kla(O

∗
2 −Ol

2)−Omet
2

=⇒ Kla(O
∗
2 −Ol

2) = Omet
2 (7.20)

And assuming
dOg

2

dt
= 0

Oin
2 −Oout

2 = Kla(O
∗
2 −Ol

2) from (2)

or

Oout
2 = Oin

2 −Kla(O
∗
2 −Ol

2) (7.21)

Equation 7.24 implies that Oout
2 can be inferred from

Oout
2 = Oin

2 −Kla(O
∗
2 −Ol

2)

Since Kla = f(RPM, Aeration, etc)
then Oout

2 = f(aeration,RPM, etc)

161

Based on earlier studies it has been hypothesized that oxidative stress may be a main
source of disturbances and changes in productivity. If the disturbance is in the oxidative
stress (Oproduced

2 from catalase action)

Omet
2 = O consumed by cells

2 −O produced by cells
2

From Equation 7.23, we can estimate the net Omet
2 but we can not observe individually

O consumed by cells
2 and O produced by cells

2 . So we cannot observe possible disturbances that
depends upon the individual contributions of O consumed

2 and O produced
2 . On the other

hand, based on Equation 7.24, the off-gas data could be used to detect dissolved oxygen
or temperature sensor errors in Ol

2 (faulty probe problems or out of calibration sensor)
and/or mixing problems. Notice Kla is a function of RPM (stirring rate) and aeration
rate, O∗2 is the saturation concentration (generally function of temperature). Thus, to
observe disturbances related to reactive oxidative stresses (ROS) we need to look at other
variables such as NADPH or ROS by fluorescence, cytometry or other analytical devices.
Another small scale study was also performed for predicting off-gas data trajectories using
the fermentation data profiles. A sequence to sequence LSTM model was trained. The
results from the small scale study demonstrated that the off-gas data can be predicted with
high accuracy using the fermentation profiles.

7.6 Conclusion

This work presents a novel method to compute a robust observability distance measure
(RODM) and evaluate degree of classification observability Cobs for a classification problem
based on noisy input data. The proposed method first computes a distance metric such that
two clusters of points belonging to different classes should be at least distance dij (i 6= j)

apart in the worst case-scenario where i and j are points corresponding to different labels
in representation space for a good classification. The merit of the method is that it can
be used to assess the observability of output classes from available input data that is
corrupted by noise. Furthermore, it is shown that the observability and classification

162

accuracy can be enhanced by discarding variables that are not relevant for the classification
task and contribute to overlap between different regions corresponding to output classes.
The proposed methodology is demonstrated on two case studies i.e. on TEP and vaccine
manufacturing process. Though the results on the Sanofi Process with respect to off-gas
data were not positive, the method correctly predicted that off-gas data is not informative
about the main suspected disturbance to the process.

163

Chapter 8

Conclusions and Future Work

8.1 Conclusions

This thesis proposes the use of Deep Learning algorithms in chemical/ bio-pharmaceutical
industries for deriving process insights, for designing of supervised and unsupervised statis-
tical process monitoring methodologies and for evaluating observability of normal/abnormal
operation from available measurements.

8.1.1 Classification of profit-based operating conditions

The findings from this part of the research are as follows:

1. Deep learning models are inherently over-parameterized and thus their use for iden-
tifying the sources of process variability is challenging. In addition, the use of many
parameters increases the potential of over-fitting the data and increasing the sensi-
tivity to noise. To address these issues this research work presented a novel neural
network (NN) pruning algorithm referred to as Sequential Layer-wise Relevance Prop-
agation for Pruning (SLRPFP) based on relevance of input variables. The proposed
method first computes the relative relevance scores for all input variables followed by
eliminating the input variables which are below a certain threshold value.

164

2. Pruning of irrelevant variables significantly reduced the number of parameters re-
quired to calibrate the models. For TEP the number of parameters were reduced
from 37,875 to 10,840 for Case 1 and from 60,500 to 11,402 for Case 2. For the vac-
cine manufacturing process at Sanofi Pasteur, the number of input variables reduced
from 1760 to 443. Reduction in both parameters and input variables resulted in 4%
and 1.6% improvement in test classification accuracy for MLP and LSTM classifica-
tion model respectively on Sanofi Process. Similarly, there was an improvement of
1.02% and 4% for Case 1 and Case 2 respectively for TEP.

3. The pruning methodology provided important physical insights on the system re-
garding the inputs that have positive and negative effect on the profit function and
to detect significant changes in process phenomena. For example, it was found that
high aeration levels towards the end of the fermentation process are significantly cor-
related to the high productivity. Further, it was also identified that the initiation of
growth in the low productivity batches were delayed by several hours as compared
to the high productivity batches. Both temperature inside the fermenter and the
jacket temperature has a positive correlation with the productivity of the Pertactin
antigen. However, the exact source of the variability in the productivity of the per-
tactin antigen was not identified since the variables used in the classification model
are mere responses to the actual unmeasured disturbances. For example, it is be-
lieved that oxidative stress is a possible source of variability in the process since it
has a significant effect on growth. However, the level of oxidative stress could not be
inferred from the measured inputs. Hence, it is required to add more measurements
such as NADPH level that is indicative of oxidative stress.

8.1.2 Statistical Process Control and Monitoring

In this part of the research, an explainability based fault detection and classification
methodology is proposed using both a deep supervised autoencoder (DSAE) and dynamic
supervised autoencoder (DDSAE) for the extraction of features. This problem is different
from the first part of the research where an output (productivity) was utilized to differ-
entiate the low productivity region from the higher productivity region whereas the fault

165

detection problem deals with differentiating abnormal evolution of input variables from
normal operation and diagnosing the fault for the supervised learning models. The ex-
plainability measure serves two major objectives: i) Pruning of irrelevant input variables
and further improvement in the fault detection accuracy and ii) Identification of possible
root cause of different faults occurring in the process via contribution plots. The proposed
methodology outperforms both multivariate linear methods and other DL based methods
with a significant margin of 11% for fault detection and 10% for fault diagnosis as reported
in the literature on the same standard data. Although this study make use of the powerful
feature extraction capability of deep learning neural network models and XAI (eXplain-
able AI) concepts for deriving contribution plots, implementation to the industrial Sanofi
process was not possible since the faults have not been clearly identified for this process.
Also, it was not possible to observe the incipient faults using the explainability based fault
detection and diagnosis methodology.

Thus, another method was devised to detect incipient faults effectively using a hier-
archical structure as a way to increase the detection and classification of faults in the
Tennessee Eastman Process (TEP). The hierarchical structure merges the detection and
fault classification problem into one. An active fault detection approach was pursued where
a hierarchical model structure combined with external PRBS signals was proposed that
proved to be particularly effective for classifying incipient faults. It was also observed that
LSTM-Hierarchical based model is superior than the traditional linear methods and other
deep learning based methods for fault classification due to the ability of the LSTM based
algorithm to capture process dynamics. It was also shown that the classification averages
can be enhanced by extending the length of the time horizon of past data fed to the RNN
based model. This methodology demonstrates the ability of detecting the incipient faults
well on the Tennessee Eastman process simulator. However, actual implementation of ex-
ternal excitation for detecting incipient faults will result in additional variability. Hence, a
more comprehensive study is required to select the amplitude of the excitation signal and
also the time duration to cause minimal process disturbance.

Since both the methods described above utilize labeled data, they were not directly

166

applicable to the Sanofi vaccine manufacturing process since the faults for the latter process
have not been clearly identified as yet. Thus, an unsupervised process monitoring algorithm
was also developed. In this part of the research, a novel objective function is proposed for
unsupervised batch process monitoring. Both linear and non-linear fault detection models
were employed and compared in terms of fault detection capabilities. A Multiway Partial
Least Squares Autoencoder (MPLS-AE) NN architecture was also designed to include an
indicative (dummy) output variable, i.e. batch age, to further enhance the average fault
detection rates. We demonstrated that the use of the proposed objective function provides
a significant improvement in fault detection accuracy for both linear and nonlinear models
but the improvement is larger with the nonlinear MPLS-AE method. A case study of
industrial penicillin batch dataset suggests that the use of dynamic control limits along
with the novel objective function result in significant improvements in detection for all
methods. Implementation of this methodology to a real process such as the Sanofi vaccine
process may be challenging. One of the major obstacles is the selection of normal operating
profiles in the input variables as the productivity of the process that can serve to select
these normal profiles is measured only once at the end of the fermentation.

8.1.3 Evaluating observability

This part of the research was motivated by the need to evaluate the implementation of
new sensors in a process. In general, the adoption of new sensors in the pharmaceutical
industry requires extensive validation and increases the maintenance costs. Thus, the goal
was to develop an observability measure that will assess the contribution of a new sensor
to the accuracy of a deep learning based model. A novel method was presented to com-
pute a robust observability distance measure (RODM) and evaluate degree of classification
observability based on noisy input data. The proposed method first computes a distance
metric such that two clusters of points belonging to different classes should be at least
distance dij (i 6= j) apart in the worst case-scenario where i and j are points correspond-
ing to different labels in representation space for a good classification. The merit of the
method is that it can be used to assess the observability of output classes from available
input data that is corrupted by noise. Furthermore, it is shown that the observability and

167

classification accuracy can be enhanced by discarding variables that are not relevant for
the classification task and contribute to overlap between different regions corresponding
to output classes. It is argued that the proposed method to evaluate observability can be
used in the future for selecting sensors to increase the observability of the classes. The
proposed methodology was applied to the Sanofi Vaccine Process to evaluate the contri-
bution of off-gas data analysis in order to differentiate the low productivity batches from
the higher productivity batches. It was found that the additional data do not contribute
towards the classification task but could be used to detect changes in calibration of the
dissolved oxygen sensor.

8.2 Future Work

Following the conclusions of this research, this section outlines future work both in terms of
development of new methodologies and their implementation in the case studies (Tennessee
Eastman Process and Sanofi Pasteur Vaccine Manufacturing Process).

1. Since the sources of variability has not been identified with the developed explainable
DNN model, it is important to perform more experiments with respect to different
composition of media and study its effect to the productivity. By relating changes in
raw materials to productivity it will be possible to diagnose these changes from the
measurements following a supervised learning approach.

2. In view of the small sample size currently available at Sanofi Pasteur there is a mo-
tivation to generate synthetic data by using GANs (Generative Adversial Networks).
MLP and LSTM regression network models should be re-trained to evaluate the effect
of synthetic data created by GANs on test accuracy.

3. Develop framework for utilizing the data from different sources (NIR, flow cytometry,
spectro-fluroscence etc.) to correlate with productivity values. For the purpose
of utilizing and reconciling information from different sources, it is envisioned to
use CNNs (Convolutional Neural Networks) for spectro-fluorescence data along with
RNNs (Recurrent Neural Networks) for time-series data. From other parallel research

168

in our group we know that spectro-fluorescence can be used to measured NADPH
levels that are correlated to oxidative stress, a suspected major source of variability
in the process.

4. While the current research deals with the upstream process only, it is important
to monitor also the downstream (purification) process to seek for additional sources
in variability of the final antigen productivity (after purification). Sanofi regularly
collects downstream data of antigen levels by Elisa and Kjeldahl methods, i.e. tests
that are used to quantify productivity values. These data should be used separately
or in combination with the upstream data to develop NNs based models.

5. While the current studies involving the Sanofi process have only considered the last
two of the parallel trains of fermenters, it would be of interest to develop predictive
models that include data from previous fermenters train. This may increase the
predictability of antigen productivity from input data and may help to further explain
the sources of variability.

6. The developed unsupervised process monitoring methodology should be applied to
the Sanofi’s Vaccine manufacturing process after careful selection of a region of normal
operation. Since it is very difficult to measure antigens’ levels at different times, the
selection of normal operating profiles could be based on frequent measurements of
biomass that are easier to obtain.

7. This thesis deals with empirical modeling using deep learning models. A hybrid
modelling approach that combines mechanistic models and NNs may further improve
the developed algorithms. For example, mechanistic models that contain a clear
relation between changes in raw materials to growth and productivity may permit
better diagnosis of the sources of variability in each fermentation.

169

References

Martín Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen, Craig
Citro, Greg S Corrado, Andy Davis, Jeffrey Dean, Matthieu Devin, et al. Tensor-
flow: Large-scale machine learning on heterogeneous distributed systems. arXiv preprint
arXiv:1603.04467, 2016.

Piyush Agarwal and Hector Budman. Classification of profit-based operating regions for
the tennessee eastman process using deep learning methods. IFAC-PapersOnLine, 52
(1):556–561, 2019.

Piyush Agarwal and Arun K Tangirala. Reconstruction of missing data in multivariate
processes with applications to causality analysis. International Journal of Advances in
Engineering Sciences and Applied Mathematics, 9(4):196–213, 2017a.

Piyush Agarwal and Arun K Tangirala. Reconstruction of causal graphs for multivari-
ate processes in the presence of missing data. In 2017 4th International Conference
on Control, Decision and Information Technologies (CoDIT), pages 0389–0394. IEEE,
2017b.

Piyush Agarwal, Melih Tamer, M Hossein Sahraei, and Hector Budman. Deep learning
for classification of profit-based operating regions in industrial processes. Industrial &
Engineering Chemistry Research, 2019.

Piyush Agarwal, Melih Tamer, M. Hossein Sahraei, and Hector Budman. Deep learning
for classification of profit-based operating regions in industrial processes. Industrial &
Engineering Chemistry Research, 59(6):2378–2395, 2020. doi: 10.1021/acs.iecr.9b04737.
URL https://doi.org/10.1021/acs.iecr.9b04737.

170

Piyush Agarwal, Melih Tamer, and Hector Budman. Explainability: Relevance based
dynamic deep learning algorithm for fault detection and diagnosis in chemical processes.
Computers & Chemical Engineering, page 107467, 2021. ISSN 0098-1354. doi: https://
doi.org/10.1016/j.compchemeng.2021.107467. URL https://www.sciencedirect.com/
science/article/pii/S0098135421002453.

A Antonelli, S Giarnetti, and F Leccese. Enhanced pll system for harmonic analysis through
genetic algorithm application. In 2012 11th International Conference on Environment
and Electrical Engineering, pages 328–333. IEEE, 2012.

Leila Arras, Grégoire Montavon, Klaus-Robert Müller, and Wojciech Samek. Ex-
plaining recurrent neural network predictions in sentiment analysis. arXiv preprint
arXiv:1706.07206, 2017.

Sebastian Bach, Alexander Binder, Grégoire Montavon, Frederick Klauschen, Klaus-Robert
Müller, and Wojciech Samek. On pixel-wise explanations for non-linear classifier deci-
sions by layer-wise relevance propagation. PloS one, 10(7):e0130140, 2015.

Andreas Bathelt, N Lawrence Ricker, and Mohieddine Jelali. Revision of the tennessee
eastman process model. IFAC-PapersOnLine, 48(8):309–314, 2015.

Yoshua Bengio, Pascal Lamblin, Dan Popovici, and Hugo Larochelle. Greedy layer-wise
training of deep networks. In Advances in neural information processing systems, pages
153–160, 2007.

Léon Bottou et al. Stochastic gradient learning in neural networks. Proceedings of Neuro-
Nımes, 91(8):12, 1991.

Hector Budman, Nilesh Patel, Melih Tamer, and Walid Al-Gherwi. A dynamic metabolic
flux balance based model of fed-batch fermentation of bordetella pertussis. Biotechnology
progress, 29(2):520–531, 2013.

Regardt Busch and Iain K Peddle. Active fault detection for open loop stable lti siso
systems. International Journal of Control, Automation and Systems, 12(2):324–332,
2014.

171

Max Bylesjö, Mattias Rantalainen, Olivier Cloarec, Jeremy K Nicholson, Elaine Holmes,
and Johan Trygg. Opls discriminant analysis: combining the strengths of pls-da and
simca classification. Journal of Chemometrics: A Journal of the Chemometrics Society,
20(8-10):341–351, 2006.

Gavneet Singh Chadha and Andreas Schwung. Comparison of deep neural network ar-
chitectures for fault detection in tennessee eastman process. In 2017 22nd IEEE Inter-
national Conference on Emerging Technologies and Factory Automation (ETFA), pages
1–8. IEEE, 2017.

Gavneet Singh Chadha, Monica Krishnamoorthy, and Andreas Schwung. Time series based
fault detection in industrial processes using convolutional neural networks. In IECON
2019-45th Annual Conference of the IEEE Industrial Electronics Society, volume 1, pages
173–178. IEEE, 2019.

Kumar Chellapilla, Sidd Puri, and Patrice Simard. High performance convolutional neural
networks for document processing. 2006.

Junghui Chen and Kun-Chih Liu. On-line batch process monitoring using dynamic pca
and dynamic pls models. Chemical Engineering Science, 57(1):63–75, 2002.

Shumei Chen, Jianbo Yu, and Shijin Wang. One-dimensional convolutional auto-encoder-
based feature learning for fault diagnosis of multivariate processes. Journal of Process
Control, 87:54–67, 2020.

ZhiQiang Chen, Chuan Li, and René-Vinicio Sanchez. Gearbox fault identification and
classification with convolutional neural networks. Shock and Vibration, 2015, 2015.

Feifan Cheng, Q Peter He, and Jinsong Zhao. A novel process monitoring approach based
on variational recurrent autoencoder. Computers & Chemical Engineering, 129:106515,
2019.

Leo H Chiang, Evan L Russell, and Richard D Braatz. Fault diagnosis in chemical processes
using fisher discriminant analysis, discriminant partial least squares, and principal com-
ponent analysis. Chemometrics and intelligent laboratory systems, 50(2):243–252, 2000.

172

Leo H Chiang, Mark E Kotanchek, and Arthur K Kordon. Fault diagnosis based on fisher
discriminant analysis and support vector machines. Computers & chemical engineering,
28(8):1389–1401, 2004.

Leo H Chiang, Riccardo Leardi, Randy J Pell, and Mary Beth Seasholtz. Industrial expe-
riences with multivariate statistical analysis of batch process data. Chemometrics and
Intelligent Laboratory Systems, 81(2):109–119, 2006.

Kyunghyun Cho, Bart Van Merriënboer, Caglar Gulcehre, Dzmitry Bahdanau, Fethi
Bougares, Holger Schwenk, and Yoshua Bengio. Learning phrase representations using
rnn encoder-decoder for statistical machine translation. arXiv preprint arXiv:1406.1078,
2014.

Sang Wook Choi, Jin Hyun Park, and In-Beum Lee. Process monitoring using a gaussian
mixture model via principal component analysis and discriminant analysis. Computers
& chemical engineering, 28(8):1377–1387, 2004.

Sang Wook Choi, Julian Morris, and In-Beum Lee. Dynamic model-based batch process
monitoring. Chemical Engineering Science, 63(3):622–636, 2008.

François Chollet et al. Keras documentation. Keras. io, 2015.

Junyoung Chung, Caglar Gulcehre, KyungHyun Cho, and Yoshua Bengio. Empirical
evaluation of gated recurrent neural networks on sequence modeling. arXiv preprint
arXiv:1412.3555, 2014.

Maxwell D Collins and Pushmeet Kohli. Memory bounded deep convolutional networks.
arXiv preprint arXiv:1412.1442, 2014.

Jordi Cusidó, Luis Romeral, Juan Antonio Ortega, Antoni Garcia, and Jordi Riba. Signal
injection as a fault detection technique. Sensors, 11(3):3356–3380, 2011.

James J Downs and Ernest F Vogel. A plant-wide industrial process control problem.
Computers & chemical engineering, 17(3):245–255, 1993.

173

Yuncheng Du and Dongping Du. Fault detection using empirical mode decomposition based
pca and cusum with application to the tennessee eastman process. IFAC-PapersOnLine,
51(18):488–493, 2018.

John Duchi, Elad Hazan, and Yoram Singer. Adaptive subgradient methods for online
learning and stochastic optimization. Journal of machine learning research, 12(7), 2011.

Baruch Epstein and Ron Meir. Generalization bounds for unsupervised and semi-supervised
learning with autoencoders. arXiv preprint arXiv:1902.01449, 2019.

Shriram Gajjar, Murat Kulahci, and Ahmet Palazoglu. Least squares sparse principal
component analysis and parallel coordinates for real-time process monitoring. Industrial
& Engineering Chemistry Research, 59(35):15656–15670, 2020.

Trevor Gale, Erich Elsen, and Sara Hooker. The state of sparsity in deep neural networks.
arXiv preprint arXiv:1902.09574, 2019.

Meng Gan, Cong Wang, et al. Construction of hierarchical diagnosis network based on deep
learning and its application in the fault pattern recognition of rolling element bearings.
Mechanical Systems and Signal Processing, 72:92–104, 2016.

Xuejin Gao, Zidong Xu, Zheng Li, and Pu Wang. Batch process monitoring using multiway
laplacian autoencoders. The Canadian Journal of Chemical Engineering, 98(6):1269–
1279, 2020.

Winston Garcia-Gabin and Michael Lundh. Input prbs design for identification of multi-
variable systems.

Xavier Glorot and Yoshua Bengio. Understanding the difficulty of training deep feedforward
neural networks. In Proceedings of the thirteenth international conference on artificial
intelligence and statistics, pages 249–256, 2010.

Xavier Glorot, Antoine Bordes, and Yoshua Bengio. Deep sparse rectifier neural networks.
In Proceedings of the fourteenth international conference on artificial intelligence and
statistics, pages 315–323. JMLR Workshop and Conference Proceedings, 2011.

174

Stephen Goldrick, Andrei Ştefan, David Lovett, Gary Montague, and Barry Lennox. The
development of an industrial-scale fed-batch fermentation simulation. Journal of biotech-
nology, 193:70–82, 2015.

Stephen Goldrick, William Holmes, Nicholas J Bond, Gareth Lewis, Marcel Kuiper,
Richard Turner, and Suzanne S Farid. Advanced multivariate data analysis to deter-
mine the root cause of trisulfide bond formation in a novel antibody–peptide fusion.
Biotechnology and bioengineering, 114(10):2222–2234, 2017.

Stephen Goldrick, Carlos A Duran-Villalobos, Karolis Jankauskas, David Lovett, Suzanne S
Farid, and Barry Lennox. Modern day monitoring and control challenges outlined on an
industrial-scale benchmark fermentation process. Computers & Chemical Engineering,
130:106471, 2019.

Ian Goodfellow, Yoshua Bengio, Aaron Courville, and Yoshua Bengio. Deep learning,
volume 1. MIT press Cambridge, 2016.

Song Han, Huizi Mao, and William J Dally. Deep compression: Compressing deep neu-
ral networks with pruning, trained quantization and huffman coding. arXiv preprint
arXiv:1510.00149, 2015.

Song Han, Xingyu Liu, Huizi Mao, Jing Pu, Ardavan Pedram, Mark A Horowitz, and
William J Dally. Eie: efficient inference engine on compressed deep neural network. In
Computer Architecture (ISCA), 2016 ACM/IEEE 43rd Annual International Symposium
on, pages 243–254. IEEE, 2016.

Jinane Harmouche, Claude Delpha, and Demba Diallo. Incipient fault detection and di-
agnosis based on kullback–leibler divergence using principal component analysis: Part i.
Signal Processing, 94:278–287, 2014.

Miao He and David He. Deep learning based approach for bearing fault diagnosis. IEEE
Transactions on Industry Applications, 53(3):3057–3065, 2017.

Q Peter He and Jin Wang. Fault detection using the k-nearest neighbor rule for semicon-
ductor manufacturing processes. IEEE transactions on semiconductor manufacturing,
20(4):345–354, 2007.

175

Yang He, Guoliang Kang, Xuanyi Dong, Yanwei Fu, and Yi Yang. Soft filter pruning for
accelerating deep convolutional neural networks. arXiv preprint arXiv:1808.06866, 2018.

Tor Aksel N Heirung and Ali Mesbah. Input design for active fault diagnosis. Annual
Reviews in Control, 47:35–50, 2019.

Seongmin Heo and Jay H Lee. Fault detection and classification using artificial neural
networks. IFAC-PapersOnLine, 51(18):470–475, 2018.

Geoffrey E Hinton and Ruslan R Salakhutdinov. Reducing the dimensionality of data with
neural networks. science, 313(5786):504–507, 2006.

Geoffrey E Hinton, Simon Osindero, and Yee-Whye Teh. A fast learning algorithm for
deep belief nets. Neural computation, 18(7):1527–1554, 2006.

Geoffrey E Hinton, Nitish Srivastava, Alex Krizhevsky, Ilya Sutskever, and Ruslan R
Salakhutdinov. Improving neural networks by preventing co-adaptation of feature de-
tectors. arXiv preprint arXiv:1207.0580, 2012.

Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural computation,
9(8):1735–1780, 1997.

John H Holland. Adaptation in natural and artificial systems, university of michigan press.
Ann arbor, MI, 1(97):5, 1975.

JC Hoskins, KM Kaliyur, and David M Himmelblau. Fault diagnosis in complex chemical
plants using artificial neural networks. AIChE Journal, 37(1):137–141, 1991.

Harold Hotelling. Analysis of a complex of statistical variables into principal components.
Journal of educational psychology, 24(6):417, 1933.

Chun-Chin Hsu, Mu-Chen Chen, and Long-Sheng Chen. A novel process monitoring ap-
proach with dynamic independent component analysis. Control Engineering Practice,
18(3):242–253, 2010.

Rolf Isermann. Fault-diagnosis systems: an introduction from fault detection to fault tol-
erance. Springer Science & Business Media, 2005.

176

J Edward Jackson and Govind S Mudholkar. Control procedures for residuals associated
with principal component analysis. Technometrics, 21(3):341–349, 1979.

Olivier Janssens, Viktor Slavkovikj, Bram Vervisch, Kurt Stockman, Mia Loccufier, Steven
Verstockt, Rik Van de Walle, and Sofie Van Hoecke. Convolutional neural network based
fault detection for rotating machinery. Journal of Sound and Vibration, 377:331–345,
2016.

Feng Jia, Yaguo Lei, Jing Lin, Xin Zhou, and Na Lu. Deep neural networks: A promising
tool for fault characteristic mining and intelligent diagnosis of rotating machinery with
massive data. Mechanical Systems and Signal Processing, 72:303–315, 2016.

Qingchao Jiang, Shifu Yan, Xuefeng Yan, Hui Yi, and Furong Gao. Data-driven two-
dimensional deep correlated representation learning for nonlinear batch process moni-
toring. IEEE Transactions on Industrial Informatics, 16(4):2839–2848, 2019.

Luyang Jing, Ming Zhao, Pin Li, and Xiaoqiang Xu. A convolutional neural network based
feature learning and fault diagnosis method for the condition monitoring of gearbox.
Measurement, 111:1–10, 2017.

N Kaistha and BR Upadhyaya. Incipient fault detection and isolation in a pwr plant using
principal component analysis. In Proceedings of the 2001 American Control Confer-
ence.(Cat. No. 01CH37148), volume 3, pages 2119–2120. IEEE, 2001.

Manabu Kano, Shouhei Tanaka, Shinji Hasebe, Iori Hashimoto, and Hiromu Ohno. Moni-
toring independent components for fault detection. AIChE Journal, 49(4):969–976, 2003.

Athanassios Kassidas, John F MacGregor, and Paul A Taylor. Synchronization of batch
trajectories using dynamic time warping. AIChE Journal, 44(4):864–875, 1998.

Samir Khatir, Idir Belaidi, Roger Serra, Magd Abdel Wahab, and Tawfiq Khatir. Damage
detection and localization in composite beam structures based on vibration analysis.
Mechanics, 21(6):472–479, 2015.

177

Kyungpil Kim, Jong-Min Lee, and In-Beum Lee. A novel multivariate regression approach
based on kernel partial least squares with orthogonal signal correction. Chemometrics
and intelligent laboratory systems, 79(1-2):22–30, 2005.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv
preprint arXiv:1412.6980, 2014.

Theodora Kourti. Application of latent variable methods to process control and multivari-
ate statistical process control in industry. International Journal of adaptive control and
signal processing, 19(4):213–246, 2005.

Theodora Kourti and John FMacGregor. Multivariate spc methods for process and product
monitoring. Journal of quality technology, 28(4):409–428, 1996.

James V Kresta, John F Macgregor, and Thomas E Marlin. Multivariate statistical moni-
toring of process operating performance. The Canadian journal of chemical engineering,
69(1):35–47, 1991.

Wenfu Ku, Robert H Storer, and Christos Georgakis. Disturbance detection and isola-
tion by dynamic principal component analysis. Chemometrics and intelligent laboratory
systems, 30(1):179–196, 1995.

Abhijit Kulkarni, Vaidyanathan K Jayaraman, and Bhaskar D Kulkarni. Knowledge incor-
porated support vector machines to detect faults in tennessee eastman process. Com-
puters & chemical engineering, 29(10):2128–2133, 2005.

Saïd Ladjal, Alasdair Newson, and Chi-Hieu Pham. A pca-like autoencoder. arXiv preprint
arXiv:1904.01277, 2019.

Daniel Laky, Shu Xu, Jose S Rodriguez, Shankar Vaidyaraman, Salvador García Muñoz,
and Carl Laird. An optimization-based framework to define the probabilistic design
space of pharmaceutical processes with model uncertainty. Processes, 7(2):96, 2019.

Truls Larsson, Kristin Hestetun, Espen Hovland, and Sigurd Skogestad. Self-optimizing
control of a large-scale plant: The tennessee eastman process. Industrial & engineering
chemistry research, 40(22):4889–4901, 2001.

178

CK Lau, Kaushik Ghosh, Mohd Azlan Hussain, and CR Che Hassan. Fault diagnosis of
tennessee eastman process with multi-scale pca and anfis. Chemometrics and Intelligent
Laboratory Systems, 120:1–14, 2013.

Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-based learning
applied to document recognition. Proceedings of the IEEE, 86(11):2278–2324, 1998.

Hyun Jin Lee and Daniel E Rivera. An integrated methodology for plant-friendly input
signal design and control-relevant estimation of highly interactive processes. American
Institute of Chemical Engineers, 2005.

Jong-Min Lee, ChangKyoo Yoo, Sang Wook Choi, Peter A Vanrolleghem, and In-Beum
Lee. Nonlinear process monitoring using kernel principal component analysis. Chemical
engineering science, 59(1):223–234, 2004a.

Jong-Min Lee, ChangKyoo Yoo, and In-Beum Lee. Statistical process monitoring with
independent component analysis. Journal of process control, 14(5):467–485, 2004b.

B Lennox, GA Montague, HG Hiden, G Kornfeld, and PR Goulding. Process monitoring of
an industrial fed-batch fermentation. Biotechnology and bioengineering, 74(2):125–135,
2001.

Gang Li, S Joe Qin, and Donghua Zhou. Geometric properties of partial least squares for
process monitoring. Automatica, 46(1):204–210, 2010.

Gang Li, Carlos F. Alcala, S. Joe Qin, and Donghua Zhou. Generalized reconstruction-
based contributions for output-relevant fault diagnosis with application to the tennessee
eastman process. IEEE Transactions on Control Systems Technology, 19:1114–1127,
2011.

Lucas Liebenwein, Cenk Baykal, Brandon Carter, David Gifford, and Daniela Rus. Lost
in pruning: The effects of pruning neural networks beyond test accuracy. Proceedings of
Machine Learning and Systems, 3, 2021.

Lennart Ljung. System identification. Wiley encyclopedia of electrical and electronics
engineering, pages 1–19, 1999.

179

Scott Lundberg and Su-In Lee. A unified approach to interpreting model predictions. arXiv
preprint arXiv:1705.07874, 2017.

Lin Luo, Lei Xie, and Hongye Su. Deep learning with tensor factorization layers for
sequential fault diagnosis and industrial process monitoring. IEEE Access, 8:105494–
105506, 2020.

Feiya Lv, Chenglin Wen, Zejing Bao, and Meiqin Liu. Fault diagnosis based on deep
learning. In American Control Conference (ACC), 2016, pages 6851–6856. IEEE, 2016.

Laurens van der Maaten and Geoffrey Hinton. Visualizing data using t-sne. Journal of
machine learning research, 9(Nov):2579–2605, 2008.

John F MacGregor, Christiane Jaeckle, Costas Kiparissides, and M Koutoudi. Process
monitoring and diagnosis by multiblock pls methods. AIChE Journal, 40(5):826–838,
1994.

Sankar Mahadevan and Sirish L Shah. Fault detection and diagnosis in process data using
one-class support vector machines. Journal of process control, 19(10):1627–1639, 2009.

Mano Ram Maurya, Raghunathan Rengaswamy, and Venkat Venkatasubramanian. Fault
diagnosis by qualitative trend analysis of the principal components. Chemical Engineer-
ing Research and Design, 83(9):1122–1132, 2005.

Prashant Mhaskar, Adiwinata Gani, Nael H El-Farra, Charles McFall, Panagiotis D
Christofides, and James F Davis. Integrated fault-detection and fault-tolerant control of
process systems. AIChE Journal, 52(6):2129–2148, 2006.

Marvin Minsky and Seymour A Papert. Artificial intelligence progress report. 1972.

Grégoire Montavon, Alexander Binder, Sebastian Lapuschkin, Wojciech Samek, and Klaus-
Robert Müller. Layer-wise relevance propagation: an overview. Explainable AI: inter-
preting, explaining and visualizing deep learning, pages 193–209, 2019.

Vinod Nair and Geoffrey E Hinton. Rectified linear units improve restricted boltzmann
machines. In Icml, 2010.

180

Viet Ha Nguyen and Jean-Claude Golinval. Fault detection based on kernel principal
component analysis. Engineering Structures, 32(11):3683–3691, 2010.

Niels-Peter Vest Nielsen, Jens Michael Carstensen, and Jørn Smedsgaard. Aligning of single
and multiple wavelength chromatographic profiles for chemometric data analysis using
correlation optimised warping. Journal of chromatography A, 805(1-2):17–35, 1998.

Paul Nomikos and John F MacGregor. Multivariate spc charts for monitoring batch pro-
cesses. Technometrics, 37(1):41–59, 1995.

Pabara-Ebiere Patricia Odiowei and Yi Cao. Nonlinear dynamic process monitoring us-
ing canonical variate analysis and kernel density estimations. IEEE Transactions on
Industrial Informatics, 6(1):36–45, 2009.

Melis Onel, Chris A Kieslich, Yannis A Guzman, Christodoulos A Floudas, and Efstra-
tios N Pistikopoulos. Big data approach to batch process monitoring: Simultaneous fault
detection and diagnosis using nonlinear support vector machine-based feature selection.
Computers & chemical engineering, 115:46–63, 2018.

Pangun Park, Piergiuseppe Di Marco, Hyejeon Shin, and Junseong Bang. Fault detec-
tion and diagnosis using combined autoencoder and long short-term memory network.
Sensors, 19(21):4612, 2019.

Emanuel Parzen. On estimation of a probability density function and mode. The Annals
of Mathematical Statistics, 33(3):1065–1076, 1962. doi: 10.1214/aoms/1177704472.

Karl Pearson. Liii. on lines and planes of closest fit to systems of points in space. The
London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 2(11):
559–572, 1901.

Lauréline Perotin, Romain Serizel, Emmanuel Vincent, and Alexandre Guérin. Crnn-based
multiple doa estimation using acoustic intensity features for ambisonics recordings. IEEE
Journal of Selected Topics in Signal Processing, 13(1):22–33, 2019.

Boris T Polyak. Some methods of speeding up the convergence of iteration methods. Ussr
computational mathematics and mathematical physics, 4(5):1–17, 1964.

181

Christopher Poultney, Sumit Chopra, and Yann L Cun. Efficient learning of sparse rep-
resentations with an energy-based model. In Advances in neural information processing
systems, pages 1137–1144, 2007.

Lutz Prechelt. Early stopping-but when? In Neural Networks: Tricks of the trade, pages
55–69. Springer, 1998.

Tiago J Rato and Marco S Reis. Fault detection in the tennessee eastman benchmark
process using dynamic principal components analysis based on decorrelated residuals
(dpca-dr). Chemometrics and Intelligent Laboratory Systems, 125:101–108, 2013.

Jiayang Ren and Dong Ni. A batch-wise lstm-encoder decoder network for batch process
monitoring. Chemical Engineering Research and Design, 164:102–112, 2020.

Alex Renda, Jonathan Frankle, and Michael Carbin. Comparing rewinding and fine-tuning
in neural network pruning. arXiv preprint arXiv:2003.02389, 2020.

Marco Tulio Ribeiro, Sameer Singh, and Carlos Guestrin. " why should i trust you?"
explaining the predictions of any classifier. In Proceedings of the 22nd ACM SIGKDD
international conference on knowledge discovery and data mining, pages 1135–1144, 2016.

N Lawrence Ricker. Decentralized control of the tennessee eastman challenge process.
Journal of Process Control, 6(4):205–221, 1996.

NL Ricker. Optimal steady-state operation of the tennessee eastman challenge process.
Computers & chemical engineering, 19(9):949–959, 1995.

Philippe Rigollet. Generalization error bounds in semi-supervised classification under the
cluster assumption. Journal of Machine Learning Research, 8(Jul):1369–1392, 2007.

Andre Rios, Vaibhav Gala, Susan Mckeever, et al. Explaining deep learning models for
structured data using layer-wise relevance propagation. arXiv preprint arXiv:2011.13429,
2020.

Daniel E Rivera and Sujit V Gaikwad. Systematic techniques for determining modelling
requirements for siso and mimo feedback control. Journal of Process Control, 5(4):
213–224, 1995.

182

Sami Romdhani, Shaogang Gong, Alexandra Psarrou, et al. A multi-view nonlinear active
shape model using kernel pca. In BMVC, volume 10, pages 483–492. Citeseer, 1999.

Roman Rosipal, Leonard J Trejo, and Bryan Matthews. Kernel pls-svc for linear and
nonlinear classification. In Proceedings of the 20th International Conference on Machine
Learning (ICML-03), pages 640–647, 2003.

David E Rumelhart, Geoffrey E Hinton, and Ronald J Williams. Learning representations
by back-propagating errors. nature, 323(6088):533–536, 1986.

Jürgen Schmidhuber. Deep learning in neural networks: An overview. Neural networks,
61:85–117, 2015.

Matthias Seeger. Learning with labeled and unlabeled data (technical report). Edinburgh
University, 2001.

Hadi Shahnazari. Fault diagnosis of nonlinear systems using recurrent neural networks.
Chemical Engineering Research and Design, 153:233–245, 2020.

Ohad Shamir and Tong Zhang. Stochastic gradient descent for non-smooth optimization:
Convergence results and optimal averaging schemes. In International conference on
machine learning, pages 71–79. PMLR, 2013.

M Bin Shams, H Budman, and T Duever. Finding a trade-off between observability and
economics in the fault detection of chemical processes. Computers & chemical engineer-
ing, 35(2):319–328, 2011a.

MA Bin Shams, HM Budman, and TA Duever. Fault detection, identification and diagnosis
using cusum based pca. Chemical Engineering Science, 66(20):4488–4498, 2011b.

Mohamed Bin Shams, Hector Budman, and Thomas Duever. Fault detection using cusum
based techniques with application to the tennessee eastman process. IFAC Proceedings
Volumes, 43(5):109–114, 2010.

Avanti Shrikumar, Peyton Greenside, and Anshul Kundaje. Learning important features
through propagating activation differences. In International Conference on Machine
Learning, pages 3145–3153. PMLR, 2017.

183

BW Silverman. Density estimation for statistics and data analysis, chapman and hall,
london, 1986. Crossref, á, 1986.

G. Singh Chadha, M. Krishnamoorthy, and A. Schwung. Time series based fault detection
in industrial processes using convolutional neural networks. In IECON 2019 - 45th
Annual Conference of the IEEE Industrial Electronics Society, volume 1, pages 173–178,
2019. doi: 10.1109/IECON.2019.8926924.

Plakias Spyridon and Yiannis S Boutalis. Generative adversarial networks for unsupervised
fault detection. In 2018 European Control Conference (ECC), pages 691–696. IEEE,
2018.

Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan Salakhut-
dinov. Dropout: a simple way to prevent neural networks from overfitting. The journal
of machine learning research, 15(1):1929–1958, 2014.

Irene Sturm, Sebastian Lapuschkin, Wojciech Samek, and Klaus-Robert Müller. Inter-
pretable deep neural networks for single-trial eeg classification. Journal of neuroscience
methods, 274:141–145, 2016.

Wenjun Sun, Siyu Shao, Rui Zhao, Ruqiang Yan, Xingwu Zhang, and Xuefeng Chen.
A sparse auto-encoder-based deep neural network approach for induction motor faults
classification. Measurement, 89:171–178, 2016.

Gerald Tesauro. Practical issues in temporal difference learning. Machine learning, 8(3):
257–277, 1992.

H Tran-Ngoc, Samir Khatir, G De Roeck, T Bui-Tien, L Nguyen-Ngoc, and Magd Ab-
del Wahab. Model updating for nam o bridge using particle swarm optimization algo-
rithm and genetic algorithm. Sensors, 18(12):4131, 2018.

Aditya Tulsyan, Christopher Garvin, and Cenk Undey. Industrial batch process monitoring
with limited data. Journal of Process Control, 77:114–133, 2019.

184

Cenk Ündey, Bruce A Williams, and Ali Cınar. Monitoring of batch pharmaceutical fer-
mentations: Data synchronization, landmark alignment, and real-time monitoring. IFAC
Proceedings Volumes, 35(1):271–276, 2002.

Cenk Ündey, Sinem Ertunç, and Ali Çınar. Online batch/fed-batch process performance
monitoring, quality prediction, and variable-contribution analysis for diagnosis. Indus-
trial & engineering chemistry research, 42(20):4645–4658, 2003.

Vladimir N Vapnik. An overview of statistical learning theory. IEEE transactions on neural
networks, 10(5):988–999, 1999.

Venkat Venkatasubramanian and King Chan. A neural network methodology for process
fault diagnosis. AIChE Journal, 35(12):1993–2002, 1989.

Huan-gang Wang, Xin Li, and Tao Zhang. Generative adversarial network based novelty
detection usingminimized reconstruction error. Frontiers of Information Technology &
Electronic Engineering, 19(1):116–125, 2018.

Michael Wetter and Jonathan Wright. Comparison of a generalized pattern search and a ge-
netic algorithm optimization method. In Proc. of the 8-th IBPSA Conference, volume 3,
pages 1401–1408, 2003.

Barry M Wise and Neal B Gallagher. The process chemometrics approach to process
monitoring and fault detection. Journal of Process Control, 6(6):329–348, 1996.

Barry M Wise, NL Ricker, DF Veltkamp, and Bruce R Kowalski. A theoretical basis for
the use of principal component models for monitoring multivariate processes. Process
control and quality, 1(1):41–51, 1990.

Svante Wold, Paul Geladi, Kim Esbensen, and Jerker Öhman. Multi-way principal
components-and pls-analysis. Journal of chemometrics, 1(1):41–56, 1987.

Hao Wu and Jinsong Zhao. Deep convolutional neural network model based chemical
process fault diagnosis. Computers & chemical engineering, 115:185–197, 2018.

185

Lijun Wu, Xiaogang Chen, Yi Peng, Qixiang Ye, and Jianbin Jiao. Fault detection and
diagnosis based on sparse representation classification (src). In 2012 IEEE International
Conference on Robotics and Biomimetics (ROBIO), pages 926–931. IEEE, 2012.

D. Xie and L. Bai. A hierarchical deep neural network for fault diagnosis on tennessee-
eastman process. In 2015 IEEE 14th International Conference on Machine Learning and
Applications (ICMLA), pages 745–748, 2015. doi: 10.1109/ICMLA.2015.208.

Danfeng Xie and Li Bai. A hierarchical deep neural network for fault diagnosis on tennessee-
eastman process. In 2015 IEEE 14th International Conference on Machine Learning and
Applications (ICMLA), pages 745–748. IEEE, 2015.

Weiwu Yan, Pengju Guo, Zukui Li, et al. Nonlinear and robust statistical process monitor-
ing based on variant autoencoders. Chemometrics and Intelligent Laboratory Systems,
158:31–40, 2016.

Yinchong Yang, Volker Tresp, Marius Wunderle, and Peter A Fasching. Explaining therapy
predictions with layer-wise relevance propagation in neural networks. In 2018 IEEE
International Conference on Healthcare Informatics (ICHI), pages 152–162. IEEE, 2018.

Daniel S Yeung and Xuequan Sun. Using function approximation to analyze the sensitivity
of mlp with antisymmetric squashing activation function. IEEE Transactions on Neural
Networks, 13(1):34–44, 2002.

Chunyong Yin, Sun Zhang, Jin Wang, and Neal N Xiong. Anomaly detection based on
convolutional recurrent autoencoder for iot time series. IEEE Transactions on Systems,
Man, and Cybernetics: Systems, 2020.

Shen Yin, Steven X Ding, Adel Haghani, Haiyang Hao, and Ping Zhang. A comparison
study of basic data-driven fault diagnosis and process monitoring methods on the bench-
mark tennessee eastman process. Journal of process control, 22(9):1567–1581, 2012.

Shen Yin, Steven X Ding, Xiaochen Xie, and Hao Luo. A review on basic data-driven ap-
proaches for industrial process monitoring. IEEE Transactions on Industrial Electronics,
61(11):6418–6428, 2014a.

186

Shen Yin, Xin Gao, Hamid Reza Karimi, and Xiangping Zhu. Study on support vector
machine-based fault detection in tennessee eastman process. In Abstract and Applied
Analysis, volume 2014. Hindawi, 2014b.

Jie Yu and S Joe Qin. Multimode process monitoring with bayesian inference-based finite
gaussian mixture models. AIChE Journal, 54(7):1811–1829, 2008.

Wanke Yu and Chunhui Zhao. Robust monitoring and fault isolation of nonlinear industrial
processes using denoising autoencoder and elastic net. IEEE Transactions on Control
Systems Technology, 28(3):1083–1091, 2019.

Xiaofeng Yuan, Jiao Zhou, Yalin Wang, and Chunhua Yang. Multi-similarity measurement
driven ensemble just-in-time learning for soft sensing of industrial processes. Journal of
Chemometrics, 32(9):e3040, 2018.

Vanessa Zavatti, Hector Budman, Raymond Legge, and Melih Tamer. Monitoring of an
antigen manufacturing process. Bioprocess and biosystems engineering, 39(6):855–869,
2016.

Matthew D Zeiler and Rob Fergus. Visualizing and understanding convolutional networks.
In European conference on computer vision, pages 818–833. Springer, 2014.

Chuxu Zhang, Dongjin Song, Yuncong Chen, Xinyang Feng, Cristian Lumezanu, Wei
Cheng, Jingchao Ni, Bo Zong, Haifeng Chen, and Nitesh V Chawla. A deep neural
network for unsupervised anomaly detection and diagnosis in multivariate time series
data. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 33,
pages 1409–1416, 2019a.

Xu Zhang, Yuanyuan Zou, Shaoyuan Li, and Shenghu Xu. A weighted auto regressive lstm
based approach for chemical processes modeling. Neurocomputing, 367:64–74, 2019b.

Yingwei Zhang. Enhanced statistical analysis of nonlinear processes using kpca, kica and
svm. Chemical Engineering Science, 64(5):801–811, 2009.

Haitao Zhao, Shaoyuan Sun, and Bo Jin. Sequential fault diagnosis based on lstm neural
network. IEEE Access, 6:12929–12939, 2018a.

187

Hongshan Zhao, Huihai Liu, Wenjing Hu, and Xihui Yan. Anomaly detection and fault
analysis of wind turbine components based on deep learning network. Renewable energy,
127:825–834, 2018b.

Jian Zhou and Olga G Troyanskaya. Predicting effects of noncoding variants with deep
learning–based sequence model. Nature methods, 12(10):931–934, 2015.

Michael Zhu and Suyog Gupta. To prune, or not to prune: exploring the efficacy of pruning
for model compression. arXiv preprint arXiv:1710.01878, 2017.

Qiuyu Zhu and Ruixin Zhang. A classification supervised auto-encoder based on predefined
evenly-distributed class centroids. arXiv preprint arXiv:1902.00220, 2019.

188

	List of Figures
	List of Tables
	Introduction
	Background
	Introduction to Artificial Neural Networks
	Multi-Layer Perceptron Neural Network (MLP-NN)
	Activation Functions
	Autoencoder Neural Networks (AE-NNs)
	Long-Short Term Memory (LSTM) Units
	Generalization, Regularization and Dropout

	Deep Learning for Classification of Profit-based Operating Regions in Industrial Processes
	Introduction
	Preliminaries
	Long Short-Term Memory Neural Networks (LSTM-NN)
	Layer-wise Relevance Propagation (LRP)

	Proposed Methodology: Sequential Layer-Wise Relevance Propagation for Pruning (SLRPFP)
	Results and Discussions
	Case Study 1: Tennessee Eastman Process (Simulated Case Study)
	Case Study 2: Industrial Vaccine Manufacturing Process

	Conclusion

	Explainability: Relevance based Dynamic Deep Learning Algorithm for Fault Detection and Diagnosis in Chemical Processes
	Introduction
	Preliminaries
	Deep Supervised Autoencoder Classification Neural Networks (DSAE-NNs)
	Dynamic Deep Supervised Autoencoder Classification Neural Networks (DDSAE-NNs)
	Layer-wise Relevance Propagation (LRP)

	Proposed Fault Detection and Diagnosis Methodology based on DSAE-NNs and DDSAE-NNs
	Fault Detection Methodology
	Fault Diagnosis Methodology
	Proposed Methodology for FDD

	Case Study: Tennessee Eastman Process
	Conclusion

	Hierarchical Deep LSTM for Fault Detection and Diagnosis for a Chemical Process
	Introduction
	Preliminaries
	Deep LSTM Supervised Autoencoder Neural Network (LSTM-SAE NN)
	Model Structure and Specifications

	Hierarchical Structure
	Design: Pseudo-random Binary Signal (PRBS)

	Results and discussion
	Conclusions

	A Novel Unsupervised Approach for Batch Process Monitoring using Deep Learning
	Introduction
	Preliminaries
	Multiway Principal Component Analysis (MPCA)
	MPLS

	Proposed Methodology
	Multiway Partial Least Squares Autoencoder (MPLS-AE)
	Novel Objective Function for Maximizing Fault Detection Rate
	Average Fault Detection Rate (FDR)
	Case study

	Results and Discussions
	MPCA and MPLS with JMPCA and JMPLS
	MPCA and MPLS with JMPCA-MPLS, FDR
	MPLS-AE with JMPLS-AE
	MPLS-AE with JMPLS-AE, FDR

	Conclusion

	Assessing Observability using Supervised Autoencoders with Application to Industrial Processes
	Introduction
	Preliminaries
	Supervised Autoencoder Classification Neural Networks (SAE-NNs)

	Description of Case Studies
	Proposed Methodology
	Results and Discussion
	Effect of Reconstruction Error Loss function on classification accuracy
	Degree of Classification Observability for the TEP problem
	Enhancing Classification Observability
	Degree of Classification Observability for the Vaccine Manufacturing Process at Sanofi Pasteur, Toronto

	Conclusion

	Conclusions and Future Work
	Conclusions
	Classification of profit-based operating conditions
	Statistical Process Control and Monitoring
	Evaluating observability

	Future Work

	References

