682 research outputs found

    Augmented Reality in Tourism – Research and Applications Overview

    Get PDF
    Augmented reality is a complex interdisciplinary field utilizing IT technologies in diverse areas such as medicine, education, architecture, industry, tourism and others, augmenting the real-time, real-world view with additional superimposed information in chosen format(s). The aim of this paper is to present an overview of both research and application aspects of using augmented reality technologies in tourism domain. While most research, and especially applications, are dealing with and developing visual-based augmented reality systems, there is a relevant amount of research discussing the utilization of other human senses such as tactioception and audioception, both being discussed within this work. A comprehensive literature analysis within this paper resulted with the identification, compilation and categorization of the key factors having the most relevant impact on the success of utilization of augmented technology in tourism domain

    Performance Factors in Neurosurgical Simulation and Augmented Reality Image Guidance

    Get PDF
    Virtual reality surgical simulators have seen widespread adoption in an effort to provide safe, cost-effective and realistic practice of surgical skills. However, the majority of these simulators focus on training low-level technical skills, providing only prototypical surgical cases. For many complex procedures, this approach is deficient in representing anatomical variations that present clinically, failing to challenge users’ higher-level cognitive skills important for navigation and targeting. Surgical simulators offer the means to not only simulate any case conceivable, but to test novel approaches and examine factors that influence performance. Unfortunately, there is a void in the literature surrounding these questions. This thesis was motivated by the need to expand the role of surgical simulators to provide users with clinically relevant scenarios and evaluate human performance in relation to image guidance technologies, patient-specific anatomy, and cognitive abilities. To this end, various tools and methodologies were developed to examine cognitive abilities and knowledge, simulate procedures, and guide complex interventions all within a neurosurgical context. The first chapter provides an introduction to the material. The second chapter describes the development and evaluation of a virtual anatomical training and examination tool. The results suggest that learning occurs and that spatial reasoning ability is an important performance predictor, but subordinate to anatomical knowledge. The third chapter outlines development of automation tools to enable efficient simulation studies and data management. In the fourth chapter, subjects perform abstract targeting tasks on ellipsoid targets with and without augmented reality guidance. While the guidance tool improved accuracy, performance with the tool was strongly tied to target depth estimation – an important consideration for implementation and training with similar guidance tools. In the fifth chapter, neurosurgically experienced subjects were recruited to perform simulated ventriculostomies. Results showed anatomical variations influence performance and could impact outcome. Augmented reality guidance showed no marked improvement in performance, but exhibited a mild learning curve, indicating that additional training may be warranted. The final chapter summarizes the work presented. Our results and novel evaluative methodologies lay the groundwork for further investigation into simulators as versatile research tools to explore performance factors in simulated surgical procedures

    The role of camera convergence in stereoscopic video see-through augmented reality displays

    Get PDF
    In the realm of wearable augmented reality (AR) systems, stereoscopic video see-through displays raise issues related to the user's perception of the three-dimensional space. This paper seeks to put forward few considerations regarding the perceptual artefacts common to standard stereoscopic video see-through displays with fixed camera convergence. Among the possible perceptual artefacts, the most significant one relates to diplopia arising from reduced stereo overlaps and too large screen disparities. Two state-of-the-art solutions are reviewed. The first one suggests a dynamic change, via software, of the virtual camera convergence, whereas the second one suggests a matched hardware/software solution based on a series of predefined focus/vergence configurations. Potentialities and limits of both the solutions are outlined so as to provide the AR community, a yardstick for developing new stereoscopic video see-through systems suitable for different working distances

    Developing a virtual reality environment for petrous bone surgery: a state-of-the-art review

    Get PDF
    The increasing power of computers has led to the development of sophisticated systems that aim to immerse the user in a virtual environment. The benefits of this type of approach to the training of physicians and surgeons are immediately apparent. Unfortunately the implementation of “virtual reality” (VR) surgical simulators has been restricted by both cost and technical limitations. The few successful systems use standardized scenarios, often derived from typical clinical data, to allow the rehearsal of procedures. In reality we would choose a system that allows us not only to practice typical cases but also to enter our own patient data and use it to define the virtual environment. In effect we want to re-write the scenario every time we use the environment and to ensure that its behavior exactly duplicates the behavior of the real tissue. If this can be achieved then VR systems can be used not only to train surgeons but also to rehearse individual procedures where variations in anatomy or pathology present specific surgical problems. The European Union has recently funded a multinational 3-year project (IERAPSI, Integrated Environment for Rehearsal and Planning of Surgical Interventions) to produce a virtual reality system for surgical training and for rehearsing individual procedures. Building the IERAPSI system will bring together a wide range of experts and combine the latest technologies to produce a true, patient specific virtual reality surgical simulator for petrous/temporal bone procedures. This article presents a review of the “state of the art” technologies currently available to construct a system of this type and an overview of the functionality and specifications such a system requires

    Mixed reality simulation of rasping procedure in artificial cervical disc replacement (ACDR) surgery

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Until quite recently spinal disorder problems in the U.S. have been operated by fusing cervical vertebrae instead of replacement of the cervical disc with an artificial disc. Cervical disc replacement is a recently approved procedure in the U.S. It is one of the most challenging surgical procedures in the medical field due to the deficiencies in available diagnostic tools and insufficient number of surgical practices For physicians and surgical instrument developers, it is critical to understand how to successfully deploy the new artificial disc replacement systems. Without proper understanding and practice of the deployment procedure, it is possible to injure the vertebral body. Mixed reality (MR) and virtual reality (VR) surgical simulators are becoming an indispensable part of physicians’ training, since they offer a risk free training environment. In this study, MR simulation framework and intricacies involved in the development of a MR simulator for the rasping procedure in artificial cervical disc replacement (ACDR) surgery are investigated. The major components that make up the MR surgical simulator with motion tracking system are addressed. </p> <p>Findings</p> <p>A mixed reality surgical simulator that targets rasping procedure in the artificial cervical disc replacement surgery with a VICON motion tracking system was developed. There were several challenges in the development of MR surgical simulator. First, the assembly of different hardware components for surgical simulation development that involves knowledge and application of interdisciplinary fields such as signal processing, computer vision and graphics, along with the design and placements of sensors etc . Second challenge was the creation of a physically correct model of the rasping procedure in order to attain critical forces. This challenge was handled with finite element modeling. The third challenge was minimization of error in mapping movements of an actor in real model to a virtual model in a process called registration. This issue was overcome by a two-way (virtual object to real domain and real domain to virtual object) semi-automatic registration method.</p> <p>Conclusions</p> <p>The applicability of the VICON MR setting for the ACDR surgical simulator is demonstrated. The main stream problems encountered in MR surgical simulator development are addressed. First, an effective environment for MR surgical development is constructed. Second, the strain and the stress intensities and critical forces are simulated under the various rasp instrument loadings with impacts that are applied on intervertebral surfaces of the anterior vertebrae throughout the rasping procedure. Third, two approaches are introduced to solve the registration problem in MR setting. Results show that our system creates an effective environment for surgical simulation development and solves tedious and time-consuming registration problems caused by misalignments. Further, the MR ACDR surgery simulator was tested by 5 different physicians who found that the MR simulator is effective enough to teach the anatomical details of cervical discs and to grasp the basics of the ACDR surgery and rasping procedure</p

    Binocular Goggle Augmented Imaging and Navigation System provides real-time fluorescence image guidance for tumor resection and sentinel lymph node mapping

    Get PDF
    The inability to identify microscopic tumors and assess surgical margins in real-time during oncologic surgery leads to incomplete tumor removal, increases the chances of tumor recurrence, and necessitates costly repeat surgery. To overcome these challenges, we have developed a wearable goggle augmented imaging and navigation system (GAINS) that can provide accurate intraoperative visualization of tumors and sentinel lymph nodes in real-time without disrupting normal surgical workflow. GAINS projects both near-infrared fluorescence from tumors and the natural color images of tissue onto a head-mounted display without latency. Aided by tumor-targeted contrast agents, the system detected tumors in subcutaneous and metastatic mouse models with high accuracy (sensitivity = 100%, specificity = 98% ± 5% standard deviation). Human pilot studies in breast cancer and melanoma patients using a near-infrared dye show that the GAINS detected sentinel lymph nodes with 100% sensitivity. Clinical use of the GAINS to guide tumor resection and sentinel lymph node mapping promises to improve surgical outcomes, reduce rates of repeat surgery, and improve the accuracy of cancer staging

    Visual Perception and Cognition in Image-Guided Intervention

    Get PDF
    Surgical image visualization and interaction systems can dramatically affect the efficacy and efficiency of surgical training, planning, and interventions. This is even more profound in the case of minimally-invasive surgery where restricted access to the operative field in conjunction with limited field of view necessitate a visualization medium to provide patient-specific information at any given moment. Unfortunately, little research has been devoted to studying human factors associated with medical image displays and the need for a robust, intuitive visualization and interaction interfaces has remained largely unfulfilled to this day. Failure to engineer efficient medical solutions and design intuitive visualization interfaces is argued to be one of the major barriers to the meaningful transfer of innovative technology to the operating room. This thesis was, therefore, motivated by the need to study various cognitive and perceptual aspects of human factors in surgical image visualization systems, to increase the efficiency and effectiveness of medical interfaces, and ultimately to improve patient outcomes. To this end, we chose four different minimally-invasive interventions in the realm of surgical training, planning, training for planning, and navigation: The first chapter involves the use of stereoendoscopes to reduce morbidity in endoscopic third ventriculostomy. The results of this study suggest that, compared with conventional endoscopes, the detection of the basilar artery on the surface of the third ventricle can be facilitated with the use of stereoendoscopes, increasing the safety of targeting in third ventriculostomy procedures. In the second chapter, a contour enhancement technique is described to improve preoperative planning of arteriovenous malformation interventions. The proposed method, particularly when combined with stereopsis, is shown to increase the speed and accuracy of understanding the spatial relationship between vascular structures. In the third chapter, an augmented-reality system is proposed to facilitate the training of planning brain tumour resection. The results of our user study indicate that the proposed system improves subjects\u27 performance, particularly novices\u27, in formulating the optimal point of entry and surgical path independent of the sensorimotor tasks performed. In the last chapter, the role of fully-immersive simulation environments on the surgeons\u27 non-technical skills to perform vertebroplasty procedure is investigated. Our results suggest that while training surgeons may increase their technical skills, the introduction of crisis scenarios significantly disturbs the performance, emphasizing the need of realistic simulation environments as part of training curriculum

    Augmented reality fonts with enhanced out-of-focus text legibility

    Get PDF
    In augmented reality, information is often distributed between real and virtual contexts, and often appears at different distances from the viewer. This raises the issues of (1) context switching, when attention is switched between real and virtual contexts, (2) focal distance switching, when the eye accommodates to see information in sharp focus at a new distance, and (3) transient focal blur, when information is seen out of focus, during the time interval of focal distance switching. This dissertation research has quantified the impact of context switching, focal distance switching, and transient focal blur on human performance and eye fatigue in both monocular and binocular viewing conditions. Further, this research has developed a novel font that when seen out-of-focus looks sharper than standard fonts. This SharpView font promises to mitigate the effect of transient focal blur. Developing this font has required (1) mathematically modeling out-of-focus blur with Zernike polynomials, which model focal deficiencies of human vision, (2) developing a focus correction algorithm based on total variation optimization, which corrects out-of-focus blur, and (3) developing a novel algorithm for measuring font sharpness. Finally, this research has validated these fonts through simulation and optical camera-based measurement. This validation has shown that, when seen out of focus, SharpView fonts are as much as 40 to 50% sharper than standard fonts. This promises to improve font legibility in many applications of augmented reality

    Image-guided surgery and medical robotics in the cranial area

    Get PDF
    Surgery in the cranial area includes complex anatomic situations with high-risk structures and high demands for functional and aesthetic results. Conventional surgery requires that the surgeon transfers complex anatomic and surgical planning information, using spatial sense and experience. The surgical procedure depends entirely on the manual skills of the operator. The development of image-guided surgery provides new revolutionary opportunities by integrating presurgical 3D imaging and intraoperative manipulation. Augmented reality, mechatronic surgical tools, and medical robotics may continue to progress in surgical instrumentation, and ultimately, surgical care. The aim of this article is to review and discuss state-of-the-art surgical navigation and medical robotics, image-to-patient registration, aspects of accuracy, and clinical applications for surgery in the cranial area

    Augmented Reality Assistance for Surgical Interventions using Optical See-Through Head-Mounted Displays

    Get PDF
    Augmented Reality (AR) offers an interactive user experience via enhancing the real world environment with computer-generated visual cues and other perceptual information. It has been applied to different applications, e.g. manufacturing, entertainment and healthcare, through different AR media. An Optical See-Through Head-Mounted Display (OST-HMD) is a specialized hardware for AR, where the computer-generated graphics can be overlaid directly onto the user's normal vision via optical combiners. Using OST-HMD for surgical intervention has many potential perceptual advantages. As a novel concept, many technical and clinical challenges exist for OST-HMD-based AR to be clinically useful, which motivates the work presented in this thesis. From the technical aspects, we first investigate the display calibration of OST-HMD, which is an indispensable procedure to create accurate AR overlay. We propose various methods to reduce the user-related error, improve robustness of the calibration, and remodel the calibration as a 3D-3D registration problem. Secondly, we devise methods and develop hardware prototype to increase the user's visual acuity of both real and virtual content through OST-HMD, to aid them in tasks that require high visual acuity, e.g. dental procedures. Thirdly, we investigate the occlusion caused by the OST-HMD hardware, which limits the user's peripheral vision. We propose to use alternative indicators to remind the user of unattended environment motion. From the clinical perspective, we identified many clinical use cases where OST-HMD-based AR is potentially helpful, developed applications integrated with current clinical systems, and conducted proof-of-concept evaluations. We first present a "virtual monitor'' for image-guided surgery. It can replace real radiology monitors in the operating room with easier user control and more flexibility in positioning. We evaluated the "virtual monitor'' for simulated percutaneous spine procedures. Secondly, we developed ARssist, an application for the bedside assistant in robotic surgery. The assistant can see the robotic instruments and endoscope within the patient body with ARssist. We evaluated the efficiency, safety and ergonomics of the assistant during two typical tasks: instrument insertion and manipulation. The performance for inexperienced users is significantly improved with ARssist, and for experienced users, the system significantly enhanced their confidence level. Lastly, we developed ARAMIS, which utilizes real-time 3D reconstruction and visualization to aid the laparoscopic surgeon. It demonstrates the concept of "X-ray see-through'' surgery. Our preliminary evaluation validated the application via a peg transfer task, and also showed significant improvement in hand-eye coordination. Overall, we have demonstrated that OST-HMD based AR application provides ergonomic improvements, e.g. hand-eye coordination. In challenging situations or for novice users, the improvements in ergonomic factors lead to improvement in task performance. With continuous effort as a community, optical see-through augmented reality technology will be a useful interventional aid in the near future
    corecore