3 research outputs found

    Enhancing automatic level generation for platform videogames

    Get PDF
    This dissertation addresses the challenge of improving automatic level generation processes for plat-form videogames. As Procedural Content Generation (PCG) techniques evolved from the creation of simple elements to the construction of complete levels and scenarios, the principles behind the generation algorithms became more ambitious and complex, representing features that beforehand were only possible with human design. PCG goes beyond the search for valid geometries that can be used as levels, where multiple challenges are represented in an adequate way. It is also a search for user-centred design content and the creativity sparks of humanly created content. In order to improve the creativity capabilities of such generation algorithms, we conducted part of our research directed to the creation of new techniques using more ambitious design patterns. For this purpose, we have implemented two overall structure generation algorithms and created an addi-tional adaptation algorithm. The later can transform simple branched paths into more compelling game challenges by adding items and other elements in specific places, such as gates and levers for their activation. Such approach is suitable to avoid excessive level linearity and to represent certain design patterns with additional content richness. Moreover, content adaptation was transposed from general design domain to user-centred principles. In this particular case, we analysed success and failure patterns in action videogames and proposed a set of metrics to estimate difficulty, taking into account that each user has a different perception of that concept. This type of information serves the generation algorithms to make them more directed to the creation of personalised experiences. Furthermore, the conducted research also aimed to the integration of different techniques into a common ground. For this purpose, we have developed a general framework to represent content of platform videogames, compatible with several titles within the genre. Our algorithms run over this framework, whereby they are generic and game independent. We defined a modular architecture for the generation process, using this framework to normalise the content that is shared by multiple modules. A level editor tool was also created, which allows human level design and the testing of automatic generation algorithms. An adapted version of the editor was implemented for the semi-automatic creation of levels, in which the designer may simply define the type of content that he/she desires, in the form of quests and missions, and the system creates a corresponding level structure. This materialises our idea of bridging human high-level design patterns with lower level automated generation algorithms. Finally, we integrated the different contributions into a game prototype. This implementation allowed testing the different proposed approaches altogether, reinforcing the validity of the proposed archi-tecture and framework. It also allowed performing a more complete gameplay data retrieval in order to strengthen and validate the proposed metrics regarding difficulty perceptions

    Generation and Analysis of Content for Physics-Based Video Games

    Get PDF
    The development of artificial intelligence (AI) techniques that can assist with the creation and analysis of digital content is a broad and challenging task for researchers. This topic has been most prevalent in the field of game AI research, where games are used as a testbed for solving more complex real-world problems. One of the major issues with prior AI-assisted content creation methods for games has been a lack of direct comparability to real-world environments, particularly those with realistic physical properties to consider. Creating content for such environments typically requires physics-based reasoning, which imposes many additional complications and restrictions that must be considered. Addressing and developing methods that can deal with these physical constraints, even if they are only within simulated game environments, is an important and challenging task for AI techniques that intend to be used in real-world situations. The research presented in this thesis describes several approaches to creating and analysing levels for the physics-based puzzle game Angry Birds, which features a realistic 2D environment. This research was multidisciplinary in nature and covers a wide variety of different AI fields, leading to this thesis being presented as a compilation of published work. The central part of this thesis consists of procedurally generating levels for physics-based games similar to those in Angry Birds. This predominantly involves creating and placing stable structures made up of many smaller blocks, as well as other level elements. Multiple approaches are presented, including both fully autonomous and human-AI collaborative methodologies. In addition, several analyses of Angry Birds levels were carried out using current state-of-the-art agents. A hyper-agent was developed that uses machine learning to estimate the performance of each agent in a portfolio for an unknown level, allowing it to select the one most likely to succeed. Agent performance on levels that contain deceptive or creative properties was also investigated, allowing determination of the current strengths and weaknesses of different AI techniques. The observed variability in performance across levels for different AI techniques led to the development of an adaptive level generation system, allowing for the dynamic creation of increasingly challenging levels over time based on agent performance analysis. An additional study also investigated the theoretical complexity of Angry Birds levels from a computational perspective. While this research is predominately applied to video games with physics-based simulated environments, the challenges and problems solved by the proposed methods also have significant real-world potential and applications

    A Hierarchical Approach to Generating Maps Using Markov Chains

    No full text
    In this paper we describe a hierarchical method for procedurallygenerating maps using Markov chains. Ourmethod takes as input a collection of human-authoredtwo-dimensional maps, and splits them into high-leveltiles which capture large structures. Markov chains arethen learned from those maps to capture the structure ofboth the high-level tiles, as well as the low-level tiles.Then, the learned Markov chains are used to generatenew maps by first generating the high-level structure ofthe map using high-level tiles, and then generating thelow-level layout of the map. We validate our approachusing the game Super Mario Bros., by evaluating thequality of maps produced using different configurationsfor training and generation
    corecore