697 research outputs found

    A survey of machine learning techniques applied to self organizing cellular networks

    Get PDF
    In this paper, a survey of the literature of the past fifteen years involving Machine Learning (ML) algorithms applied to self organizing cellular networks is performed. In order for future networks to overcome the current limitations and address the issues of current cellular systems, it is clear that more intelligence needs to be deployed, so that a fully autonomous and flexible network can be enabled. This paper focuses on the learning perspective of Self Organizing Networks (SON) solutions and provides, not only an overview of the most common ML techniques encountered in cellular networks, but also manages to classify each paper in terms of its learning solution, while also giving some examples. The authors also classify each paper in terms of its self-organizing use-case and discuss how each proposed solution performed. In addition, a comparison between the most commonly found ML algorithms in terms of certain SON metrics is performed and general guidelines on when to choose each ML algorithm for each SON function are proposed. Lastly, this work also provides future research directions and new paradigms that the use of more robust and intelligent algorithms, together with data gathered by operators, can bring to the cellular networks domain and fully enable the concept of SON in the near future

    Thirty Years of Machine Learning: The Road to Pareto-Optimal Wireless Networks

    Full text link
    Future wireless networks have a substantial potential in terms of supporting a broad range of complex compelling applications both in military and civilian fields, where the users are able to enjoy high-rate, low-latency, low-cost and reliable information services. Achieving this ambitious goal requires new radio techniques for adaptive learning and intelligent decision making because of the complex heterogeneous nature of the network structures and wireless services. Machine learning (ML) algorithms have great success in supporting big data analytics, efficient parameter estimation and interactive decision making. Hence, in this article, we review the thirty-year history of ML by elaborating on supervised learning, unsupervised learning, reinforcement learning and deep learning. Furthermore, we investigate their employment in the compelling applications of wireless networks, including heterogeneous networks (HetNets), cognitive radios (CR), Internet of things (IoT), machine to machine networks (M2M), and so on. This article aims for assisting the readers in clarifying the motivation and methodology of the various ML algorithms, so as to invoke them for hitherto unexplored services as well as scenarios of future wireless networks.Comment: 46 pages, 22 fig

    On the use of intelligent models towards meeting the challenges of the edge mesh

    Get PDF
    Nowadays, we are witnessing the advent of the Internet of Things (IoT) with numerous devices performing interactions between them or with their environment. The huge number of devices leads to huge volumes of data that demand the appropriate processing. The “legacy” approach is to rely on Cloud where increased computational resources can realize any desired processing. However, the need for supporting real-time applications requires a reduced latency in the provision of outcomes. Edge Computing (EC) comes as the “solver” of the latency problem. Various processing activities can be performed at EC nodes having direct connection with IoT devices. A number of challenges should be met before we conclude a fully automated ecosystem where nodes can cooperate or understand their status to efficiently serve applications. In this article, we perform a survey of the relevant research activities towards the vision of Edge Mesh (EM), i.e., a “cover” of intelligence upon the EC. We present the necessary hardware and discuss research outcomes in every aspect of EC/EM nodes functioning. We present technologies and theories adopted for data, tasks, and resource management while discussing how machine learning and optimization can be adopted in the domain

    Dynamic Virtual Machine Allocation Policy for Load Balancing using Principal Component Analysis and Clustering Technique in Cloud Computing

    Get PDF
    The scalability and agility characteristics of cloud computing allow load balancing to reroute workload requests easily and to enhance overall accessibility. One of the most important services for cloud computing is Infrastructure as a Service (IaaS). There is a large number of physical hosts in a cloud data center for IaaS and it is quite difficult to arrange the allocation of the workload requests manually. Therefore, different load balancing methods have been proposed by researchers to avoid overloaded physical hosts in the cloud data center. However, fewer works have used multivariate analysis in cloud computing environment for considering the dynamic changes of the computing resources. Thus, this work suggests a new Virtual Machine (VM) allocation policy for load balancing by using a multivariate technique, Principal Component Analysis (PCA), and clustering technique. Moreover, PCA and clustering techniques were simulated on a cloud computing simulator, CloudSim. In the proposed allocation policy, a group of VMs were dynamically allocated to physical hosts. The allocation was based on the clusters of hosts according to their similar features in computing resources. The clusters were formed using PCA and a clustering technique based on variables related to the physical hosts such as Million Instructions Per Second (MIPS), Random Access Memory (RAM), bandwidth and storage. The results show that the completion time for all tasks has decreased, and the resource utilization has increased. This will optimize the performance of cloud data centers by effectively utilizing the available resources

    SLA violation prediction : a machine learning perspective

    Get PDF
    Le cloud computing réduit les coûts de maintenance des services et permet aux utilisateurs d'accéder à la demande aux services sans devoir être impliqués dans des détails techniques d'implémentation. Le lien entre un fournisseur de services cloud et un client est régi par une Validation du Niveau Service (VNS) qui définit pour chaque service le niveau et le coût associé. La VNS contient habituellement des paramètres spécifiques et un niveau minimum de qualité pour chaque élément du service qui est négocié entre les deux parties. Cependant, une ou plusieurs des conditions convenues dans une VNS pourraient être violées en raison de plusieurs problèmes tels que des problèmes techniques occasionnels. Du point de vue d'apprentissage automatique, le problème de la prédiction de violation de la VNS équivaut à un problème de classification binaire. Nous avons exploré deux modèles de classification en apprentissage automatique lors de cette thèse. Il s’agit des modèles de classification de Bayes naïve et de Forêts Aléatoires afin de prédire des violations futures d’une certaine tâche utilisant ses traits caractéristiques. Comparativement aux travaux précédents sur la prédiction d'une violation de la VNS, nos modèles ont été entraînés sur des ensembles de données réels introduisant ainsi de nouveaux défis. Nous avons validé le tout en utilisant Google Cloud Cluster trace comme avec l’ensemble de données. Les violations de la VNS étant des évènements rares 2.2 %, leur classification automatique reste une tâche difficile. Un modèle de classification aura en effet une forte tendance à prédire la classe dominante au détriment des classes rares. Pour répondre à ce problème, il existe plusieurs méthodes de ré-échantillonages telles que Random Over-Sampling, Under-Sampling, SMOTH, NearMiss, One-sided Selection, Neighborhood Cleaning Rule. Il est donc possible de les combiner afin de ré-équilibrer le jeu de données.Cloud computing reduces the maintenance costs of services and allows users to access on demand services without being involved in technical implementation details. The relationship between a cloud provider and a customer is governed with a Service Level Agreement (SLA) that is established to define the level of the service and its associated costs. SLA usually contains specific parameters and a minimum level of quality for each element of the service that is negotiated between a cloud provider and a customer. However, one or more than one of the agreed terms in an SLA might be violated due to several issues such as occasional technical problems. Violations do happen in real world. In terms of availability, Amazon Elastic Cloud faced an outage in 2011 when it crashed and many large customers such as Reddit and Quora were down for more than one day. As SLA violation prediction benefits both user and cloud provider, in recent years, cloud researchers have started investigating models that are capable of prediction future violations. From a Machine Learning point of view, the problem of SLA violation prediction amounts to a binary classification problem. In this thesis, we explore two Machine Learning classification models: Naive Bayes and Random Forest to predict future violations using features of a submitted task. Unlike previous works on SLA violation prediction or avoidance, our models are trained on a real world dataset which introduces new challenges. We validate our models using Google Cloud Cluster trace as the dataset. Since SLA violations are rare events in real world 2.2 %, the classification task becomes more challenging because the classifier will always have the tendency to predict the dominant class. In order to overcome this issue, we use several re-sampling methods such as Random Over-Sampling, Under-Sampling, SMOTH, NearMiss, One-sided Selection, Neighborhood Cleaning Rule and an ensemble of them to re-balance the dataset

    Server load estimation by Burr distribution mixture analysis of TCP SYN response time

    Full text link
    Server load estimation is key in balancing traffic between servers when optimizing data center resources. Intrusive methods are sometimes difficult or impossible to implement. Therefore, non-intrusive estimation methods are the best alternative in these cases. The objective of this paper is to present a server load estimation method based on external network traffic measurements obtained in a vantage point close to the server. Statistical distributions of TCP SYN response time, that is, the time from SYN to SYN+ACK segments at the server side, are used to fit Burr Type XII heavy tail distribution mixtures. The fitting algorithm, based on maximum likelihood estimation, is developed in detail in this paper. Experimental data shows that the median of the fitted distribution correlates within the 95% confidence interval of the server load figures and, thus, it can be used as a non-intrusive and accurate method to measure it. This new method can be applied to almost any existing load balancing algorithm, as it does not make any assumption about the server, which is considered a black boxThis work was supported in part by the Spanish State Research Agency under the project AgileMon (AEI PID2019-104451RB-C21
    • …
    corecore