3,137 research outputs found

    Identification of high-level functional/system requirements for future civil transports

    Get PDF
    In order to accommodate the rapid growth in commercial aviation throughout the remainder of this century, the Federal Aviation Administration (FAA) is faced with a formidable challenge to upgrade and/or modernize the National Airspace System (NAS) without compromising safety or efficiency. A recurring theme in both the Aviation System Capital Investment Plan (CIP), which has replaced the NAS Plan, and the new FAA Plan for Research, Engineering, and Development (RE&D) rely on the application of new technologies and a greater use of automation. Identifying the high-level functional and system impacts of such modernization efforts on future civil transport operational requirements, particularly in terms of cockpit functionality and information transfer, was the primary objective of this project. The FAA planning documents for the NAS of the 2005 era and beyond were surveyed; major aircraft functional capabilities and system components required for such an operating environment were identified. A hierarchical structured analysis of the information processing and flows emanating from such functional/system components were conducted and the results documented in graphical form depicting the relationships between functions and systems

    Hybrid Satellite-Terrestrial Communication Networks for the Maritime Internet of Things: Key Technologies, Opportunities, and Challenges

    Get PDF
    With the rapid development of marine activities, there has been an increasing number of maritime mobile terminals, as well as a growing demand for high-speed and ultra-reliable maritime communications to keep them connected. Traditionally, the maritime Internet of Things (IoT) is enabled by maritime satellites. However, satellites are seriously restricted by their high latency and relatively low data rate. As an alternative, shore & island-based base stations (BSs) can be built to extend the coverage of terrestrial networks using fourth-generation (4G), fifth-generation (5G), and beyond 5G services. Unmanned aerial vehicles can also be exploited to serve as aerial maritime BSs. Despite of all these approaches, there are still open issues for an efficient maritime communication network (MCN). For example, due to the complicated electromagnetic propagation environment, the limited geometrically available BS sites, and rigorous service demands from mission-critical applications, conventional communication and networking theories and methods should be tailored for maritime scenarios. Towards this end, we provide a survey on the demand for maritime communications, the state-of-the-art MCNs, and key technologies for enhancing transmission efficiency, extending network coverage, and provisioning maritime-specific services. Future challenges in developing an environment-aware, service-driven, and integrated satellite-air-ground MCN to be smart enough to utilize external auxiliary information, e.g., sea state and atmosphere conditions, are also discussed

    Identification of Technologies for Provision of Future Aeronautical Communications

    Get PDF
    This report describes the process, findings, and recommendations of the second of three phases of the Future Communications Study (FCS) technology investigation conducted by NASA Glenn Research Center and ITT Advanced Engineering & Sciences Division for the Federal Aviation Administration (FAA). The FCS is a collaborative research effort between the FAA and Eurocontrol to address frequency congestion and spectrum depletion for safety critical airground communications. The goal of the technology investigation is to identify technologies that can support the longterm aeronautical mobile communication operating concept. A derived set of evaluation criteria traceable to the operating concept document is presented. An adaptation of the analytical hierarchy process is described and recommended for selecting candidates for detailed evaluation. Evaluations of a subset of technologies brought forward from the prescreening process are provided. Five of those are identified as candidates with the highest potential for continental airspace solutions in L-band (P-34, W-CDMA, LDL, B-VHF, and E-TDMA). Additional technologies are identified as best performers in the unique environments of remote/oceanic airspace in the satellite bands (Inmarsat SBB and a custom satellite solution) and the airport flight domain in C-band (802.16e). Details of the evaluation criteria, channel models, and the technology evaluations are provided in appendixes

    A Study of Future Communications Concepts and Technologies for the National Airspace System - Part II

    Get PDF
    The National Aeronautics and Space Administration (NASA) Glenn Research Center (GRC) is investigating current and anticipated wireless communications concepts and technologies that the National Airspace System (NAS) may need in the next 50 years. NASA has awarded three NASA Research Announcements (NAR) studies with the objective to determine the most promising candidate technologies for air-to-air and air-to-ground data exchange and analyze their suitability in a post-NextGen NAS environment. This paper will present progress made in the studies and describe the communications challenges and opportunities that have been identified during the studies' first year

    State-of-the-Art System Solutions for Unmanned Underwater Vehicles

    Get PDF
    Unmanned Underwater Vehicles (UUVs) have gained popularity for the last decades, especially for the purpose of not risking human life in dangerous operations. On the other hand, underwater environment introduces numerous challenges in navigation, control and communication of such vehicles. Certainly, this fact makes the development of these vehicles more interesting and engineering-wise more attractive. In this paper, we first revisit the existing technology and methodology for the solution of aforementioned problems, then we try to come up with a system solution of a generic unmanned underwater vehicles
    corecore