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In augmented reality, information is often distributed between real and virtual contexts, and

often appears at different distances from the viewer. This raises the issues of (1) context switching,

when attention is switched between real and virtual contexts, (2) focal distance switching, when

the eye accommodates to see information in sharp focus at a new distance, and (3) transient focal

blur, when information is seen out of focus, during the time interval of focal distance switching.

This dissertation research has quantified the impact of context switching, focal distance switching,

and transient focal blur on human performance and eye fatigue in both monocular and binocular

viewing conditions. Further, this research has developed a novel font that when seen out-of-focus

looks sharper than standard fonts. This SharpView font promises to mitigate the effect of transient

focal blur. Developing this font has required (1) mathematically modeling out-of-focus blur with

Zernike polynomials, which model focal deficiencies of human vision, (2) developing a focus

correction algorithm based on total variation optimization, which corrects out-of-focus blur, and

(3) developing a novel algorithm for measuring font sharpness. Finally, this research has validated



these fonts through simulation and optical camera-based measurement. This validation has shown

that, when seen out of focus, SharpView fonts are as much as 40 to 50% sharper than standard

fonts. This promises to improve font legibility in many applications of augmented reality.

Key words: augmented reality, sharpview, out of focus, zernike, point sperad function, blur
estimation, sharpness, TV deconvolution, focal distance switching, focal blur, optical see-through
display.
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CHAPTER I

INTRODUCTION

The great Greek philosopher Aristotle discussed the five primary senses (vision, sound, smell,

taste, and touch) in his book On the Soul [9]. Vision is one of the human body’s most potent

and complex senses among those five senses. Via the sense of sight, the human can understand

and perceive the visual information of his surroundings. So naturally, the human eye observes

and perceives different real world objects with different properties (e.g., size, color, and others) at

different distances and under lighting conditions in complex real world environments. Therefore, if

real world environments have any additional graphical information along with the real world infor-

mation, it will enhance or augment the visual sense and perception of the real world surroundings.

To achieve this expanded vision, we need to regard augmented reality technology.

Augmented reality (AR) Augmented Reality (AR) is an emerging modern technology that super-

imposes computer-generated virtual information on the user’s view of the real-world environment

to enhance user vision and understanding of the real world surroundings. This technology can

be achieved with head-mounted (HMD) AR displays, handheld devices (e.g., mobile, tablets, and

others), a projector, and others. Consider a scenario where a surgeon uses an OST AR display

(e.g., Microsoft HoloLens2) to perform a surgery in the operating room (see Figure 1.1a). During

the operation, the OST AR display presents different information (individual patient anatomy via
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MRI or CT scans) related to the real world patient. Therefore, AR technology allows surgeons to

perform their duty efficiently and effectively. This is a single example from hundreds of use cases

of the AR system. Due to the dramatic progress of research and the advancement of commercial

AR devices, AR has been playing an essential role in many other applications such as medical

applications [14, 115], navigation [91, 103], manufacturing & maintenance [38], education [18],

and so on. As AR technology has been progressing rapidly and has enormous applications in many

potential areas, it is necessary to identify and examine the current limitations of the AR system

from the perceptual perspective.

Figure 1.1: (a) Optical see-through AR example (AR-based medical surgery) [40]. (b) A conceptual
diagram of an optical see-through AR display [14].

Optical see-through AR display One of the major categories of the AR head-mounted display

(HMD) is the optical see-through (OST) AR display. In the OST AR system, users can view the

real world environment through the optical combiner with their own eyes. Along with the real

world information, users can also observe the virtual information through the semi-transparent

partially reflective optical combiners [89, 90]. As both real and virtual information is formed in

2



the eye’s retina, the human eye is the main observational component in the OST AR system. In

this case, we do not have access to the underlying pixels of the virtual information formed on the

retina. Therefore, it is challenging to understand how users perceive virtual information in the OST

AR system. My dissertation research is focused on the perceptual issues of the OST AR display

system. A conceptual diagram of the OST AR display is given in Figure 1.1. Figure 1.3a provides

a view through the OST AR system as an example.

Figure 1.2: (a) First three-dimensional display (The Sword of Damocles) by Ivan Sutherland in
1968 [111]. (b) Google glass by Google [110]. (c) Magic Leap One by Magic Leap [106]. (d)
Mircosoft HoleLens 1st (left) and 2nd (right) generation displays [68].

Revolution of OST AR: AR HMD has a long history which started when Ivan Sutherland built

the first three-dimensional display (The Sword of Damocles) in 1968 [111], where an image was

displayed in such a way that moved with the movement of the user (see figure 1.2a). However, the

term "Augmented Reality" was first coined by Boeing researcher Thomas P. Caudell in 1990 after

combining head position sensing and real world rendering in the same system to display the virtual

information [22]. AR technology’s most rapid growth and development occurred at the beginning

3



of the 20th century when Kato et al. [58] developed software named ARToolKit to render virtual

information on the real world by tracking the fiducial marker for a multi-user augmented reality

video conferencing system.

After decades of steady but slow development by the researchers, the industrial revolution

happened when some well-known tech companies (e.g., Google, Microsoft, and others) invested

billions of dollars in OST AR hardware and software development. Google introduced their OST

AR display Google Glass [110] in 2014 (see figure 1.2b). Later, in 2016, Microsoft brought a

more advanced version of the OST AR display (Microsoft HoloLens), which has powerful and

diverse functionality and interaction techniques [68]. Further, in 2019, Microsoft introduced the

2nd generation of the Microsoft HoloLens with updated software and hardware features (e.g.,

eye tracking capability) (see figure 1.2d). In 2018, Magic Leap also introduced their first OST

AR system—Magic Leap One. The rapid growth of the development of software and hardware

portions of the OST AR system is easily understandable from the figure 1.2. Therefore, it can be

conclusively said that the rapid progress of AR research is still ongoing, and many researchers are

uniformly adding new dimensions to the body of AR research.

1.1 OST AR interface design issues

When using OST AR displays, interacting with virtual information requires the user’s eyes to

focus on the optical depth of the display. Unfortunately, most modern OST AR displays place

virtual information at a fixed focal distance (e.g., Microsoft HoloLens, Google Glass). Further, the

real world is complex, and real world information can appear at different focal distances from the

user. In the OST AR system, information is often distributed between the real world and virtual
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Figure 1.3: Example of AR interface design issues: context switching and focal distance switching.
(a) The user needs to switch visual and cognitive attention while using an OST AR display to
perform the maintenance task. This brings the issue of context switching. (b) and (c) These images
are taken from a 2012 Google Glass concept video on YouTube [85]. When the user focus is on
the background, virtual information (upper right) becomes blurry (b). When the user focuses on
the virtual information (upper right), the background becomes blurry (c). This is because virtual
information and the real-world background are positioned at different focal distances. If the virtual
contents and the background appeared at the same focal distance, there would be no focal distance
switching, but context switching would still exist. If no information is presented through the AR
display, there would be no context switching, but there could still be focal distance switching
between real world objects. Throughout this video, only the virtual symbology or the background
is in focus at any one time, and the focus constantly switches between them while using the OST
AR display. It presents the issue of focal distance switching.

contexts, appearing at varying distances from the user and needs to be precisely located in the

real world environment [60, 61, 62]. Therefore, integrating information between real and virtual

contexts raises the following issues:

(1) Context switching: During context switching, users must switch visual and cognitive atten-

tion between information sources. Consider a scenario (Figure 1.3a) where a technician performs

a maintenance task using an OST AR display. The OST AR display displays additional graphical

information related to the maintenance task. Therefore, the technician needs to continuously switch

focus and attention to integrate information from real and virtual contexts. This brings the issue of

5



context switching. Thus, context switching problems arise when virtual information is presented

through an AR display, and users need to integrate real and virtual information.

(2) Focal distance switching: Focal distance switching means accommodating (changing the

shape of the eye’s lens) between different focal distances to see information in sharp focus at a new

distance. Consider another real-life scenario (Figure 1.3b) where video frames are taken from a

Google Glass concept video on YouTube [85]. In this video, the user is walking around an urban

setting, and only the virtual information or the background is in focus at any one time. Both real and

virtual information is never in focus at the same time throughout the video. This is because virtual

information and the real-world background are positioned at different focal distances. Therefore,

the person’s eye focus constantly switches between two different focal distances, and one piece of

information becomes blurred when focusing on another information at a different focal distance.

This brings the issues of focal distance switching.

(3) Out-of-focus problem in OST AR: One open question is how OST AR research investigates

and mitigates the out-of-focus problem during switching focal distances. As mentioned above,

during focal distance switching, users observe only one object (either real or virtual) in focus.

Other information becomes blurred for a concise amount of time (around 360 milliseconds [21]).

This brings the issue of the out-of-focus problem in the OST AR system. Let’s consider that an

AR text label (letter “A”) is located at a closer focal distance (e.g., 0.67m) than the real world

background (e.g., 4.0m) (see figure 1.4). In this case, if users focus on the AR letter, a sharp

version of the letter will be created on the retina, but the background will be blurred, and the

retinal image will be formed in front of the retina (see figure 1.4a and b). However, if the users’

eyes are focused on the background, the regular AR font will be blurred, and a retinal image will
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Figure 1.4: Out-of-focus problem in OST AR. An augmented reality (AR) text label (letter “A”) at a
closer focal distance (e.g., 0.67m) than the background (e.g., 4.0m). (a) The background is blurred
when focusing on the AR display using a regular font. (c) When focused on the background, the
text is blurred. (b) and (d) show the corresponding mechanism of the formation of the retinal image
during (a) and (c). Figures (a) and (c) are achieved optically.

be formed behind the retina (see figure 1.4c and d). Therefore, this brings the important research

question—How can we develop an OST AR system that can represent a sharper version of the

blurred AR font (figure 1.4c) while focusing at a different focal distance? My complete dissertation

research is based on this open AR research problem.

Previous research has found that context switching, focal distance switching, and focal blur

have a significant negative impact on human performance, leading to eye fatigue [71, 86] and other

perceptual problems [42], including excessive strain on the accommodation mechanism of the eye,
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decreasing visual performance [49], increasing the likelihood of missed targets [54], and limiting

the ability to fuse binocular images [120]. Among all the previous research, Gabbard et al. [42]

investigated AR display context switching and focal distance switching with a text-based visual

search task using a monocular Nomad OST AR display. However, their experimental design did

not wholly cross the conditions of context switching and focal distance switching and, therefore,

could not fully consider how these conditions interact. Further, they expressed the concern that

their findings might be specific to the Nomad AR display. Therefore, a more detailed investigation

of AR display context switching, focal distance switching, and focal blur is essential.

1.2 Research Goals

The primary goal of my dissertation research was to develop and establish a perceptual image

processing system that mitigates the out-of-focus blur issue in OST AR. Therefore, this research

leveraged existing work in focus correction through image processing by developing and evaluating

AR fonts with enhanced out-of-focus text legibility. This AR font is termed a “Shaprview font,”

an AR font designed to look better (sharper) when seen out of focus than a regular font. This

perceptual imaging algorithm has two main parts: modeling the out of focus visual aberration

of an OST AR system and modeling an out-of-focus correction method for an OST AR system.

The research in this document modeled the perceptual out of focus blur in the OST AR system

using Zernike polynomials and adapted the Total Variation (TV) image deconvolution approach

to generate the pre-corrected images. Although vision scientists have used similar techniques for

individuals with refractive vision problems (e.g., problems corrected by glasses or contacts, such

as myopia, hyperopia, and astigmatism) [88, 95, 52], these methods have never previously been
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used to mitigate the out of focus problem in OST AR. Previously, researchers from the Spatial

Perception and Augmented Reality (SPAAR) lab developed a SharpView algorithm for general

images (e.g., the Lenna image, rock images, etc.) [64]. However, this algorithm did not consider

depth while modeling the out-of-focus blur, and based the deconvolution algorithm on Wiener

filtering [44]. Further, their algorithm did not show promising results for textual information [31].

This dissertation research overcomes these previous limitations, and develops an AR SharpView

font using Zernike polynomials and an TV-based image deconvolution technique, and tests the

method for out-of-focus AR textual information.

Figure 1.5: (a) A driver is driving a car while an AR head up display presents AR information that
includes short text strings [94]. (b) A person is wearing a Google Glass AR display and walking
in an urban street. An AR notification in the form of a short text string is displayed to provide
the condition of the subway service [85]. (c) A person is performing a maintenance task while
wearing a Microsoft HoleLens AR display. Maintenance information is presented as a short AR
text string [112]. In all three pictures, AR textual information is in focus, and the background is
blurred. If the focus is changed to the background, then the short AR text string will be out-of-
focus, and perceived as blurred. At that moment, according to our hypothesis, the SharpView AR
font will be beneficial.
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1.3 Use Cases of Short AR textual Information

As mentioned in the previous section, this research considered textual information as the

primary AR component; more specifically, short AR text labels. Therefore, it brings the question—

“Who will benefit from this research, and how will they benefit?” Generally, various types of

graphical content can be overlaid in a real-world environment, such as 3D holograms, games, text,

and others. Among many AR components, text is one of the most used graphical components. Short

AR Textual information has been widely used in many AR applications, including maintenance,

education, navigation and driving, and others [4]. For example, we can consider the scenario where

a person is driving a car, and short AR text strings are displayed through the AR head-up display

(see Figure 1.5a [94]). If we carefully look at this picture, we can see that the driver is focused on

the AR information, and the background road is blurred. If we consider that the driver changes

their focus to the background road, then the short AR text string will be out-of-focus. At that

moment, the font developed by this research (the SharpView font) will be effective and beneficial.

This scenario is also true for Figures 1.5b [85] and c [112], where short AR text labels are used

for notifications and maintenance instructions. These are only a few examples of short AR text

label use cases; additional cases are given by Gattullo et al. [43]. They conducted a systematic

survey to investigate what, how, and why visual assets were used in AR maintenance, assembly, and

training, from 1997 to 2019. They reviewed 122 papers and found 348 visual AR assets. Among

these, 91 were text based visual AR assets. Further, for AR maintenance tasks, the visual asset

with the greatest usage is AR text strings. Therefore, this research implies that the SharpView font

developed by this research could benefit hundreds of AR applications.
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1.4 Contributions

This dissertation research makes four primary contributions.

Contribution 1: The first contribution is that this research systematically investigates the AR inter-

face design issues of context switching, focal distance switching, and focal blur, for both monocular

and binocular OST AR. To accomplish this research, a partial replication and extension of the task

and experiment reported by Gabbard et al. [42] was conducted on the AR Haploscope [99], a

custom-built OST AR display. This part of the research was published in IEEE Transactions on

Visualization and Computer Graphis [6], published as a poster abstract at 2020 IEEE Conference

on Virtual Reality and 3D User Interfaces Abstracts and Workshops (VRW) [5], and constituted

my master’s thesis [4]. Chapter II summarizes this research.

Contribution 2: The second contribution is that this research modeled the human visual aberration

(focal blur) for the out-of-focus problem in OST AR. The importance of this research is that

without modeling the human eye’s perceptual blur, the out-of-focus problem cannot be analyzed or

corrected. Previous research has considered different image-based aberration modeling approaches,

but their purpose was to model the refractive errors of observers viewing images without wearing

their corrective optics. For example, Kruger et al. [69] developed a visual aberration technique

for individuals with refractive vision problems, including myopia, hyperopia, presbyopia, and

astigmatism. They further validated their model with camera-based testing. However, based on

my knowledge, I did not find any previous work that modeled the human visual aberration (focal

blur) for the out-of-focus problem in OST AR that considered the appropriate eye parameters.
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Therefore, this part of the research adds a novel contribution to general academic knowledge (see

Chapter III).

Contribution 3: The third contribution is that this research developed an image processing-based

focus correction technique for the out-of-focus problem in OST AR. Montalto et al. [88] developed

a novel approach to generate imagery with improved sharpness for individuals with refractive vision

problems, including myopia, hyperopia, presbyopia, and astigmatism. However, focus correction

techniques through image processing developed for the visually impaired has not been tested or

validated for viewing out-of-focus virtual content in OST AR. Therefore, this research adopted the

total variation-based deconvolution technique from Montalto et. al. [88] and Beck et al. [17] to

improve the sharpness of out-of-focus text in OST AR. As a TV-based deconvolution algorithm has

never previously been used in OST AR for focus correction, this research contribution adds a new

dimension to the body of AR research. This part of the research task is described in Chapter IV.

Contribution 4: The final contribution of this research is that the image processing-based focus

correction technique for the out-of-focus problem in OST AR has been evaluated, both synthetically

and optically. Chapter V reports these evaluation methods.
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CHAPTER II

CONTEXT SWITCHING, FOCAL DISTANCE SWITCHING AND FOCAL BLUR

The first research objective of my dissertation is to systematically investigate the impacts of

OST AR display context switching, focal distance switching, and focal blur on human performance

and eye fatigue. Based on my knowledge, Gabbard et al. [42] first explored the interaction

between context switching and focal distance switching by conducting a text-based visual search

task using a Microvision Nomad see-through AR display. This one-eye display uses laser-based

retinal scanning technology. Later, to further investigate OST AR display context switching, focal

distance switching, and focal blur, researchers at the SPAAR lab of Mississippi State University,

including the author of this dissertation, successfully replicated this previous experiment, extended

the findings for monocular and binocular viewing conditions, and addressed the limitations of the

previous research. This dissertation research objective has been accomplished, was published in

IEEE Transactions on Visualization and Computer Graphics [6], and constitutes this dissertation’s

author’s master’s thesis [4]. This chapter describes this successful research outcome and explains

how these findings led to our research objectives.

2.1 The Problem

In OST AR, information is often distributed between the real world and virtual contexts, often

appearing at different distances from the user. Therefore, users must repeatedly switch contexts and
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refocus their eyes to integrate the information. Here, context switching refers to switching visual

and cognitive attention between the real world and virtual information. Besides, focal distance

switching refers to accommodating (changing the shape of the eye’s lens) to see, in sharp focus,

information at a new distance. During focal distance switching, users observe only one object

(either real or virtual content) in focus, and other information becomes blurred for a very short

amount of time (around 360 milliseconds [21]). This brings the issue of focal blur.

2.2 Phenomenon

Context Switching Context switching, or switching the context of the source of information, is

known to be perceptually demanding [42] and to have performance consequences [116]. Because

AR can provide overly information on real world contexts, AR information sources can be mini-

mal, and well-designed spatially proximal AR information can cognitively complement real-world

information, lowering both the physiological and cognitive overhead of switching contexts. How-

ever, despite this promise, very little research has recently quantified context switching in AR.

Work done nearly a decade ago by Huckauf et al. [54] and Schwerdtfeger et al. [107] examined an

industrial order-picking task and found that context switching between AR and real world displays

resulted in decreased visual performance.

Focal Distance Switching and Focal Blur Focal distance switching is required to integrate infor-

mation between objects at different focal distances. Suppose the users’ task required integrating

information repeatedly. In that case, focal distance switching leads to eye fatigue [71], biasing dis-

tance estimations, decreasing visual performance ([49]), increasing the likelihood of missed targets

([39]), limiting the ability to fuse binocular images ([120]), and many others perceptual issues.
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Further, changing accommodation from one focal distance to another takes time. It is expected

to take at least 350 to 425 milliseconds to completely accommodate to a new focal distance [21].

While accommodation changes, objects at the new focal distance will be seen with out-of-focus

blur. If the task demands performance during this period, this transient focal blur could cause

reduced visual performance. Indeed, Gabbard et al. [42] found a negative effect of focal blur on

human performance during focal distance switching.

2.3 Motivation for Vision Science Approach

Among the previous research related to context switching and focal distance switching, only

Hoffman et al. [49] used a custom-built laboratory display. All the others employed commercial,

off-the-shelf OST AR displays, with inherent limitations in the consistency of presented depth

cues. For example, Wang Baldonado [116] used standard computer monitors, Huckauf et al. [54]

and Gabbard et al. [42] used monitors, Gabbard et al. [42] also used a Microvision Nomad OST

AR display, Neveu et al. [92] used television and a Sony Glasstron, Imamov et al. [56] used an

HTC Vive Pro, Eiberger et al. [41] used an Epson Moverio BT-100, and Drouot et al. [35] used a

Microsoft Hololens 2. While papers using off-the-shelf displays serve as essential foundations for

examining the phenomena of context and focal distance switching, to understand why performance

decrements are observed fully, a vision science approach is needed (e.g., [29, 47, 49, 66]). These

and related papers have inspired two aspects of the approach reported here: (1) They generally use

custom laboratory-built displays, which allow precise control over all relevant optical and visual

parameters. And, (2) the experiments often include a monocular condition, where the non-dominant

eye is covered. The monocular condition is motivated by the importance of stereo vision for many
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human tasks, and the related depth cues of stereo disparity and ocular vergence [33]. Including

a monocular condition, therefore, allows stereo vision effects to be separated from other effects,

and helps explain experimental findings in the context of the human visual system. Therefore,

a unique contribution of this research is that the phenomena of interest were carefully examined

using a custom laboratory-built, OST AR display, and under both binocular and monocular viewing

conditions. This allows replicating findings seen in previous studies using commercial off-the-shelf

displays, and critically allows the findings to be attributed to specific elements of the human visual

system. Such results could inform future AR hardware design and practitioners’ selection of AR

hardware features when considering use cases where focal and context switching demands can be

predicted in advance. Accordingly, the purpose of the current experiment was to systematically

investigate, in OST AR, the phenomena of context switching, focal switching distance, monocular

and binocular viewing, and transient focal blur. This was accomplished by a partial replication

and extension of the task and experiment reported by Gabbard et al. [42], on a custom-built optical

testbed explicitly designed to examine these issues, i.e., an AR Haploscope (Figure 5.7).

2.4 Background and Related Work
2.4.1 Accommodation and Vergence

Both context switching and focal distance switching strongly correlate with two depth cues:

accommodation and vergence. Accommodation means the ability of the eye to observe an object in

sharp focus [119]. During accommodation, the eye adjusts its focal length based on the perceived

object distance. When the eye accommodates a nearby object, the ciliary muscles contract, causing

the lens to assume a more convex shape. In contrast, when a distant object is viewed, the ciliary

muscles relax, causing the lens to become thinner and flatter. Along with accommodation, viewing
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an object requires rotational vergence eye movements. When fixating on an object closer than where

the eyes previously verged, the eyes converge and rotate towards each other. When fixating on an

object farther than where the eyes previously verged, the eyes diverge and rotate away from each

other. The primary stimulus that drives the vergence response is stereo disparity; when fixating

on an object, the eyes verge until the images can be fused into a single image. The link between

them is known as the vergence-accommodation reflex. Therefore, any changes in accommodation

bring changes in vergence (accommodative vergence), and changes in vergence drive changes in

the accommodation (vergence accommodation). However, both accommodation and vergence can

be influenced by changing pupil size. When observing an object near accommodation distance,

the pupils become smaller, whereas when observing an object at a far accommodation distance, the

pupils become bigger. These components are interlinked physiologically and are known as Near

Triad [109]. Therefore, changes in any element of the near triad drive change in the other two

components.

However, to date, most commercial OST AR displays have generally presented virtual objects

at a single fixed focal distance (e.g., Microsoft HoloLens (versions 1 and 2) and the Google

Glass). Therefore, observing virtual contents through any single or fixed focal plane display, the

accommodative depth cue is usually fixed at the focal distance of the display’s optics. Consequently,

as shown in Figures 2.1b and 2.1b, a viewer can be required to visually fuse an object with a vergence

demand which is quite different from its accommodation demand. This inconsistency between the

depth cues is called the accommodation-vergence mismatch problem — a pervasive problem AR

displays. It can cause eye strain, double-vision, reduced user performance, and increased cognitive

load [87, 67, 71, 119].
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Figure 2.1: The vergence-accommodation conflict pictures adapted from Singh, Ellis, and
Swan [109]. (a) During normal viewing, vergence, and focal distance match. (b) Viewing virtual
content behind the focal plane of the HMD (vergence distance is farther than focal distance). (c)
Viewing virtual content in front of the focal plane of the AR display (focal distance is farther than
the vergence distance.

Further, changing accommodation and vergence to fixate on an object at a new distance takes

time. Up to age 20, the human eye requires 360 milliseconds to accommodate from far to near

and 380 milliseconds to accommodate from near to far. After the age of 20, the time needed to

accommodate from near to far remains relatively constant, but the time required to accommodate

from far to near increases [48, 21].

2.4.2 Context Switching and Focal Distance Switching

Although switching of context and focal distance in OST AR is frequent, only a few researchers

have considered the impact on human performance and eye fatigue. Gabbard et al. [42] was the

first to examine the interaction between context and focal distance switching, by conducting a

text-based visual search task that required participants to integrate information from both real and
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AR sources. As an experimental display, they used a Microvision Nomad see-through AR display.

Their study’s results revealed that context switching had a negative impact on performance when

information was presented at 6 meters, but not at closer distances of 2 or .7 meters. However,

context switching resulted in more significant eye fatigue at all three distances. Further, focal

distance switching resulted in reduced performance, and additional performance reductions were

attributed to the transient focal blur experienced while switching focal distances. However, their

experimental design did not wholly cross the conditions of context switching and focal distance

switching and, therefore, could not fully consider how these conditions interact. Moreover, their

experiment used binocular vision while wearing an AR display covering only one eye. We term

this condition semi-binocular viewing. In addition, their experiment did not examine monocular

or binocular viewing. Eiberger et al. [41] examined the combined effects of context and focal

distance switching by simulating environmental viewing with an Epson Moverio BT-100 display,

which presents collimated imagery (infinite focal distance) at a stereo disparity of 3.7 meters. This

was compared to a projected image at .3 meters (a typical smartwatch distance). They conducted

a graphical visual search task. Context and focal distance switching resulted in a higher task

completion time and a larger error rate. Recently, Drouot et al. [35] also examined the combined

effect of context and focal distance switching, using a Microsoft Hololens 2 at 1.5 or 2.0 meters

disparity distances, and a graphical visual search and target detection task. They found a negative

performance effect for distance switching, but no impact for context switching. Two previous

studies have examined only AR context switching. The first was Huckauf et al. [54], who used

semi-binocular viewing of a one-eye Microvision Nomad display focused at .61 meters and a

monitor placed at the same distance. They found that context switching between the displays
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reduced performance on several visual tasks. Most recently, Imamov et al. [56] investigated the

issue of context switching by displaying information on two interfaces within a VR environment

(simulating AR interaction). Their research found that context switching increased task completion

time and decreased user comfort.

Figure 2.2: Participants performed a text searching task, in an experiment that switched contexts
between the real world and augmented reality (AR), at either matched or mismatched focal distances.
(a) A participant observed the left text on a monitor at 4 meters distance, and the right text in AR
at one of three focal distances: 0.67, 4.0 or 2.0 meters. (b) View of the right text through the
custom-built AR Haploscope. (c) The participant observed the left and right text on a monitor at
2 meters.

2.5 Experiment

The purpose of the current experiment was to systematically investigate the phenomena of

AR display context switching, focal switching distance, binocular and monocular viewing, and

transient focal blur. To accomplish this experiment, we used a custom-made augmented reality

haploscope—an AR display mounted on an optical workbench (Figure 5.7). A detailed description
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Task Description Left text Right text

Participants identified the dou-
bled target letter ‘O’ in the left
text and counted the number of
target occurrences in the right
text. Here, the correct answer
is ‘1’.

sKvKuS
mUpKuP
sOoMsP

POXCSK
SZSXMM
VKUKPC

Figure 2.3: The experimental subtask. In Gabbard et al. [42], the left text was presented in either
AR or the real world, while in the current experiment, the right text was presented in either AR or
the real world (Figure 2.2).

of the experimental task, apparatus, setup, variables, setup, design, and procedure are given in

Arefin et al. [6, 4]. Here, I summarize the overall experiment.

Experimental Task: To conduct this research, we adapted the visual search task of Gabbard et

al. [42]. The main property of this task was that it forced participants to integrate information

from two different text blocks. When one of these text blocks was presented in AR and the other in

the real world, the task required context switching. Alternatively, the task did not require context

switching when both text blocks were presented in the real world. In addition, the text blocks

could be presented at different focal distances, or the same focal distance. The absolute difference

between these focal distances was the amount of focal switching distance.

During the task, participants observed two side-by-side text blocks, the left text and the right

text (Figure 2.3). Each text block comprised three text strings, and each text string contained

six letters. The task consisted of a series of subtasks. Each subtask required three actions: (1)

Searching the left text for the target letter, which was encoded by a pair of side-by-side identical

letters, one upper case and the other lower case (e.g., “Oo” in Figure 2.3). In the left text, there

was always exactly one target letter. (2) Searching for the target letter in the right text. The target
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Table 2.1: Experimental Design. Viewing is encoded by the letter: m (monocular), b (binocular).
Real World to Real World Conditions (Context Switching = no)

Test Distance (R):
Reference
Dist. (R):

R1 (0.67) R2 (2.0) R3 (4.0) R1 (0.67) R2 (2.0) R3 (4.0)

R1 (0.67) mR1R1 mR1R2 mR1R3 bR1R1 bR1R2 bR1R3
R2 (2.0) mR2R1 mR2R2 mR2R3 bR2R1 bR2R2 bR2R3
R3 (4.0) mR3R1 mR3R2 mR3R3 bR3R1 bR3R2 bR3R3

Real World to AR Conditions (Context Switching = yes)

Test Distance (A):
Reference
Dist. (R):

A1 (0.67) A2 (2.0) A3 (4.0) A1 (0.67) A2 (2.0) A3 (4.0)

R1 (0.67) mR1A1 mR1A2 mR1A3 bR1A1 bR1A2 bR1A3
R2 (2.0) mR2A1 mR2A2 mR2A3 bR2A1 bR2A2 bR2A3
R3 (4.0) mR3A1 mR3A2 mR3A3 bR3A1 bR3A2 bR3A3

letter could appear at most once in each line of text, and could appear in total 0, 1, 2, or 3 times.

In Figure 2.3, the target letter “O” appears once, in the first line of text. (3) After counting the

number of target letters in the right text, the target letter count was entered on a numeric keypad.

The task was to complete five subtasks within 25 seconds.

Experimental Variables and Design: The independent variables of our experiment were context

switching (no, yes), focal switching distance (0, 1.33, 2, 3.33 meters), and viewing (monocular,

binocular). Here, focal switching distance was a function of reference distance (.67, 2, or 4 meters)

and test distance (.67, 2, or 4 meters). We measured five dependent variables: number of subtasks

completed, number of subtasks correct, undercount errors, overcount errors, and eye fatigue.

We considered a within-subject experimental design, which is shown in 2.1. The upper half

shows the real world to real world conditions, where no context switching occurred, while the lower

half shows the real world to AR conditions, where context switching occurred. The left half shows
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conditions viewed monocularly, while the right half shows conditions viewed binocularly. Within

the resulting 2 (context switching) × 2 (viewing) design, all 9 combinations of the 3 reference

and 3 test distances were presented. The cells where the reference and test distances match are

highlighted; these are cells where focal distance switching was not required. The cells in Table 2.1

uniquely label each combination of conditions. For example, cell mR2R3 indicates that participants

monocularly viewed the reference text in the real world at a distance of 2 meters, and the test text

in the real world at a distance of 4 meters. Here, when looking between the left and right text, the

task did not require switching context, but did require switching focal distance by 2 meters. A 4×4

Latin square controlled the presentation order for each participant, and therefore the presentation

order was fully counterbalanced for each group of four participants. Therefore, each participant

completed 2 (viewing) × 2 (context switching) × 3 (reference distance) × 3 (test distance) × 5

(repetition) = 180 tasks, where each task comprised as many as 5 subtasks.

Twenty-four participants from the Mississippi State University community participated in this

experiment; 12 were male, and 12 were female. The mean age of the participants was 22.9 years;

ages ranged from 18 to 31. The participants had a mean inter-pupillary distance of 63.1 mm; 17

participants were right-eye dominant (71%), and seven left-eye dominant (29%), which agrees with

the expected distribution of eye dominance [101]. No corrective vision restriction was provided to

filter the participants; 13 participants wore corrective lenses, while 11 did not require correction.

Participants were young enough not to exhibit presbyopia [36]. Each session lasted %1.5 hours,

within a range of 1 hour for the fastest participants to 2 hours for the slowest.
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2.6 Analysis

When one of the independent variables was continuous, data was analyzed by examining the

slopes and intercepts of linear equations, and multiple regression was used to determine if the

slopes and intercepts significantly differed [30, 96]. We presented the results in scatter plots such

as Figure. 2.4. Here, the 𝑥 axis, the continuous independent variable, gives the distance to the

reference text, and the 𝑦 axis, the dependent variable, shows the number of subtasks completed

(upper row) and correct (lower row). The grey points are the number of subtasks completed for

each (𝑥, 𝑦) value. Context switching, the categorical independent variable, is indicated by the

color and position of violin plots, which summarize the point distributions for each level of context

switching. As indicated by the caption, each panel displays 144 grey points with substantial overlap.

The multiple linear regression procedure, from Pedhazur [96] chapter 12, fits one or two linear

regression lines in each panel of each scatter plot. The procedure is separately applied to each

panel. Each graph has a corresponding table; Table 2.2 corresponds to Figure. 2.4. Each graph

panel has a corresponding row in the associated table; note panels 𝑎 to 𝑓 in Figure. 2.4, and rows

𝑎 to 𝑓 in Table 2.2.

The multiple linear regression analysis proceeds in four steps:

Step 1: Two linear regressions are generated for each level of the categorical independent variable.

An F-test then determines if the slopes significantly differ. If they do, as in Figure. 2.4𝑎

(Table 2.2𝑎: slope diff ), both linear regressions are reported as the best overall description

of the data in the panel. Two lines are drawn, and two linear equations are given. The

interaction between the continuous and categorical independent variables is significant.
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Step 2: If the slopes do not differ, then the slopes are set to a common value, and an F-test

determines if the intercepts significantly differ. If they do, as in Figure. 2.5𝑎 (Table 2.3𝑎:

intercept diff ), these two linear regressions are reported as the best overall description. Two

lines are drawn, with a common slope, and two linear equations are given. The main effect

of the categorical variable is significant.

Step 3: If the intercepts do not differ, as in Figure. 2.4𝑏 (Table 2.2𝑏), then a single linear regression

is reported as the best overall description. One line is drawn, and one linear equation is given.

Step 4: If the two slopes do not differ, an additional F-test determines if the single slope differs from

0. This can either be the common slope of two regressions, as in Figure. 2.5𝑎 (Table 2.3𝑎:

slope 0, same degrees of freedom as the intercept test), or the slope of a single regression, as

in Figure. 2.4𝑏 (Table 2.2𝑏: slope 0, one degree of freedom larger than the intercept test).

If the slope differs from 0, then the main effect of the continuous independent variable is

significant.

The multiple regression analysis yields two measures of effect size: (1) 𝑅2, the overall percent-

age of variation explained by the linear model, and (2) 𝑑𝑅2, the percentage of variation explained

by the categorical variable. Both 𝑅2 and 𝑑𝑅2 are reported for every panel. In addition, if two

linear regressions are reported, then 𝑑, the distance between the lines in 𝑦 axis units, are reported.

If the slopes differ (e.g., Figure. 2.4𝑎), signed distances are reported for the leftmost and rightmost

data points along the 𝑥 axis (for Figure. 2.4𝑎, 𝑥 = .7 and 6 meters). If the slopes do not differ

(Figure. 2.5𝑎), an unsigned distance is reported. Sometimes the value of the slope, 𝑏, is also

discussed.
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Table 2.2: F-tests for each panel of Figure. 2.4
Number of Subtasks Completed:

(a) Semi-Binocular, Nomad:
slope diff: 𝐹1,140 = 16.1 𝑝 < .001∗∗∗

(b) Monocular, Haploscope:
slope diff: 𝐹1,140 < 1
intercept diff: 𝐹1,141 = 1.7 𝑝 = .19
slope 0: 𝐹1,142 = 11.0 𝑝 < .01∗∗

(c) Binocular, Haploscope:
slope diff: 𝐹1,140 < 1
intercept diff: 𝐹1,141 < 1
slope 0: 𝐹1,142 < 1

Number of Subtasks Correct:

(d) Semi-Binocular, Nomad:
slope diff: 𝐹1,140 = 16.4 𝑝 < .001∗∗∗

(e) Monocular, Haploscope:
slope diff: 𝐹1,140 < 1
intercept diff: 𝐹1,141 < 1
slope 0: 𝐹1,142 = 5.5 𝑝 < .05∗

(f) Binocular, Haploscope:
slope diff: 𝐹1,140 < 1
intercept diff: 𝐹1,141 < 1
slope 0: 𝐹1,142 < 1

2.6.1 Context Switching

Context switching was expected to reduce task performance and increase fatigue (H1). Context

switching was examined by comparing cells where context switching occurred, but focal distance

was held constant: the shaded cells in Table 2.1 were compared between the conditions of context

switching = no and context switching = yes. These cells contain 30% of the collected data.

2.6.1.1 Task Performance

The task performance effects of context switching and reference distance are analyzed in

Figure. 2.4. The left-hand column shows the relevant data from Gabbard et al. [42] (display =

26



(a)  No : y  = −0.052 x  + 4.26

Yes: y  = −0.262 x  + 4.48

d  = +0.070 , −1.043

R2 = 31.1 %, dR2 = 13.4 %

(d)  No : y  = −0.088 x  + 3.96

Yes: y  = −0.304 x  + 4.17

d  = +0.054 , −1.088

R2 = 37.2 %, dR2 = 12.9 %

(b) y  = −0.150 x  + 4.22

R2 = 7.2 %, dR2 = 1.1 %

(e) y  = −0.129 x  + 3.67

R2 = 3.8 %, dR2 = 0.5 %

(c) y  = −0.032 x  + 4.12

R2 = 0.5 %, dR2 = 0.8 %

(f) y  = −0.026 x  + 3.61

R2 = 0.2 %, dR2 = 0.5 %
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Figure 2.4: When examining data matched in depth, on the Nomad display (Gabbard et al. [42]),
context switching reduced performance at the far reference distance. However, in the Haploscope
context switching had no effect, and increasing reference distance only reduced performance under
monocular viewing. Nomad: Data from highlighted cells in Tables 1 and 2 [42]: R1R1, R2R2,
R3R3; V1F1R1, V2F2R2, V3F3R3. Haploscope: Data from highlighted cells in Table 2.1:
mR1R1, mR2R2, mR3R3; mR1A1, mR2A2, mR3A3; bR1R1, bR2R2, bR3R3; bR1A1, bR2A2,
bR3A3. Table 2.2 shows the related F-tests. Each panel displays 144 data points.

Nomad), under the semi-binocular viewing condition. The center and right columns show the data

from the current experiment (display = Haploscope), under the viewing conditions of monocular

and binocular. The upper row shows performance in terms of subtasks completed, while the lower

row shows performance in terms of subtasks correct.

On the Nomad, there was a significant interaction between context switching and reference

distance (panels 𝑎, 𝑑): at short distances of .7 and 2 meters, context switching had minimal effect,

but at the longer distance of 6 meters, 𝑑 = 1.043 (1.088) fewer subtasks were completed (correct).

The effect is strong, explaining 𝑑𝑅2 = 13.4% (12.9%) of the variation. In the current experiment,

this effect was not repeated; there was no effect of context switching with either monocular or
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binocular viewing. However, there was an effect of reference distance: under monocular viewing,

increasing reference distance resulted in reduced performance, at a rate of 𝑏 = .150 (.129) subtasks

completed (correct) per meter. While significant, this effect only explains 𝑅2 = 7.2% (3.8%) of

the variation, much less than what is explained for the Nomad. Under binocular viewing, there was

no effect of either context switching or reference distance.

(a)
 No : y  = −0.046 x  + 2.61
Yes: y  = −0.046 x  + 3.73

d  = 1.125

R2 = 8.1 %, dR2 = 7.9 %

(b)
 No : y  = 0.149 x  + 2.72
Yes: y  = 0.149 x  + 3.60

d  = 0.875

R2 = 11.3 %, dR2 = 9.3 %

(c)
 No : y  = 0.052 x  + 2.25
Yes: y  = 0.052 x  + 2.73

d  = 0.486

R2 = 4.2 %, dR2 = 4.1 %
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Figure 2.5: When examining data matched in depth, context switching increased eye fatigue for
both the Nomad display (Gabbard et al. [42]) and the Haploscope. On the Haploscope, the amount
of increased eye fatigue was higher with monocular viewing, compared to binocular viewing. Also,
increased reference distance under monocular viewing resulted in greater eye fatigue. Nomad: Data
from highlighted cells in Tables 1 and 2 [42]: R1R1, R2R2, R3R3; V1F1R1, V2F2R2, V3F3R3.
Haploscope: Data from highlighted cells in Table 1: mR1R1, mR2R2, mR3R3; mR1A1, mR2A2,
mR3A3; bR1R1, bR2R2, bR3R3; bR1A1, bR2A2, bR3A3. Table 2.3 shows the related F-tests.
Each panel displays 144 data points.

2.6.1.2 Eye Fatigue

The eye fatigue effects of context switching and reference distance are analyzed in Figure. 2.5.

Other than the 𝑦 axis displaying fatigue, the graph structure is the same as Figure. 2.4. On the

Nomad, there was a significant main effect of context switching on fatigue, but no impact of
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Table 2.3: F-tests for each panel of Figure. 2.5
Eye Fatigue:

(a) Semi-Binocular, Nomad:
slope diff: 𝐹1,140 < 1
intercept diff: 𝐹1,141 = 12.0 𝑝 < .01∗∗
slope 0: 𝐹1,141 < 1

(b) Monocular, Haploscope:
slope diff: 𝐹1,140 < 1
intercept diff: 𝐹1,141 = 14.7 𝑝 < .001∗∗∗
slope 0: 𝐹1,141 = 3.2 𝑝 = .08

(c) Binocular, Haploscope:
slope diff: 𝐹1,140 < 1
intercept diff: 𝐹1,141 = 5.7 𝑝 < .05∗
slope 0: 𝐹1,141 < 1

reference distance: context switching increased eye fatigue by 𝑑 = 1.125 units at all distances. On

the Haploscope, this effect was repeated. Under monocular viewing, context switching significantly

increased eye fatigue by 𝑑 = .875 units at all distances. In addition, there was a marginally

significant main effect of reference distance (𝑝 = .08), where increasing distance resulted in

increased fatigue, at a rate of 𝑏 = .149 units per meter. Under binocular viewing, context

switching also significantly increased eye fatigue by 𝑑 = .486 units, with no effect on reference

distance. Therefore, context switching increased eye fatigue across all conditions but with different

magnitudes.

2.6.1.3 Discussion

It was hypothesized that context switching would decrease performance and increase eye

fatigue (H1). Figures. 2.4 and 2.5 directly compare the previous findings with those of the current

experiment. On the Haploscope, context switching did not affect task performance but increased

fatigue. Therefore, the current results partially support hypothesis H1.
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Figure 2.6: Across all sessions, there was a linear increase in fatigue as the experiment progressed.
In each session, the level of context switching changed after 45 tasks, separating the session into
the first and second halves. Data from all cells in Table 2.1.

As described by Gabbard et al. [42], on the Nomad, the reason for reduced performance was

blurry vision, especially at the far distance of 6 meters. Likely reasons for this blurry vision

were the distance from the resting point of accommodation (for most participants, less than 50

centimeters [55]), laser speckle in the Nomad display, and smaller font size at the far distance.

The Nomad uses laser-based retinal scanning technology. All such displays exhibit laser speckle,

which reduces image quality and can be particularly problematic for text and graphics with a small

visual footprint [28]. In contrast, on the Haploscope, the text size in terms of visual angle was

constant regardless of distance, the image generators did not exhibit laser speckle, and the display

resolution was 1920×1080 pixels, compared to 800×600 for the Nomad. Although the maximum

tested distance was 4 meters, instead of the 6 meters tested on the Nomad, for most participants,

4 meters is still very far from their resting point of accommodation, so this explanation for the

different results on the Nomad and Haploscope seems unlikely. Instead, the most likely reason for

the increased performance is improved AR image quality. On the Haploscope, increasing reference

distance reduced performance, but only under monocular viewing.
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Context switching caused greater eye fatigue on the Nomad, and as hypothesized (H1), it also

caused greater fatigue on the Haploscope. Context switching was more fatiguing at every distance.

Given the replication of this effect on two different display devices, this finding is consistent with

the hypothesis that switching cognitive and visual attention between real and AR objects (context

switching) causes eye fatigue in all OST AR systems. The effect was stronger on the Nomad than

on the Haploscope. The effect was also stronger for monocular viewing than for binocular viewing,

and in addition, fatigue increased with increasing distance under monocular viewing.

In addition, as shown in Figure. 2.6 (covering all of the data), there was a linear increase in re-

ported eye fatigue as each experimental session progressed. Participants attended two experimental

sessions on different days, with the viewing condition changing between sessions. In Figure. 2.6,

each experimental session is broken into two halves, where the level of context switching changed

at the halfway point. During this transition, the participant closed their eyes while the equipment

was moved, which lasted several minutes. After this transition period, eye fatigue declined slightly

but again began steadily increasing. For both experimental half, the growth of fatigue occurred

at a constant rate of 𝑏 = .03 units per trial. Both slopes significantly differ from 0 (first half:

𝐹1,214 = 31.8, 𝑝 < .001∗∗∗; second half: 𝐹1,214 = 27.5, 𝑝 < .001∗∗∗).

2.6.2 Focal Switching Distance

Larger focal switching distances were expected to reduce performance and increase fatigue (H2).

The previous section examined context switching when there was no focal distance switching: when

focal switching distance = 0. Gabbard et al. [42] examined focal distance switching as a binary

variable by comparing cells in which focal distance switching did not occur to cells where it did.
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In the current experiment, this would compare cells with focal switching distance = 0 to cells with

focal switching distance ≠ 0. The current analysis instead analyzes focal switching distance as a

continuous variable, resulting in more experimental power [96]. In addition, the analysis examines

switching effects over distance, and the interaction between context switching and focal distance

switching. This section analyzes all of the data in Table 2.1.

(a) y  = −0.154 x  + 3.92

R2 = 6.9 %, dR2 = 1.2 %

(c) y  = −0.163 x  + 3.34

R2 = 5.5 %, dR2 = 1.0 %

(b) y  = −0.082 x  + 4.07

R2 = 2.8 %, dR2 = 1.7 %

(d) y  = −0.082 x  + 3.57

R2 = 1.8 %, dR2 = 1.9 %
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Figure 2.7: As focal switching distance increased, performance decreased. Monocular viewing
decreased performance. Context switching had no effect. Data from all cells in Table 2.1.
Tables 2.4, 2.5 show the related F-tests. Each panel displays 192 data points.

2.6.2.1 Task Performance

The task performance effects of context switching and focal switching distance are analyzed in

Figure. 2.7. Here, the 𝑥 axis shows focal switching distance, at 0, 1.33, 2, and 3.33 meters. The
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Table 2.4: F-tests for each panel of Figure. 2.7
Number of Subtasks Completed:

(a) Monocular, Haploscope:
slope diff: 𝐹1,188 < 1
intercept diff: 𝐹1,189 = 2.5 𝑝 = .11
slope 0: 𝐹1,190 = 14.1 𝑝 < .001∗∗∗

(b) Binocular, Haploscope:
slope diff: 𝐹1,188 < 1
intercept diff: 𝐹1,189 = 3.0 𝑝 = .085
slope 0: 𝐹1,190 = 5.5 𝑝 < .05∗

Number of Subtasks Correct:

(c) Monocular, Haploscope:
slope diff: 𝐹1,188 < 1
intercept diff: 𝐹1,189 = 2.0 𝑝 = .16
slope 0: 𝐹1,190 = 11.1 𝑝 < .01∗∗

(d) Binocular, Haploscope:
slope diff: 𝐹1,188 < 1
intercept diff: 𝐹1,189 = 3.4 𝑝 = .068
slope 0: 𝐹1,190 = 3.5 𝑝 = .064

Table 2.5: F-tests for panels of Figure. 2.7
(a,b) Number of Subtasks Completed:

Binocular: 𝑦 = −.118𝑥 + 4.13
Monocular: 𝑦 = −.118𝑥 + 3.86

slope diff: 𝐹1,188 < 1.1 𝑝 = .30
intercept diff: 𝐹1,189 = 10.9 𝑝 < .01∗∗
slope 0: 𝐹1,189 = 11.7 𝑝 < .01∗∗

𝑑 = 0.273 𝑅2 = 10.7% 𝑑𝑅2 = 5.7%

(c,d) Number of Subtasks Correct:

Binocular: 𝑦 = −.122𝑥 + 3.64
Monocular: 𝑦 = −.122𝑥 + 3.28

slope diff: 𝐹1,188 < 1
intercept diff: 𝐹1,189 = 11.7 𝑝 < .01∗∗
slope 0: 𝐹1,189 = 7.9 𝑝 < .01∗∗

𝑑 = 0.358 𝑅2 = 9.4% 𝑑𝑅2 = 6.0%
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Table 2.6: F-tests for panels of Figure. 2.7
(a,b) Eye Fatigue:

Monocular: 𝑦 = .261𝑥 + 3.74
Binocular: 𝑦 = .261𝑥 + 2.49

slope diff: 𝐹1,188 < 1.7 𝑝 = .19
intercept diff: 𝐹1,189 = 111.1 𝑝 < .001∗∗∗
slope 0: 𝐹1,189 = 27.8 𝑝 < .001∗∗∗

𝑑 = 1.251 𝑅2 = 42.4% 𝑑𝑅2 = 34.4%

columns show the results for monocular (left) and binocular (right) viewing. The upper row shows

performance in terms of subtasks completed, while the lower row shows performance in terms of

subtasks correct.

There was no interaction or main effect of context switching on performance in any panel

(Table 2.4). However, as focal switching distance increased, performance significantly decreased.

Under monocular viewing, performance decreased at a rate of 𝑏 = .154 (.163) subtasks per meter

completed (correct), while under binocular viewing, performance decreased at a smaller rate of

𝑏 = .082 (.082) subtasks per meter completed (correct). The negative effect of focal switching

distance on performance was larger for monocular viewing, 𝑅2 = 6.9% (5.5%), than for binocular

viewing, 𝑅2 = 2.8% (1.8%).

Table 2.5 analyzes the effects of viewing and focal switching distance on subtasks completed

(correct). Unlike the analysis in the above paragraph, which examines categorical differences

within each panel of Figure. 2.7, this analysis examines categorical differences between panels:

between monocular and binocular viewing. There was a significant main effect of viewing, where

binocular viewing resulted in 𝑑 = .273 (.358) additional subtasks completed (correct), compared

to monocular viewing. These 𝑑 values are the distances between the lines in Figure. 2.7. This
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analysis also finds the main effect of focal switching distance, but the model fits the slopes

𝑏 = −.118 (−.122) 1.

(a)
 No : y  = 0.325 x  + 3.19
Yes: y  = 0.325 x  + 4.08

d  = 0.891

R2 = 22.1 %, dR2 = 12.5 %

(b)
 No : y  = 0.196 x  + 2.35
Yes: y  = 0.196 x  + 2.85

d  = 0.507

R2 = 9.7 %, dR2 = 5.3 %
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Figure 2.8: Context switching increased eye fatigue for both monocular viewing and binocular
viewing. Monocular viewing was more fatiguing. Increasing focal switching distance resulted in
greater eye fatigue. Data from all cells in Table 2.1. Tables 2.7, 2.6 show the related F-tests. Each
panel displays 192 data points.

Table 2.7: F-tests for panels of Figure. 2.8
Eye Fatigue:

Monocular, Haploscope:
slope diff: 𝐹1,188 < 1
intercept diff: 𝐹1,189 = 30.38 𝑝 < .001∗∗∗
slope 0: 𝐹1,189 = 23.34 𝑝 < .001∗∗∗

Binocular, Haploscope:
slope diff: 𝐹1,188 < 1
intercept diff: 𝐹1,189 = 10.95 𝑝 = .001∗∗
slope 0: 𝐹1,189 = 9.45 𝑝 = .002

1Note that these are the means of the slopes in panels 𝑎, 𝑏 and 𝑐, 𝑑 in Figure. 2.7.
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2.6.2.2 Eye Fatigue

The eye fatigue effects of context switching and focal switching distance are analyzed in

Figure. 2.8. Other than the 𝑦 axis displaying fatigue, the graph structure is the same as Figure. 2.7.

In both monocular and binocular viewing, there was a significant main effect of context switching

on fatigue and a significant main effect of focal switching distance (Table 2.7). Under monocular

viewing, context switching increased fatigue by 𝑑 = .891 units, and increasing focal switching

distance increased fatigue at 𝑏 = .325 units per meter. Under binocular viewing, context switching

increased fatigue by 𝑑 = .507 units, and increasing focal switching distance increased fatigue at

𝑏 = .196 units per meter, both smaller amounts. The model explains 𝑅2 = 22.1% of the variation

under monocular viewing, much higher than for binocular viewing, 𝑅2 = 9.7%. Monocular

viewing was 𝑑 = 1.251 units more fatiguing than binocular viewing (Table 2.6).

2.6.2.3 Discussion

In the experiment, participants had to first accommodate the distance of the left text. Then,

if the focal switching distance was greater than 0, participants had to change accommodative

distance to visually scan the right text. It was therefore hypothesized (H2) that increasing focal

switching distance would decrease performance and increase eye fatigue. The results support this

hypothesis. During focal distance switching, the eye’s ciliary muscles change accommodation to

bring information into sharp focus, and the eye’s vergence muscles change vergence. Therefore,

continuously shifting eye focus between different focal distances tires these muscles, leading to eye

fatigue and reduced performance. In addition, for most people, the resting point of accommodation

and vergence is about 0.5 meters [114]. To accommodate and verge away from the resting point,
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the eye muscles contract, while when returning to the resting point, the eye muscles relax [46].

Therefore, integrating information closer to the resting point is less exerting. As a result, as the

amount of focal switching distance increased, eye fatigue increased, and performance decreased.

2.6.3 Viewing

Viewing has been analyzed in the previous sections and has been shown to have effects in each

case. However, in Section 2.6.1, while the effects of viewing, context switching, and reference

distance were examined (Figures. 2.4 and 2.5), that analysis only covers the 30% of the collected

data where focal distance was held constant (focal switching distance = 0). This section examines

viewing in the context of reference distance, covering all of the data. The structure of the graphs

here, Figures. 2.9 and 2.10, are the same as Figures. 2.4 and 2.5, except that viewing is now

analyzed within each panel.

(a)
Monocular : y  = −0.107 x  + 3.93

Binocular : y  = −0.107 x  + 4.19

d  = 0.261

R2 = 10.9 %, dR2 = 5.7 %

(b)
Monocular : y  = −0.082 x  + 3.29

Binocular : y  = −0.082 x  + 3.63

d  = 0.337

R2 = 7.8 %, dR2 = 5.7 %
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Figure 2.9: Task performance was higher under binocular viewing and closer reference distances.
Data from all cells in Table 2.1. Table 2.8 shows the related F-tests. Each panel displays 144 data
points.
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Table 2.8: F-tests for panels of Figure. 2.9
(a) Number of Subtasks Completed:

slope diff: 𝐹1,140 = 1.4 𝑝 = .2
intercept diff: 𝐹1,141 = 7.6 𝑝 < .01∗∗
slope 0: 𝐹1,141 = 9.7 𝑝 < .01∗∗

(b) Number of Subtasks Correct:

slope diff: 𝐹1,140 < 1
intercept diff: 𝐹1,141 = 8.2 𝑝 < .01∗∗
slope 0: 𝐹1,141 = 3.7 𝑝 = .06

2.6.3.1 Task Performance

The task performance effects of viewing and reference distance are analyzed in Figure. 2.9.

There was a significant effect of viewing on subtask completion (Figure. 2.9𝑎) and subtask accuracy

(Figure. 2.9𝑏). Monocular viewing decreased performance by 𝑑 = .261 (.337) subtasks, describing

𝑑𝑅2 = 5.7% (5.7%) of the variation. In addition, increasing reference distance resulted in

reduced performance, at a 𝑏 = .107 (.082) subtasks per meter. The overall model explains

𝑅2 = 10.9% (7.8%) of the performance variation.

Table 2.9: F-tests for panels of Figure. 2.10
Eye Fatigue:

slope diff: 𝐹1,140 < 1
intercept diff: 𝐹1,141 = 73.8 𝑝 < .001∗∗∗
slope 0: 𝐹1,141 = 9.2 𝑝 < .01∗∗

2.6.3.2 Eye Fatigue

The eye fatigue effects of viewing and reference distance are analyzed in Figure. 2.10. There

was a significant effect of viewing on fatigue. Monocular viewing increased fatigue by 𝑑 = 1.211
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Figure 2.10: Monocular viewing was more fatiguing than binocular viewing. Increasing reference
distance resulted in greater fatigue. Data from all cells in Table 2.1. Table 2.9 shows the related
F-tests. The panel displays 144 data points.

units, a large effect that describes 𝑑𝑅2 = 33.0% of the fatigue variation. In addition, increasing

reference distance resulted in increased fatigue, at a rate of 𝑏 = .156 units per meter. The overall

model explains 𝑅2 = 37.0% of the fatigue variation.

2.6.3.3 Discussion

When analyzed over all of the data, viewing had the same effects as when it was analyzed over

the data where focal distance was held constant (Section 2.6.1): monocular viewing resulted in

lower performance and higher fatigue. As reference distance increased, performance declined, and

fatigue increased. However, the viewing effect was constant and did not interact with reference

distance. Previous work has found that binocular viewing through an HMD provided more accurate

accommodation than monocular viewing [66]. As previously discussed in Section 2.4.1, the

primary stimulus that drives the accommodative response is a blur gradient [47]. However, under

binocular viewing, stereo disparity additionally drives vergence eye movements, which in turn
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drive vergence accommodation [59]. So in this experiment, under monocular viewing, there

was only one accommodative stimuli (blur gradient), while under binocular viewing there were

two accommodative stimuli (blur gradient and vergence accommodation). This suggests that

under binocular viewing, changing accommodation should be more efficient. In addition, during

monocular viewing, participants covered their non-dominant eye with an eye patch, which could

have resulted in additional pressure and discomfort. As a result of all of these factors, under

monocular viewing performance decreased, and fatigue increased.

During the post-experiment informal interview, participants did not complain about image

quality at any specific distance. Still, at or after the experiment’s midpoint, 7 out of 24 participants

complained about general visual fatigue in monocular viewing. In contrast, in binocular viewing,

the number that complained was 2 out of 24. Therefore, participants subjectively reported that

monocular viewing was more fatiguing.

2.6.4 Transient Focal Blur

A performance reduction during focal distance switching, attributed to the transient focal blur

effect by Gabbard, Mehra, and Swan [42], was expected to replicate under different conditions

of context switching and viewing (H3). As discussed in Section 2.4.1, changing accommodation

from one focal distance to another can be expected to take at least 350 milliseconds, and possibly as

long as 425 milliseconds. While accommodation changes, objects at the new focal distance will be

seen with out-of-focus blur. If the task demands performance during this period, then this transient

focal blur could cause reduced visual performance. A visual representation of the transient focal

blur problem is given in Figure 2.11.
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Figure 2.11: Focus blur due to switching accommodation distances while gathering information
both from the real and virtual text. In the figure, real and virtual text are displayed at two
focal distances: real text at 4.0m and AR text at 0.67m. To accomplish the experimental task,
participants first focused on the real text to identify the target letter (left). After identifying the
target letter, participants switched their gaze to the virtual text (middle), and began to change their
accommodative distance to bring it into focus. However, changing accommodation takes time, and
they began scanning the first line of the virtual text for a target letter before their eyes had finished
accommodating (middle). This made the text blurry. Assuming participants scanned the text in
left-right-right top-to-bottom order, they were more likely to miss a target letter in the first line of
text. After the completion of accommodation, participants could observe the virtual text in sharp
focus (right).

2.6.4.1 Letter Undercounts

Gabbard et al. [42] hypothesized that during the transient focal blur time period, participants

would be more likely to miss (undercount) target letters in the first line of text. Assuming that

participants scan the right text in the standard reading direction of left-to-right, top-to-bottom,

the most likely target letters to encounter during this time period would be the letters in the first

line of text (see Figure 2.11). Gabbard et al. [42] found that when focal distance switching was

required, these letters were significantly more likely to be undercounted. Figure. 2.12𝑎 replicates

the related graph. Significantly more letters were undercounted per participant when focal distance

switching was required, and when a target letter was in the first line of text (Table 2.10). In addition,

there was a significant interaction, where the most letters were undercounted when a target letter
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Figure 2.12: Evidence for the transient focal blur effect: Participants undercounted more letters
when a target letter appeared in the first line of the text and when focal distance switching was
required. In addition, these factors interacted; more letters were undercounted when the target
letter was in the first line, and participants switched focal distances. In this case, participants tried
to read the letter in the first line while that line was still out of focus. (a) The transient focal blur
effect found by Gabbard et al. [42]. (b–e) There was a strong transient focal blur effect for every
combination of viewing and context switching. Nomad: Data from Table 2 (Gabbard et al. [42]):
Focal Distance Switching Required: No = hatched cells; Yes = remaining cells. Haploscope: Data
from all cell in Table 2.1: Focal Distance Switching Required: No = shaded cells; Yes = remaining
cells. Table 2.10 shows the related F-tests.

was in the first line of text and focal distance switching was required (𝑝 < .001 for all effects).

Gabbard et al. [42] hypothesized that this interaction could be explained by the fact that the task

was time-pressured, which caused participants to begin scanning the right text during the transient

focal blur period, when their eyes were still accommodating to the new distance.

Hypothesis H3 is based on the idea that this transient focal blur effect is not specific to

AR, but instead is a general property of visual tasks that require integrating information from

different displays, possibly located at different focal distances. If correct, this hypothesis predicts

that the interaction shown in Figure. 2.12𝑎 will replicate under different context switching and

viewing conditions. The current experiment strongly supported this hypothesis: as shown in
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Table 2.10: F-tests for each panel of Fig. 2.12
Undercounts Per Participant:

(a) Semi-Binocular, Nomad, Context Switching = Yes:
Focal distance switching: 𝐹1,23 = 46.2 𝑝 < .001∗∗∗
Target letter in the first line: 𝐹1,23 = 68.3 𝑝 < .001∗∗∗
Focal distance switching ×
Target letter in the first line: 𝐹1,23 = 25.0 𝑝 < .001∗∗∗

(b) Monocular, Haploscope, Context Switching = Yes:
Focal distance switching: 𝐹1,23 = 42.1 𝑝 < .001∗∗∗
Target letter in the first line: 𝐹1,23 = 37.3 𝑝 < .001∗∗∗
Focal distance switching ×
Target letter in the first line: 𝐹1,23 = 27.3 𝑝 < .001∗∗∗

(c) Monocular, Haploscope, Context Switching = No:
Focal distance switching: 𝐹1,23 = 32.6 𝑝 < .001∗∗∗
Target letter in the first line: 𝐹1,23 = 35.8 𝑝 < .001∗∗∗
Focal distance switching ×
Target letter in the first line: 𝐹1,23 = 11.5 𝑝 < .001∗∗∗

(d) Binocular, Haploscope, Context Switching = Yes:
Focal distance switching: 𝐹1,23 = 40.1 𝑝 < .001∗∗∗
Target letter in the first line: 𝐹1,23 = 29.9 𝑝 < .001∗∗∗
Focal distance switching ×
Target letter in the first line: 𝐹1,23 = 13.4 𝑝 < .001∗∗∗

(e) Binocular, Haploscope, Context Switching = No:
Focal distance switching: 𝐹1,23 = 23.2 𝑝 < .001∗∗∗
Target letter in the first line: 𝐹1,23 = 23.0 𝑝 < .001∗∗∗
Focal distance switching ×
Target letter in the first line: 𝐹1,23 = 10.1 𝑝 < .001∗∗∗

Figures. 2.12𝑏, 𝑐, 𝑑, 𝑒, and Table 2.10, both main effects and their interaction was significant for

every combination of context switching and viewing (𝑝 < .001).

2.6.4.2 Discussion

Although Gabbard et al. [42] found the transient focal blur effect, their experiment only

examined the condition of context switching and semi-binocular viewing of a one-eyed display.

This left the possibility that the effect was somehow specific to this set of conditions. However,
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the replication of the effect under both context switching and viewing conditions suggests that the

transient focal blur effect is more general.

When context switching, participants integrated information between a monitor in the real

world and an AR display. In contrast, when not context switching, both sources of information

were on monitors in the real world. The transient focal blur effect is replicated in both conditions,

which is consistent with the hypothesis that the transient focal blur effect is indeed not specific

to AR, but is a general property of visual tasks that require integrating information from multiple

displays located at different distances.

In addition, the transient blur effect was replicated under both binocular and monocular viewing

conditions. As discussed in the previous section, vergence accommodation should make changing

accommodation more efficient under binocular viewing. There is some evidence for this: when

focal distance switching is required, the magnitude of the undercounts is lower with binocular

viewing (Figure. 2.12𝑑, 𝑒) than with monocular viewing (Figure. 2.12𝑏, 𝑐). This effect is related

to the increased performance and decreased fatigue for binocular viewing discussed in the pre-

vious section (2.6.3). Despite this increased efficiency, the transient focal blur effect was just as

statistically strong for binocular viewing (𝑝 < .001) as it was for monocular viewing (𝑝 < .001).

2.7 Conclusion

This experiment examined the effects of context switching, focal switching distance, binocu-

lar and monocular viewing, and transient focal blur. The visual search task required integrating

information distributed between real and virtual contexts. The experiment was conducted on a

custom-built AR Haploscope, which allowed an accurate representation of focal distances and ver-
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gence angles. The experiment partially replicated and extended a previous investigation conducted

on a Microvision Nomad; a one-eye display viewed semi-binocularly [42]. The primary findings

are:

• Context switching did not reduce task performance, but did increase eye fatigue.

• As focal switching distance increased, performance decreased, and eye fatigue increased.

• Compared to binocular viewing, monocular viewing resulted in reduced performance and
increased eye fatigue.

• Transient focal blur resulted in reduced task performance under all combinations of context
switching and viewing. This validates the importance of exploring the out-of-focus problem
in OST AR. It also suggests that having a sharper or improved visual representation of the
virtual information during the period of focal blur will lead to increased performance, and
perhaps reduced fatigue as well.
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CHAPTER III

OUT-OF-FOCUS VISUAL ABERRATION FOR AR SYSTEM

In chapter II, research showed that transient focal blur is caused by focal distance switching,

resulting in an additional reduction in task performance. The study concluded that it is necessary

to create and present a sharper or more legible visual representation of the virtual information

during the out-of-focus period. To achieve this, we first need to obtain the retinal blur formed on

the retina. This is an essential step, as without the proper modeling of the human visual out-of-

focus aberration, it is not possible to create a sharper image, or enhanced the legibility of virtual

information. Therefore, this chapter describes the modeling of the out-of-focus visual aberration

for OST AR.

Figure 3.1: Schematic diagram of retinal image formation.
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3.1 Background

To model the out-of-focus aberration of the human eye, it is essential to have an understanding

of the mechanism of retinal image formation.

3.1.1 Retinal Image formation

The human visual system is a complicated part of the brain, and the primary optical element is

the eye. Figure 3.1 shows a simple schematic diagram of retinal image formation. The size of the

eye is approximately 24mm in diameter [12]. When the eye focuses on an object, light from that

object enters the eye through the cornea. As the refractive index of the cornea is greater than the

refractive index of air, lights get bent after hitting the curved surface of the cornea. The amount of

light that gets into the eye is controlled by the pupil. The pupil is the black central opening in the

iris through which light passes. The size of the pupil depends, in part, on the amount of light in

the environment. The pupil size becomes bigger in low light conditions, varying from 4 to 8mm in

diameter in adults [11, 46]. Under bright light conditions, the pupil size becomes smaller, varying

from 2 to 4 mm in adults [11, 12, 46]. Therefore, it is conclusively said that pupil size significantly

affects the quality of the retinal image.

After going through the cornea and controlled by the pupil, light rays pass through the lens of

the human eye. The lens is biconvex in shape. The zonule fibers and ciliary muscle attach the lens

to the eye behind the iris. Based on the accommodative demand, the ciliary muscle changes the

lens’s shapes so that the light rays’ direction changes in a finely controlled manner, creating a sharp

representation of the object on the retina. Both the cornea and lens are the refractive elements of

the eye. After the lens refracts the light rays, they reach the retina and form an upside-down image.
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The human retina consists of the fovea, blind spot, and optic disk [46]. The fovea is the small and

central part of the retina where the image is observed with the highest resolution. Conversely, no

light is detected in the blind spot [46, 4]. From the optic disk, neural nerve fibers exit the retina,

transferring information to the brain.

3.1.2 Basic Principle of Retinal Image Calculation

Pupil Function: The visual perception of an object depends on the image quality of that object

formed on the retina. The analysis of the retinal image can be done by considering the properties

of light propagation. Light propagates through space in the form of waves. When a light pulse is

emitted from a point source, the wavefront expands in spherical shells. All points on the wavefront

are equidistant from the point source, and have traveled an equal distance [105]. This implies

that all the points on the wavefront are in phase mode. Supporting this theory, when light passes

through the eye, it converges as a spherical wavefront to a focal point on the retina, forming the

retinal image. The image of a point source that is formed on the retina is known as the “Point

Spread Function (PSF)” of the human eye. The PSF of the human eye can be computed from

the complex-valued generalized pupil function [45, 34, 69], which can give complete information

about the retinal image:

𝑃(𝑥, 𝑦) = 𝐴(𝑥, 𝑦) exp−𝑖
2𝜋
_
𝑊 (𝑥,𝑦) (3.1)

Here, _ is a wavelength of light in a vacuum, and (𝑥, 𝑦) are the coordinates of the pupil plane image

surface.

Amplitude Function: In the pupil function, 𝐴(𝑥, 𝑦) is a real-valued circular amplitude function

that determines the relative efficiency of light transmission through the pupil. It may be defined
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as a binary function, taking the value 1 within the pupil region, and 0 outside the pupil region.

The pupil region of the focused image can be computed from the focused object’s size and its

corresponding retinal image size.

Wavefront Aberration Function: Another essential component of the pupil function is 𝑊 (𝑥, 𝑦),

the eye’s wavefront aberration function. At the wavefront surface, light waves are perpendicular

at the same phase. As the retinal image depends on the light waves, it is, therefore, useful to

represent the amount of aberration on the human eye as the amount of wavefront aberration,

expressed either in micrometers or number of wavelengths. This can be characterized by the

two-dimensional “Wavefront Aberration Function”. For every point (𝑥, 𝑦) over the pupil plane

surface, this function presents the difference between the ideal spherical wavefront and the aberrated

wavefront [10, 11, 105].

Aberration on the human eye can be caused by several reasons, including refractive errors,

diffraction of light over the pupil, light sensitivity, and others [12, 69]. An eye with aberration

generally produces an asymmetric retinal image, whereas an eye with no aberration creates a

symmetric retinal image [11]. It is important to note that there will be no aberration when the

eyes are in perfect focus. However, the retinal image would still contain a slight blur. The reason

is the diffraction of many wavelengths of light as it passes through the pupil. According to the

fundamental nature of the wave, diffraction happens when it passes through an aperture. Therefore,

even though there is no aberration on a perfectly focused eye, there will be a slight blur on the retinal

image, and the diffraction pattern of a point source of light appears as a bright spot in the center

of the retina [1, 105]. This particular situation is known as diffraction limited (no aberration), and
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the retinal image (PSF) in this situation is known as the Airy disk [70, 34], which is surrounded by

faint concentric rings.

Optical Transfer Function The optical transfer function (OTF) is one the most powerful tools

to describe an optical system’s imaging performance, including the human eye. Besides, Fourier

optics is a great tool to analyze and measure the OTF. By considering the principle of Fourier

optics and knowledge of the wavefront aberration function (W(x,y)) and pupil function (P(x,y)),

OTF can be computed by performing the convolution of the pupil function, P(x,y), with its complex

conjugate P*(-x,-y) [105, 1]. It is important to note that PSF and OTF have a relationship from

the Fourier transform perspective, which means that if the imaging operations are performed in the

frequency domain, then it is called OTF; otherwise, PSF [1].

𝑂𝑇𝐹 ( 𝑓 𝑥, 𝑓 𝑦) = 𝑃(𝑥, 𝑦) ⊗ 𝑃∗(−𝑥,−𝑦) (3.2)

According to the convolution theorem, a similar operation can be done in the frequency domain

by performing element-wise multiplication.

𝐹 [𝑂𝑇𝐹 ( 𝑓 𝑥, 𝑓 𝑦)] = 𝐹 [𝑃(𝑥, 𝑦)] × 𝐹 [𝑃∗(−𝑥,−𝑦)] (3.3)

Imaging in the Human Eye To analyze human visual perception, we need to obtain the retinal

image for a given source image based on the properties of the eye optics [117]. To get the

final aberrated image on the retina, a 2-D convolution process needs to be performed in the

spatial domain 3.4 or an element-wise multiplication operation needs to be done in the frequency

domain 3.5. Let’s consider that I(x, y) is an ideal source image with no aberration and diffraction,
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and we have the PSF (x, y). Therefore, the corresponding retinal image (R(x,y)) can be obtained

by performing the convolution of I(x, y) and PSF(x, y) in the spatial domain or element-wise

multiplication of F[I(x, y)] and OTF(x, y) in the frequency domain, where F is the Fourier

transform operator.

Spatial Domain: 𝑅(𝑥, 𝑦)] = 𝐼 (𝑥, 𝑦) ⊗ 𝑃𝑆𝐹 (𝑥, 𝑦) (3.4)

Frequency Domain: 𝐹 [𝑅(𝑥, 𝑦)] = 𝐹 [𝐼 (𝑥, 𝑦)] ×𝑂𝑇𝐹 (𝑥, 𝑦) (3.5)

Previously, researchers in the OST AR domain considered the Gaussian PSF for the natural

images to compute the retinal aberrated image for the out-of-focus problem [64, 31]. However,

visual aberration of the human eye is a depth-dependent phenomena [69]. It means that the amount

of visual blur on the human eye varies with the change of the distances between the focused

and out-of-focus object from the human eye. Therefore, it is important to consider depth while

modeling the aberration of the human eye. Otherwise, the image formed on the retina will be

wrong. The most commonly and widely used PSF by the Vision scientists is Zernike-based PSF.

They used the Zernike polynomials to model the low-order aberration (e.g., defocus, astigmatism)

and high-order aberration (e.g., trefoil, coma, quatrefoil, secondary astigmatism) of the human

eye [34, 69, 1, 88, 113, 123].

After exploring the properties and mechanism of the retinal image theoretically and examining

the previous work related to retinal blur, I considered the Zernike polynomial-based PSF to compute

the blurred vision that formed on the retina due to out-of-focus aberration. A detailed description of

the general mathematical formulation of Zernike PSF and the mathematical formulation of Zernike

PSF for the out-of-focus aberration is given in the below sections.
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3.2 Description of Zernike Polynomials

Zernike polynomials are a sequence of polygonal that are continuous and orthogonal over a

circle of unit radius. Zernike polynomials were first discovered by the Dutch optical physicist Fritz

Zernike in 1934 [34]. He developed this theory to describe the diffracted wavefront in phase-

contrast imaging with two circular mirrors. This theory became popular and widely used in optical

imaging, optical aberrations, optical testing, visual aberration, astronomy and satellite imagery,

and many other research fields.

3.2.1 Reason Behind using Zernike Polynomials

Scientists are using the Zernike polynomial extensively because of the Zernike mathemati-

cal model’ properties l. Here are a couple of reasons provided below based on the previous

literature [34, 70]:

1. The polynomials are orthonormal over circular pupils, and derivatives are continuous.

2. Produced balanced aberrations between higher-order polynomials and lower-order polyno-
mials so that image intensity can be optimized when the amount of aberration is low.

3. The polynomials efficiently represent many common errors in general optics (e.g., spherical
aberration). Besides, effectively perform the error calculation of the ocular wavefront.

4. Efficiently represents both low order aberrations (myopia, hyperopia, astigmatism, and pres-
byopia) and high order aberrations (e.g., trefoil, coma, quatrefoil, secondary astigmatism) of
the human eye.

5. It can define the magnitude and characteristics between the optical system’s image and the
original object.

3.2.2 Applications of Zernike Polynomials

Vision scientists widely used Zernike polynomials to model the different lower order and higher

order visual aberrations of the human eye [73, 69, 88, 1, 117]. Along with vision research, many
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other research domains use Zernike polynomials widely. Some of the different applications of the

Zernike Polynomials are given below:

1. Zernike polynomials are widely used to measure image moments (weighted average of the
image pixels’ intensities), also known as Zernike moments. Zernike moments are beneficial
for extracting features from an image and describing the shape of an object [77]. Zernike
moments significantly contribute to cancer research; by analyzing and quantifying different
cancer cells’ shapes.

2. It is widely used in astronomy, fitting the wavefront distorted by the atmospheric turbu-
lence [93].

3. Zernike polynomials can also be used in satellite imagery analysis to fit different distorted
wavefront [15].

3.2.3 Limitations of Zernike polynomials:

Zernike polynomials are not entirely perfect. Lakshminarayanan and Fleck [70] mentioned

some of the limitations of the Zernike polynomials. They are:

1. Zernike coefficients are only valid for the specific pupil diameter they are determined for.
Therefore, computing the Zernike coefficient for every pupil diameters are computationally
expensive.

2. Zernike polynomials are orthogonal over the circle of the unit radius. Therefore, these
polynomials are not ideal for noncircular or irregular (e.g., cone-shaped cornea) optical
systems.

Therefore, any system with circular representation (e.g., the human eye, telescope, microscope,

etc.) is most suitable for the Zernike polynomials. After performing an extensive literature review,

the dissertation research considered the Zernike polynomial to represent the out-of-focus aberration

of the human eye for the AR system. Next, a detailed description of how Zernike polynomials

characterize lower-order aberrations of the human eye is given. After that, the description of how

my dissertation research modified and utilized the Zernike polynomial to model the out-of-focus

aberration is given.
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3.2.4 Zernike Polynomials for the Low-Order Aberration

Figure 3.2: Zernike polynomials up to the fourth order and a Zernike polynomial pyramid [34]

Human visual aberrations can be divided into two types: low-order visual aberration (my-

opia, hyperopia, astigmatism, and presbyopia), corrected through the corrective glass/ lens, and

high-order aberration (trefoil, coma, quatrefoil, secondary astigmatism) [34, 69]. The Zernike poly-

nomials can approximately model the low-order and high-order human visual aberration. Zernike

polynomials up to the fourth order and a Zernike polynomial pyramid are given in the figure 3.2.

The characterization of the human visual aberrations in Zernike polynomials can be expressed

either in Cartesian (x, y) or polar (r, \) coordinates. Wavefront aberration function (𝑊 (𝑥, 𝑦)) is

the standard way to report the human visual aberrations by considering the sum of the set of the

weighted Zernike polynomials 3.6 [117].

𝑊 (𝑥, 𝑦) =
∑︁
𝑛,𝑚

𝐶𝑚
𝑛 𝑍

𝑚
𝑛 (𝑥, 𝑦) (3.6)
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Here, 𝑥 and 𝑦 are the coordinates relative to the pupil center and normalized by the pupil

radius [117]. 𝑛 and 𝑚 represent the order and frequency, respectively. 𝐶𝑚
𝑛 denotes the Zernike

coefficient in micrometers and defines the standard weight of aberrations. In ophthalmology and

vision science, the order (𝑛) is the basis for classifying the different visual aberrations. Such as:

• Low-order aberrations, with the Zernike order 𝑛 < 3.

• High-order aberrations, with Zernike order 𝑛 ≥ 3.

Vision scientists mostly considered 2nd order Zernike polynomials to model the vision of

individuals with refractive vision problems (myopia, hyperopia, and astigmatism) [69, 123, 88,

117]. My dissertation research is highly related to these aberrations as these are related to the

changes in accommodation or focus problem. The wavefront aberration function with the required

2nd order Zernike polynomials is given below [34, 123]:

𝑊 (𝑥, 𝑦) =
1∑︁

𝑖=−1
𝐶2𝑖

2 𝑍2𝑖
2 (𝑥, 𝑦) (3.7)

Oblique Astigmatism (y-astigmatism): 𝑍−2
2 (𝑥, 𝑦) = 2

√
6𝑥𝑦 (3.8)

Defocus: 𝑍0
2 (𝑥, 𝑦) =

√
3(2𝑥2 + 2𝑦2 − 1) (3.9)

Vertical Astigmatism (x-astigmatism): 𝑍2
2 (𝑥, 𝑦) =

√
6(𝑥2 − 𝑦2) (3.10)

3.2.5 Zernike Coefficient for the Low-Order Aberration

So far, I have discussed the Zernike polynomial. Nevertheless, the Zernike polynomial is

not complete without the Zernike coefficient, which provides the magnitude of eye aberration.

Zernike coefficients are independent and are not constant. All the vision research extensively uses

Zernike coefficients as “Zernike coefficient for prescription data” [88, 69, 123]. After analyzing
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spherocylindrical ocular aberration, Dai [34] was able to compute the Zernike coefficient for

prescription data of the human eyes. Zernike coefficient for prescription data are given below:

Oblique Astigmatism (y-astigmatism) coefficient: 𝐶−2
2 =

𝑅2𝐶 sin 2𝐴
4
√

6
(3.11)

Defocus coefficient : 𝐶0
2 =

𝑅2(𝑆 + 𝐶/2)
4
√

3
(3.12)

Vertical Astigmatism (x-astigmatism) coefficient: 𝐶2
2 =

𝑅2𝐶𝑐𝑜𝑠2𝐴
4
√

6
(3.13)

where,

• R = Radius of the pupil in mm

• S = Sphere value in diopters.

• C = Cylinder values in diopters.

• 𝐴 = Cylinder axis expressed in degree.

Figure 3.3: Standard eye prescription with the spherical and cylindrical value. Vision scientists
considered values from the eye prescriptions to obtain the Zernike coefficients.

While working with Zernike polynomials and coefficients for individuals with refractive vision

problems, vision scientists directly measure the S, C, and A values from the person’s eyeglass
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prescription (see figure 3.3) [88, 69, 123]. After calculating the Zernike polynomials (3.8, 3.9, 3.10)

and the Zernike coefficients (3.11, 3.12, 3.13), vision scientists place the values in the equation 3.7

to get the corresponding wavefront aberration function of the human eye. The final PSF of the eye’s

optical system can be obtained by considering the generalized pupil function (see equation 3.1)

and optical transfer function (see equation 3.2) of the human eye [1]. Performing convolution (see

equation 3.4) between the human eye’s PSF and the display focus image gives the human perceived

blurred image [88, 123]. Though vision scientists are working with different eye aberrations, based

on my knowledge, I did not find any research using Zernike polynomials and coefficients for the

bifocal lenses. It is still unknown how to deal with the Zernike parameters in this scenario.

The formulation of Zernike polynomials and the coefficient for the out-of-focus aberration

in AR is theoretically related to the Zernike formulation for the lower-order aberration, more

specifically, the defocus aberration. Therefore, my dissertation research considered the defocus

Zernike polynomials and modified coefficient version to formulate the model for out-of-focus

aberration in the AR system. To achieve this, this research developed the parameters of the

equations based on the focused and out-of-focus distances rather than prescription data.

3.3 Zernike Polynomials and Coefficient for the Out-of-Focus Aberration in AR

Among the parameters of 2nd order Zernike coefficients (see equations 3.11, 3.12, 3.13), only S

(sphere value) is related to the defocus aberration (S < 0 for myopia and S > 0 for hyperopia), while

the C and A is related to astigmatism aberration [123]. Further, among the low-order aberrations,

only defocus aberration is related to the human eye’s accommodative stance. In myopia aberration,

a person can sharply focus on an object at a near distance but not at a far distance. Conversely, in
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hyperopia aberration conditions, a person can perceive an object far away, not at a near distance.

Similarly, during the out-of-focus condition, users can only sharply focus at a specific distance,

either near or far, and information at the out-of-focus distance will be blurred. Therefore, the human

eye’s accommodation changing is related to the defocus aberration rather than any other aberration

types. For this reason, this research considered the defocus Zernike polynomial to investigate out-

of-focus aberration in AR and ignored everything related to the astigmatism aberration. Only the S

value (related to defocus aberration) is considered, and the C and A values (related to astigmatism

aberration) are ignored for the defocus Zernike coefficients. After ignoring the C and A values, the

defocus Zernike coefficient for the out-of-focus aberration in the AR system is given below:

Defocus Zernike coefficient for out-of-focus aberration in AR : 𝐶0
2 = − 𝑅2(𝑆)

4
√

3
(3.14)

Calculating S value based on the focused and out-of-focus distances As this research is not

considering any eye prescription data, it is necessary to develop a method to calculate the S value

for the out-of-focus aberration in AR. Further, eye accommodation changes from one distance

to another; therefore, S is inconsistent. Previously, Xu and Li. [123] developed the formulation

to calculate the S value only from the viewing distance or focused distance while modeling the

lower-order visual aberration for HMD, not for the out-of-focus aberration. Getting motivated by

the previous work, this research developed the method to calculate the S value for the out-of-focus

aberration in AR. Based on the research’s technique, the focal length of the eye must be computed

first. According to the thin lens formula, the focal length of the eye based on the focused object is:
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1
𝑓𝑒𝑦𝑒

=
1

𝑑 𝑓 𝑜𝑐𝑢𝑠

+ 1
𝑑𝑒𝑦𝑒

(3.15)

where,

• 𝑓𝑒𝑦𝑒 = Focal length of the eye at focused distance

• 𝑑 𝑓 𝑜𝑐𝑢𝑠 = Distance between eye’s lens and focused object.

• 𝑑𝑒𝑦𝑒 = Distance between eye’s lens and retina, which is approximately 22mm [46].

Equation 3.15 presents an ideal scenario when a user is focused at a specific distance. Except

for the focused distance, this equation is not suitable for all other out-of-focus distances, which

brings the issue of out-of-focus aberration due to the changing accommodative stance of the human

eye.

Let us consider the out-of-focus object distance is 𝑑𝑜𝑢𝑡−𝑜 𝑓− 𝑓 𝑜𝑐𝑢𝑠 from the eye’s lens. Therefore,

the eye will observe out-of-focus aberration, and the eye’s aberration value, S, can be computed in

diopters using the following formula:

𝑆 =
1

𝑑𝑜𝑢𝑡−𝑜 𝑓− 𝑓 𝑜𝑐𝑢𝑠

− 1
𝑑 𝑓 𝑜𝑐𝑢𝑠

(3.16)

By placing the 1
𝑑 𝑓 𝑜𝑐𝑢𝑠

value from the equation 3.15 in equation 3.16, we get the following:

𝑆 =
1

𝑑𝑜𝑢𝑡−𝑜 𝑓− 𝑓 𝑜𝑐𝑢𝑠

− ( 1
𝑓𝑒𝑦𝑒

− 1
𝑑𝑒𝑦𝑒

) (3.17)

where,

• S = Out-of-focus spherical aberration on the eye in diopters.

• 𝑑𝑜𝑢𝑡−𝑜 𝑓− 𝑓 𝑜𝑐𝑢𝑠 = Distance between eye’s lens and out-of-focus object.
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Figure 3.4: Scenario 1- Retinal image formation during out-of-focus issue in AR. S is positive.
Here, the eye focuses on a real font at 4.0m, and a retina observes a corresponding sharp image. In
front of the eye’s focused font, an AR font is placed at 0.20m. Therefore, a correspondence retinal
image is placed behind the retina, and the user observes a blurred AR font.

Figure 3.5: Scenario 2- Retinal image formation during out-of-focus issue in AR. S is negative.
Here, the eye focuses on a real font at 0.20m, and a retina observes a corresponding sharp image.
Behind the eye’s focused font, an AR font is placed at 4.0m. Therefore, the user observes a
correspondence retinal image placed in front of the retina and blurred.

From the above equation 3.17, it is understandable that the value of S can be positive or

negative. However, 𝑆 ≠ 0 as the model supports the diffraction theory of light waves. According

to the fundamental theory of light waves, diffraction will happen when light passes through an
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optical system’s aperture. Therefore, even though there is no aberration, the retinal image will

have a slight blur [105], which is known as a "Diffraction limited" retinal image. My dissertation’s

model fully supports this theory. Besides, the following two scenarios could occur based on the S

value.

Scenario 1: When S is positive Let’s assume that a person is focusing on a real font at a far

distance (4.00m) and an AR font is placed at a near distance (0.20m). Therefore, we can calculate

the focal length of the eye while focusing the far distance by using equation 3.15, 𝑓𝑒𝑦𝑒 = 0.0219𝑚.

Finally, by putting all the known values on equation 3.17, we can get the out-of-focus aberration

value, 𝑆 = +4.75𝐷. A schematic diagram of the scenario is given in figure 3.4.

Scenario 2: When S is negative Again, let’s assume that a person is focusing on a real font at

a near distance (0.20m), and an AR font is placed at a far distance (4.0m), which is out-of-focus.

Therefore, we can calculate the focal length of the eye while focusing the near distance by using

equation 3.15, 𝑓𝑒𝑦𝑒 = 0.0198𝑚. Finally, by putting all the known values on equation 3.17, we can

get the out-of-focus aberration value, 𝑆 = −4.75𝐷. A schematic diagram of the scenario is given

in figure 3.5.

Final out-of-focus wavefront aberration function Using the equation 3.17, the eye’s out-of-

focus aberration for different accommodation changes can be computed. By putting S value in

equation 3.14, we get,

𝐶0
2 = − 𝑅2

4
√

3
× ( 1

𝑑𝑜𝑢𝑡−𝑜 𝑓− 𝑓 𝑜𝑐𝑢𝑠

− ( 1
𝑓𝑒𝑦𝑒

− 1
𝑑𝑒𝑦𝑒

)) (3.18)
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Therefore, the final wavefront aberration function for out-of-focus problems in AR is:

𝑊 (𝑥, 𝑦) = 𝐶2
0 × 𝑍2

0 (𝑥, 𝑦) = (− 𝑅2

4
√

3
× ( 1

𝑑𝑜𝑢𝑡−𝑜 𝑓− 𝑓 𝑜𝑐𝑢𝑠

− ( 1
𝑓𝑒𝑦𝑒

− 1
𝑑𝑒𝑦𝑒

))) × (
√

3(2𝑥2 + 2𝑦2 − 1))

(3.19)

Here, x and y describe the coordinates relative to the pupil plane surface. The x and y

coordinates depend on the focused real object size and corresponding retinal image size.

Amplitude function calculation In this research, the pupil plane surface for the amplitude func-

tion was completed based on the object size and corresponding retinal image size by using the

formulation of similar triangles (see figure 3.6a) and similar rectangles (see figure 3.6b). The

geometry in Figure 3.4 shows how to obtain the dimension of the retinal image. Let assume that

the focused font height is ℎ 𝑓 𝑜𝑐𝑢𝑠𝑒𝑑 , width is 𝑤 𝑓 𝑜𝑐𝑢𝑠𝑒𝑑 distance from the eye is 𝑑 𝑓 𝑜𝑐𝑢𝑠, retinal image

height is ℎ𝑟𝑒𝑡𝑖𝑛𝑎𝑙 , width is 𝑤𝑟𝑒𝑡𝑖𝑛𝑎𝑙 and the distance between the eye lens and retina is 𝑑𝑒𝑦𝑒 = 0.022𝑚.

Therefore, according to the principle and geometry of similar triangle from Figure 3.6a, retinal

image’s height (ℎ𝑟𝑒𝑡𝑖𝑛𝑎𝑙) was calculated. Similarly, according to the principle and geometry of

similar rectangle from Figure 3.6b, retinal image’s width (𝑤𝑟𝑒𝑡𝑖𝑛𝑎𝑙) was calculated. The equations

are given below:

ℎ 𝑓 𝑜𝑐𝑢𝑠𝑒𝑑

𝑑 𝑓 𝑜𝑐𝑢𝑠𝑒𝑑

=
ℎ𝑟𝑒𝑡𝑖𝑛𝑎𝑙

𝑑𝑒𝑦𝑒
(3.20)

𝑤 𝑓 𝑜𝑐𝑢𝑠𝑒𝑑

ℎ 𝑓 𝑜𝑐𝑢𝑠𝑒𝑑

=
𝑤𝑟𝑒𝑡𝑖𝑛𝑎𝑙

ℎ𝑟𝑒𝑡𝑖𝑛𝑎𝑙
(3.21)
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Figure 3.6: Amplitude function calculation for out-of-focus aberration using the principles of
similar triangles and rectangles.

After calculating the pupil plane surface, the research followed the general principle of ampli-

tude function mentioned before in the sub section 3.1.2.

As mentioned in sub-section 3.1.2, the wavefront aberration function is an important component

of the pupil function (see equation 3.1). Therefore, by providing the final wavefront aberration

function and amplitude function for the out-of-focus problem in AR in equation 3.1, the pupil

function for the out-of-focus aberration is obtained. Here, _ = 570nm as only black and white

images are considered for the dissertation research. By using the principle of the optical transfer

function (see equation 3.2) and convolution theorem (see equation 3.4), the final out-of-focus

aberrated retinal image is calculated.

Therefore, this dissertation’s model considers the following parameters to compute the out-of-

focus aberration in AR.

• Eye pupil size in diameter

• Focused real object distance in meter

• Out-of-focus AR object distance in meter

• Focused real object image size (width and height)
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It is essential to notice that if we consider Zernike polynomials and coefficients, we need only

one human-specific parameter (pupil radius). Other parameters vary and depend on the specific

scenario or experimental conditions and are measured according to the mathematical equations

and simulation. Further, data from the person’s eyeglass prescription is unnecessary for getting the

wavefront aberration function of the human eye for the out-of-focus aberration modeling in AR.

3.4 Results of Out-of-focus Aberration

Figure 3.7 shows a retinal image for the out-of-focus aberration based on the above description.

In this figure, according to the convolution theorem (see equation 3.4) or element-wise multiplica-

tion (see equation 3.5) between the original sharp image and the eye’s PSF, the blurred retinal image

is generated for the out-of-focus aberration of +4.75𝐷 with pupil diameter of 5𝑚𝑚. The disserta-

tion research made the assumption that the focused object image size is 250(𝑤𝑖𝑑𝑡ℎ) ×250(ℎ𝑒𝑖𝑔ℎ𝑡)

for all the PSF images and its corresponding retinal blurred images in whole dissertation.

Figure 3.7: Retinal blurred image is generated for the amount of out-of-focus aberration of +4.75𝐷
with a pupil diameter of 5𝑚𝑚.
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Impact of different amounts of pupil size on out-focus aberration As mentioned above, one

of the mandatory parameters of the developed out-of-focus aberration model is the human eye’s

pupil size. While discussing the quality of the retinal image, Artal [12] mentioned that the retinal

image’s quality is significantly affected by pupil size (see figure 3.8). From the figure 3.8, we

can observe that the larger pupil size (e.g., 7𝑚𝑚) generates more blurred than the smaller pupil

size (e.g., 3𝑚𝑚), though the amount of aberration is the same. This dissertation’s research also

supports this claim.

Figure 3.8: This image is adapted from the Artal [12]. The picture shows the effect of the larger
pupil diameter on the retinal image quality than the smaller pupil diameter.

Figure 3.9 shows the table of different PSF images and its corresponding retinal blurred image

for a range of pupil diameter (2𝑚𝑚 to 8𝑚𝑚) under the out-of-focus aberration of +4.75𝐷. The

PSF image shows how much the wavefront intensity/frequency contributes to the blur. The color

map shows the intensity/frequency level of the wavefront. Wavefront frequency values closer to

zero (Blue color) means less or no blur. As the wavefront frequency values increase, the amount
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Figure 3.9: Effects of different pupil diameters (ranges from 2𝑚𝑚 to 8𝑚𝑚) in the retinal image
quality under +4.75𝐷 of out-of-focus aberration in AR.
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of blur increases. Further, the wider the circle, the more waves are away from the center and the

higher the blur. It means that more of the wavefront at this point is contributing to the retinal blur.

From these results, we can see that, for different sizes of pupil diameters, retinal image quality

is different and have a different amount of blur. However, the amount of out-of-focus aberration is

the same. More specifically, blurred on retinal image increases with pupil diameter for a constant

amount of out-of-focus aberration or focal difference in AR. These findings support the previous

research regarding the retinal image with different pupil diameters[13, 12, 74]. Further, Liang and

Williams [74] stated that "aberrations are relatively similar between the left and right eyes of the

same observer." Therefore, my dissertation model is not eye-specific. Using the same methodology,

the dissertation’s developed model can generate out-of-focus aberration in AR for both left and

right eyes.

Impact of different amounts of out-focus aberration in the retinal image Figure 3.10 shows the

table of different PSF images and their corresponding retinal blurred image for a range of out-focus

aberration amounts (−4.75𝐷 to +4.75𝐷) under the pupil diameter of 5𝑚𝑚. A positive sign (+)

on the out-of-focus aberration means that the focused real object is located at a far distance, and

the out-of-focus AR object is displayed at a near distance (e.g., figure 3.4), and vice versa for the

negative sign (-) (e.g., 3.5). Supporting the theory of aberration, the result shows that as the amount

of out-of-focus aberration or focal switching distance increases in diopters, more of the wavefront

contributes to the retinal blur and the amount of blur increases in the final retinal images.

67



Figure 3.10: Effects of different out-of-focus aberration amount in the retinal image under the pupil
diameter of 5𝑚𝑚.
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CHAPTER IV

OUT-OF-FOCUS CORRECTION TECHNIQUE FOR AR SYSTEM

The previous chapter described how to model the out-of-focus aberration based on the focal

switching distance in AR for text-based information. This chapter provides a detailed description of

the out-of-focus aberration correction technique with proper related work and background. Further,

this chapter presents the image processing-based research of developing AR fonts with enhanced

text legibility when seen at the time out-of-focus.

4.1 Background and Related Work
4.1.1 Algorithm Based Focus Correction Through Image Processing

Algorithm-based correction through image processing means modeling an image with the com-

putational procedure such that the image looks sharper and more legible than the original aberrated

image when seen in incorrect focus. This computational procedure is known as "Deconvolution",

and the rendered image from the computational approach is termed as "Pre-corrected image". The

previous chapter shows that any particular eye aberration (e.g., defocus, astigmatism, out-of-focus)

can be modeled using the convolution theorem. Generally, the inverse process of convolution is

the deconvolution approach. One of the essential and challenging parts of working with image

processing-based focus correction is finding an appropriate and effective deconvolution algorithm.
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4.1.1.1 Refractive Human Vision Error Correction

The goal of the image-based focus correction technique for refractive vision problems is

to allow observers who usually wear glasses or contacts to view images without wearing their

corrective optics. According to this methodology, the deconvolution algorithm generates the

pre-corrected image in a controlled way such that when viewed by the observer without wearing

their corrective optics, it appears perceptually correct and sharper. Through many deconvolution

algorithms available in the image processing research domain, researchers use only a few specific

algorithms to correct human visual aberration (individuals having refractive vision problems,

including myopia, hyperopia, presbyopia, and astigmatism). Alonso and Barreto [1] in 2003 and

Alonso et al. [3] in 2004 first described the image-based vision correction technique and provided

the theoretical foundation for individuals with refractive vision problems. Their research aimed

to pre-compensation digital images before they are displayed to low-vision users on a computer

screen to compensate for their visual limitations. To conduct this research, they considered Wiener

filtering as the deconvolution algorithm. Yellott and Yellott [124] then improved the method for

reading blurred text by presbyopia but pointed out that the technique fundamentally suffers from

a loss of contrast. Montalto et al. [88] developed a novel approach to generate imagery with

improved sharpness for visually impaired individuals using the constrained Total Variation (TV)-

based image deconvolution method (see figure 4.1). This algorithm yielded improved sharpness,

higher contrast and introduced a novel parameter that allows controlling the tradeoff between

sharpness, ringing, and contrast of the pre-corrected images for the refractive vision problems.

Further, they provided a detailed comparison between the wiener filtering, and TV-based image

deconvolution approaches with the text images synthetically and camera-based testing. Both
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synthetically and camera-based testing showed that a constrained TV-based system improved the

visual acuity more than Wiener filtering with a Gaussian PSF-based approach under -2.5D of a blur.

Further, their user study found that 86% of participants read TV-based pre-corrected text while only

9% were able to read Wiener filtering-based pre-corrected text. Therefore, it is established that the

TV-based deconvolution algorithm provides better visual acuity in focus correction through image

processing for individuals with vision impairments.

Figure 4.1: Output of the constrained TV based image deconvolution algorithm by Montalto
et al. [88] for the visually impaired individuals. They considered Zernike-based PSF and TV-
based deconvolution algorithms for the pre-corrected image. Their pre-corrected image showed
high visual acuity both in simulation and through the camera. The blur and its corresponding
pre-corrected image are generated under −2.5𝐷 of blur in this image.

4.1.1.2 Out-of-focus Correction in AR

The primary principles of algorithm-based focus correction through image processing for

visually impaired people are related to the accommodation mismatch and out-of-focus problems

in AR and VR systems. However, successful vision correction algorithms for visual impairment

methods have not been tested or validated for viewing out-of-focus virtual content in the AR

system. Further, algorithm-based out-of-focus correction in AR is a less studied topic. Based

on my knowledge, only three papers considered the accommodation mismatch and out-of-focus
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problem in AR and VR to date [64, 31, 123]. Oshima et al. [64] developed SharpView algorithm

for general images [64] (See figure 4.2). However, this work did not appropriately consider human

visual aberration, considering Gaussian PSF and Wiener filtering deconvolution approach. Further,

they did not evaluate how their algorithm behaves for the AR textual information. Later, Trey

et al. [31] conducted a psychophysiology experiment to examine whether applying SharpView

algorithm [64] to virtual text presents improved text legibility. However, they did not find any

promising results for short AR text labels and symbols [31] (See figure [31]). Xu et al. [123]

proposed the first fully software-based visual aberration correction for VR systems that considers

Zernike polynomial and TV-based deconvolution techniques. This is the only paper that utilized

the principle of refractive vision correction technique in the VR research domain. They computed

the pre-corrected images based on the specific refractive error of a user in VR. However, their

research goal was to correct the refractive vision aberration so that users with visual impairments

can experience the VR environment without their corrective glasses or lens, not to mitigate the

out-of-focus aberration.

4.1.1.3 Challenges with Algorithm Based Focus Correction Approach

Generally, the problem of rendering pre-corrected images for an algorithm-based focus correc-

tion approach seems like the standard deconvolution approach. However, the methods are different.

In the traditional deconvolution approach, the goal of the deblurred algorithms is to remove the

blur of the blurred image to look similar to the original image. Therefore, the blurred and original

image pixel values do not change. In the focus correction-based deconvolution algorithm, the pre-

corrected and original images are not the same, but the pre-corrected images look sharper under the
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Figure 4.2: Output of the previous SharpView algorithm provided by Oshima et al. [64]. This
approach is considered Gaussian-based PSF and Weiner filtering-based deconvolution approach.
All three images were taken through the view of the OST AR system. The left image shows the
real image in focus. Due to the focus on the real image, the virtual image becomes blurred (Middle
image). An improved version of the blur virtual image after applying their sharpview algorithm is
shown in the rightmost image.

Figure 4.3: [Application of the SharpView algorithm by Oshima et al. [64] on the out of focus
textual information [31]. In (a), the camera is focused on the AR text, which makes the background
building out of focus. In (b), the camera is focused on the building, and the text is now out of
focus. In (c), SharpView is applied to the text, and the edges of the letters have increased contrast
compared to (b). Note that a camera cannot completely capture how this scene appears to a human
eye. However, their research showed that the SharpView algorithm by Oshima et al. [64] did not
show promising results for the AR textual information.

incorrect focus. They have improved visual acuity with incorrect focus on the retina. Therefore,

the pixel values between the blurred and pre-corrected images differ. Sometimes, pre-corrected

images contain negative or very high-intensity values that are unsuitable for human visual percep-
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tion and decrease visual acuity [88, 32]. According to Montalto et al. [88], this problem can be

solved by considering the whole precorrection approach in two steps: (1) obtain the pre-corrected

image with deconvolution algorithms and (2) restrict the pixel range of the pre-corrected images

within a positive valid bounded pixel value (e.g., [0, 1]). However, considering these two steps

to restrict the pixel values could cause unwanted ringing artifacts and contrast reduction in the

pre-corrected images [32]. Further, human visual perception is susceptible to ringing artifacts

and contrast. Montalto et al. [88] developed an image processing-based deconvolution algorithm

capable of controlling ringing and contrast in the pre-corrected images. Therefore, while working

on the algorithm-based focus correction approach, it is necessary to consider these additional

complications in the calculations.

4.1.2 Custom Hardware Based Focus Correction

Along with the image processing-based approach, the researchers have proposed many hardware-

based solutions over the last decade to minimize the switching distance between virtual and real

content and improve the visual acuity in the near-eye display. Further, several custom hardware-

based solutions have been introduced to correct refractive vision problems in vision research. Few

previous research considered both the algorithmic computation and extra optical elements in the

hardware-based solution. A detailed description of different hardware-based methods from the

vision and AR research is given in the following subsections.

4.1.2.1 Refractive Human Vision Error Correction

Pamplona et al. [95] presented the tailored display technology using the light field principle

to compensate for human visual aberration and provide better visual acuity to individuals with
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refractive vision problems. The display has the dynamic capability to adjust itself for people with

specific visual aberration, including cataracts and refractive effects. However, their display proto-

type utilized only a small portion of the eye’s field-of-view (FOV), and the perceived information

has low resolution. Huang et al. [52] presented a multi-layer pre-filtering approach to correct the

refractive aberration of the eye. Their method increases visual acuity so that individuals with vision

impairments can perceive images on displays such as phones, tablets, laptop screens, workstation

monitors, or others in sharp focus without eye-wears. Further, they mitigated the existing limi-

tations of the single-layer display, eliminated the ringing artifacts, and increased image contrast

by developing a multi-layer pre-filtering algorithm. However, their research required controlled

viewer tracking to model the PSF in the display plane. Later in 2014, Huang et al. [53] developed a

computational light field display with the 4D pre-filtering algorithm to correct the refractive vision

problems. The authors could generate images with high contrast and resolution for refractive

vision correction by combining the light field display technology and computational pre-filtering

technique. Further, Barsky et al. [16] developed a multilayer display witan h inverse pre-filtering

method and successfully mitigated the effects of contrast loss and ringing artifacts compared to the

single layer display. The methods listed above are all applied to creating screen-based displays,

which observers with visual impairments can see without wearing corrective optics.

4.1.2.2 Near-eye AR Display Hardware

In the AR research domain, along with the image processing-based approach, the researchers

have proposed many hardware-based solutions over the last decade to minimize the switching

distance between virtual and real content and improve the visual acuity in the near-eye display.
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While discussing the accommodation and vergence (see section 2.4.1), the research indicated that

accommodation and vergence mismatch is a major issue for the current OST AR displays as most

of the currently available OST AR displays have a single fixed focal plane. Theoretically, the

out-of-focus problem is related to the accommodation mismatch issue. Therefore, there has been

an intense flurry of activity in developing new hardware-based near-eye display technologies to

mitigate the accommodation-vergence mismatch issue in the AR domain. Several recent surveys

and review papers [57, 65, 126, 125] discussed different hardware-based approaches such as

multifocal displays [79, 50, 78, 102], varifocal displays [37, 122, 23], light field displays [82, 84],

retinal displays [120, 63, ?, 97] and others.

Multifocal displays Multifocal displays provide multiple image planes, each at different focal

depths, allowing users to refocus between different available focal planes [125]. Multiple focal

planes reduce the maximum focal distance difference between a real and virtual object. MacKenzie

et al. [80] investigated accommodation control to multifocal plane displays. Their experiment

revealed that three focal planes with five focal plane separation distances in the monocular condition

is good enough for providing accurate stimulus to accommodation. Further, in 2012, MacKenzie et

al. [79] conducted another study and found that maximum image place separation for the binocular

condition could be up to 0.6D for providing near-accurate accommodation. Recently, Change et

al. [27] added a new dimension to the multifocal plane display research. They developed occlusion

aware multifocal plane display prototype that enables occlusion cues between the focal planes of

the multifocal plane display.
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Varifocal displays Another interesting hardware-based solution is the Varifocal displays, where

the display can dynamically change a single focal plane with an adjustable focal depth. Varifocal

displays required a precise eye tracking method [65] that required a different method to estimate

the depth [8]. Dunn et al. [37] demonstrated a prototype with a wide field of view and supported

the range of focal distances from infinity to less than 10cm. Further, their prototype preserved the

quality of the AR images with latency. Later, Xia et al. [122] proposed a novel near-eye display

design where a tunable focus lens was adjusted to provide the accurate accommodation demand for

the AR display. Under this prototype, the virtual image can be rendered from 0.33m to infinity and

the tunable lens can adjust to correct accommodation for different accommodation demands. Thus,

the vergence-accommodation conflict in the OST AR display can be mitigated. Further, according

to this research, prescription eyeglasses won’t be needed for observers with visual aberration to

observe the virtual information.

Light field and Holographic displays To provide near accurate accommodation demand and

mitigate the out-of-focus issue in the retina, a different light field near AR displays has been

proposed [51, 82, 72]. The goal of these displays is to utilize the series of light rays to generate

the virtual information with accurate accommodation and vergence demand. Lanman et al. [72]

developed a microlens array-based light field near the display that can provide nearly correct

depth cues such as convergence, accommodation, binocular disparity, and retinal defocus. Further,

Hua and Javidi [51] integrated the freeform optical technology and microscopic integral imaging

method to utilize the light rays for the reconstruction of AR 3D scene to mitigate the effects of

vergence-accommodation conflict. Further, Maimone and Fuchs [82] demonstrated a light field
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near-eye display prototype with a stack of light modulators to support a broad field view of the

AR displays. Another near-eye AR display technology is Holographic near-eye display. Several

researchers believed that holographic display technology is the ideal approach to provide a wide

field of view without the vergence-accommodation conflict [122, 121]. In holographic near-eye

display technology, light wavefronts are reconstructed by recording both the amplitude and phase

of the display scene. Xia et al. [121] developed a prototype of the holographic near-eye display

based on a lenslet array to provide a wide field of view and an expanded eye box without moving

parts. Furthermore, a real-time hologram computation method that enabled near-eye holographic

display was presented by Maimone et al. [83]. Besides, they extended the prototype for the vision

correction capabilities and allowed a wide field of view with high image resolution.

Retinal projection displays Retinal projection displays always render the image directly on the

retina. Therefore, retinal project displays do not have any focal distance, virtual information is

always in focus, and it triggers depth perception only with the vergence cue. The theory and

mechanism of the retinal projection display are based on the Maxwellian view [97, 76]. Under the

retinal projection display, the pupil is considered a pinhole model. All the light rays are emitted

from the spatial light modulator and forced to converge at the center of the pupil. Finally, a sharp,

clear image formed on the retina. Therefore, this technology is suffering from the smaller eye

box size, which depends on pupil size. For more information about the retinal projection display

technology, I refer the reader to a recent review paper by Lin et al. [76].
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4.1.2.3 Challenges with Hardware Based Focus Correction Approach

In the previous paragraphs, I have discussed some recent works of hardware-based focus

correction techniques from both vision research and AR-VR research perspective. Now, some

challenges of working with the hardware-based focus correction approach are given below:

1. In the refractive vision correction system, most screen-based approaches restrict the user’s
movement, preventing real-life practical application.

2. Most screen-based refractive vision correction techniques face numerous engineering chal-
lenges, such as contrast loss and chromatic aberration.

3. Hardware-based focus correction approaches in the AR-VR research domain, to date, only
exist as optical workbench prototypes and face engineering challenges regarding eyebox size,
resolution, field of view(FOV) eye tracker integration, rendering performance, and shrinking
the optical and electronic components to head-worn dimensions. Some hardware-based
approaches also need to handle the extra computation complexity.

4. Most prototypes exist as workbench prototypes, and it is unknown whether or how long it
will take for these solutions to mature into wearable displays.

4.2 Dissertation Research’s Approach for Out-of-focus Correction in the AR system

Most hardware-based methods are still workbench prototypes and face enormous engineering

challenges and computational complexity. Further, the image-based approach is an integral part

of some hardware-based systems, which means the efficiency of the image-based process is also

crucial for the hardware-based approach. Therefore, finding an effective and appropriate image

processing method to mitigate the out-of-focus problem in AR would be a novel and challenging

research avenue. Mitigating the out-of-focus problem in AR means providing the nearly accurate

accommodation demand of the out-of-focus information when the user focuses on information with

another accommodation demand.

After examining all the advantages and challenges of both image-based and hardware-based

focus correction methods, my dissertation considered fully image-based out-of-focus correction
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methodology. Under this methodology, this research considered constrained total-variation (TV)

based image deconvolution approach to rendering the virtual text for the out-of-focus condition in

AR. This research termed the pre-corrected image as SharpView font, a font that looks sharper when

seen in the out-of-focus. It is important to note that the font is rendered white on a black image.

All the original fonts (without pre-processing) in this research are Arial fonts because, compared

to other fonts, Arial font has simple geometry. Further, in the AR system, black is considered

transparent. Therefore, only the white font will be displayed through the optics. Additionally, no

other information exists in the image except the font.

4.2.1 Constrained Total Variation (TV) Based Out-of-Focus Correction for AR

The total variation (TV) deconvolution technique is a gradient-based image processing ap-

proach where the whole problem is considered a convex image optimization problem [26, 17].

Mathematically optimization is the process of obtaining an optimal solution for a specific function

from a range of values by considering a list of constraints. The optimization process involves tuning

a set of parameters to either maximize or minimize the objective function. It has various appli-

cations (e.g., image processing, circuit manufacturing, networking, machine learning, and others),

but this research considers the optimization from the image processing perspective. Furthermore,

the objective function of our image optimization problem is the convex optimization function.

Mathematically, we can consider a function is convex if we draw a straight line between any two

points of the function, then all points between those two points will be below the line. Further, the

convex function could refer to every local minimum as the global minimum. Therefore, one of the

main advantages of using the convex optimization function is the guarantee to obtain the global
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optimum in the solution [25]. Moreover, according to Chambolle and Pock [25], the TV-based

technique on convex optimization for imaging considers the sharp discontinuities in the solution,

which preserve and represent essential properties of the edges, which is an important feature of

this research.

Rudin, Osher, and Fatemi [104] first introduced a total variation-based approach for removing

noise from the image in 1992. They minimized the total variation norm in the numerical algorithm to

get the optimal solution for the denoised image. Since then, many variations of TV-based algorithms

have existed for different problems and applications [19, 17, 100, 25, 88, 123]. Bioucas-Dias et

al. [20] proposed a TV-based image deconvolution algorithm for the additive white Gaussian noise

in the image. Their approach showed that only the best solution could be obtained by assuring the

decreased function values with a few iterations instead of minimizing the objective function to its

optimal value. Later, in 2007, Bioucas-Dias et al. [19] introduced two steps iterating thresholding

TV algorithm with a much faster convergence rate than the traditional TV algorithm for image

restoration. Another TV-based algorithm is the primal-dual approach, where one step of the

optimization is performed in the primal domain and another step in the dual domain [24, 100, 25].

Beck and Teboulle [17] derived fast gradient-based algorithms for constrained total variation

image denoising and deblurring Problems. Their method considered the dual-based method to

get a faster global convergence rate in the solution. The research of Beck and Teboulle [17]

established non-negativity and bounded value constraints novel monotone version of a fast iterative

shrinkage/thresholding algorithm (FISTA) for TV-based image deblurring, which is so far the faster

and better algorithm than the existing approaches.
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In this research, to generate the pre-corrected image, the TV algorithm minimizes a convex

objective function by tuning a set of parameters to achieve an optimal solution. We adopted the

monotone version of the fast iterative shrinkage/thresholding algorithm (MFISTA) by Beck and

Teboulle [17], which is a constrained TV algorithm. Considering this algorithm, the optimal

pre-corrected image always has constrained or bounded pixel values between 0 and 1. Further,

the methodology to calculate the contrast reduction was adapted from Montalto et al. [88]. This

research also introduced a ringing control parameter to remove the unwanted ringing waves around

the pre-corrected image. According to Beck and Teboulle [17] and Montalto et al., [88], the

general model (see equation 4.1) for the constrained TV-based image deconvolution method to

generate pre-corrected images is given below:

𝑝(\, 𝐼𝑐) = 𝑎𝑟𝑔 min
0≤∥𝑝∥≤1

(
𝑘 ⊗ 𝑝 − 𝐼𝑐


𝐿2 + \

∇𝑝
𝐿1) (4.1)

Here, the equation 4.1 attempts to compute the pre-corrected image (𝑝) such a way that

convolved pre-corrected image (𝑘 ⊗ 𝑝) similar to the original image, (𝑘 ⊗ 𝑝) ∼ 𝐼𝑐. The constrained

TV-based model (equation 4.1) can be divided into two terms:

1. Deconvolution term:
𝑘 ⊗ 𝑝 − 𝐼𝑐


𝐿2 is the deconvolution term of the model. This term

confirms that convolved pre-corrected image is visually similar to the original image in the
𝐿2 sense [88].

2. Regularization term: \
∇𝑝

𝐿1 is the regularization term of the constrained TV algorithm
which is the TV-norm of pre-corrected image in the 𝐿1 sense. This term estimates, controls,
and monitors the amount of ringing in the pre-corrected image. Further, it also contributes
to generating sharp edges in the convolved pre-corrected image of the model [88].

4.2.1.1 Out-of-focus Correction Model Parameters

Out-of-focus PSF (𝑘) Out-of-focus visual aberration (PSF), k, is obtained from Chapter III.
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Convolution Operation (⊗) Convolution operation (⊗) based on the image current domain, either

spatial or frequency domain.

Contrast Rescaled Version of the Original Image (𝐼𝑐) Contrast rescaled version of the original

image within the contrast range of lower contrast level (𝐶𝑙𝑜𝑤) to higher contrast level(𝐶ℎ𝑖𝑔ℎ). Let’s

assume that the original image is 𝐼. By following the contrast reduction technique of Montalto

et al. [88], the reduced contrast version of the original image (I) is calculated using the following

formula:

𝐼𝑐 = 𝐼 × (𝐶ℎ𝑖𝑔ℎ − 𝐶𝑙𝑜𝑤) + 𝐶𝑙𝑜𝑤 (4.2)

Percentage of contrast loss, 𝐶𝐿 = (𝐶𝑙𝑜𝑤 + (1 − 𝐶ℎ𝑖𝑔ℎ)) × 100 (4.3)

Here, 𝑡 is the original image with no contrast loss (𝐶𝑙𝑜𝑤 = 0 and 𝐶ℎ𝑖𝑔ℎ = 1). Contrast reduction

of the original image is a major part of our algorithm. Previous research by Montalto et al. [88]

observed that by decreasing the original images’ contrast range, more ringings were produced in

the pre-corrected image and provided more sharpness and resolution in the convolved pre-corrected

image (𝑘 ⊗ 𝑝). Further, Huang et al. [52] observed that lower contrast images had more sharpness

than high contrast images. Therefore, in this research, we considered the re-scaled version of

the original image with a different amount of contrast loss; contrast reduction is performed until

𝐶𝑙𝑜𝑤 = 𝐶ℎ𝑖𝑔ℎ.

Regularization parameter (\) Regularization parameter, where \ > 0.0. Here, \ behaves like a

weighted value to the regularization term. If the \ value is high, then more weight contributes to

the regularization term (\
∇𝑝

𝐿1), and the pre-corrected image will have less ringing and more
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smooth. But, a very large \ value could wash out the pre-corrected image. On the other side, if the

\ value is small, then the contribution of the regularization parameter to the regularization term

will be small. Therefore, the pre-corrected image will have a larger amount of ringing and be less

smooth. Most importantly, the regularization parameter allows us to control the desired level of

ringing in the pre-corrected image based on the visual acuity.

Gradient (∇) Gradient of the image is a 2D variable function that computes the derivatives for a

given matrix (e.g., the provided image) in the horizontal and vertical directions.

Pre-corrected Image (p) Pre-corrected image within the range of positive bounded pixel values

([0, 1]). This parameter defines the final output from the algorithm. Theoretically, the pre-corrected

image should be visually sharper when seen in the out-of-focus condition in AR.

4.3 Initial Results

The results of the constrained TV-based out-of-focus pre-correction algorithm are shown in

Figure 4.4 (for letter), Figure 4.5 (for word) and Figure 4.6 (for phrase). The pre-corrected images

for these figures are generated for the out-of-focus aberration of +4.7D with a pupil diameter of

5mm. We consider five different amount of contrast loss- 10%, 30%, 50%, 70%, and 90%, and

three different levels of regulation parameter (\)- large (\ = 0.01), medium (\ = 0.0001) and small

(\ = 0.000001).

For this research, the font is 400 pixels in size for the letter, word and phrase. However, each

of the textual information is rendered on different resolutions of images based on the quantity of
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Figure 4.4: Results of the constrained TV-based out-of-focus pre-correction algorithm for the letter.
The pre-corrected images are generated with ten different CL(%) and three different \ levels under
out-of-focus aberration of +4.75𝐷 over a 5mm pupil. Final pre-corrected images are generated by
the following description of section 4.4

the information, for letter 500 × 500 resolution image, for word 1100 × 500 resolution image, and

phrase 1400 × 1200 resolution image,
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Figure 4.5: Results of the constrained TV-based out-of-focus pre-correction algorithm for word.
The pre-corrected images are generated with ten different CL(%) and three different \ levels under
out-of-focus aberration of +4.75𝐷 over a 5mm pupil. Final pre-corrected images are generated by
following the description of section 4.4

A detailed description and discussion of the figure 4.4 is given below:

Contrast Adjusted Original Image This row shows different rescaled versions of the original

image based on the different amounts of contrast loss. The calculations are done by following the

equations 4.2 and 4.3. For a particular CL(%) amount, the original image is adjusted to that CL(%)

amount and then is supplied to compute the out-of-focus aberration (described in Chapter III) and

pre-corrected image.
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Figure 4.6: Results of the constrained TV-based out-of-focus pre-correction algorithm for phrase.
The pre-corrected images are generated with ten different CL(%) and three different \ levels under
out-of-focus aberration of +4.75𝐷 over a 5mm pupil. Final pre-corrected images are generated by
the following description of section 4.4
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Pre-corrected Image This row has three sub-rows where each row shows the results for a specific

\ value under different amounts of CL(%) for the out-of-aberration of +4.75𝐷 and pupil diameter

of 5mm.

\ = 0.01: This sub-row shows the effect of large \ values on the pre-corrected image of different

CL (%) amount. As the amount of CL(%) increases, a larger amount of ringing appears in the

pre-corrected image. However, when the CL(%) is very high (e.g., CL(%) = 90), all ringing

oscillations on the pre-corrected image are not visible fully due to the lower amount of contrast.

\ = 0.0001: This sub-row shows the effect of medium \ values on the pre-corrected image of

different CL (%) amount. Like before, as the amount of CL(%) increases, a larger amount of

ringing appears in the pre-corrected image. Furthermore, the ringing amount is higher than the

\ = 0.01 situation. Similarly, when the CL(%) is very high (e.g., CL(%) = 90), not all ringing

oscillations on the pre-corrected image are visible in the pre-corrected image due to the presence

of a lower amount of contrast.

\ = 0.000001: This sub-row shows the effect of smaller \ values on the pre-corrected image of

different CL (%) amounts. Supporting the behavior of large and medium \ values, increasing the

amount of CL(%) generates a larger amount of ringing in the pre-corrected image. Compared to the

\ = 0.01 and \ = 0.0001 situations, pre-corrected image gains more ringing with smaller \ values.

Similarly, during the very high CL(%) situation (e.g., CL(%) = 90), not all ringing oscillations on

the pre-corrected image are properly visible in the pre-corrected image as it has a lower amount of

contrast.
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Both Figure 4.5 (for word) and Figure 4.6 (for phrase) show the similar characteristics in the

pre-corrected images for the \ values and different amounts CL (%).

4.4 Final Pre-corrected Image

Alonso et al. [2] stated that not all the information on the pre-corrected image from the image

deconvolution method for computer users with visual aberration is necessary. Therefore, they

extracted only the necessary information from the initial pre-corrected image. In this research, we

considered the same principle for the pre-corrected images of the out-of-focus correction method.

We observed that ringing waves uniformly spread over the whole pre-corrected image based on

the different amount of CL(%) and \ (see figures 4.4, 4.5 and 4.6). Human visual perception is

highly sensitive to ringing [88, 52] and could misperceive the image due to the wrong amount

of ringing in the pre-corrected image. Further, only a finite region around the boundary of the

textual information is needed to perceive the information with improved visual acuity during the

out-of-focus situation. Perceptually, enhanced out-of-focus text legibility highly depends on the

edge region of the pre-corrected textual image. Suppose a constant amount of ringing exists around

the pre-corrected textual image. In that case, it lessens the constrained bounded pixel value and

allows more freedom to form a perceptually sharper edge representation. If no ringing is present,

the pixel values around the edge won’t ultimately appear sharper. It turns out it could have a

negative impact on the perceptually observed pre-corrected images. Therefore, in this research, we

have considered up to two waves of ringing in the final pre-corrected image.

The final pre-corrected image is generated based on the convolution between the pre-corrected

image (p) and a mask with the required region. Mask with the required area of interest contains zeros
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where the information is unnecessary and ones where the information needs to be extracted (see

figure 4.7). To obtain the required mask region, we need to perform another convolution operation

between the original image and a circular mask. The circular mask (𝑀𝑐𝑖𝑟𝑐𝑢𝑙𝑎𝑟) is calculated based

on the original image (𝐼𝑥,𝑦), original image’s center (𝐶𝑒𝑛𝑡𝑒𝑟𝑐𝑥,𝑐𝑦) and diameter (𝑀𝑑𝑖𝑎𝑚𝑒𝑡𝑒𝑟). Let’s

assume that 𝛼 is the ringing control parameter and PSF diameter is 𝑃𝑆𝐹𝑑𝑖𝑎𝑚𝑒𝑡𝑒𝑟 . Then, the diameter

of circular mask 𝑀𝑑𝑖𝑎𝑚𝑒𝑡𝑒𝑟 is calculated from the following equation:

𝑀𝑑𝑖𝑎𝑚𝑒𝑡𝑒𝑟 = 𝛼.𝑃𝑆𝐹𝑑𝑖𝑎𝑚𝑒𝑡𝑒𝑟 (4.4)

𝑀𝑐𝑖𝑟𝑐𝑢𝑙𝑎𝑟 (𝐼𝑥,𝑦, 𝐶𝑒𝑛𝑡𝑒𝑟𝑐𝑥,𝑐𝑦, 𝑀𝑑𝑖𝑎𝑚𝑒𝑡𝑒𝑟) =


1, if

√︃
(𝐼𝑥 − 𝐶𝑒𝑛𝑡𝑒𝑟𝑐𝑥)2 + (𝐼𝑦 − 𝐶𝑒𝑛𝑡𝑒𝑟𝑐𝑦)2 ≤ 𝑀𝑑𝑖𝑎𝑚𝑒𝑡𝑒𝑟

0, otherwise

(4.5)

The circular mask, 𝑀𝑐𝑖𝑟𝑐𝑢𝑙𝑎𝑟 is calculated by considering the pixels where the square root of

the sum of squares from the center to each pixel of the original image falls within the radius

value of the mask diameter (see equation 4.5). The formulation and implementation provided by

Shoelson [108]. Note that by changing the value of 𝛼, the circular mask’s size will change, which

eventually determines the amount of ringing in the pre-corrected image. This document considers

𝛼 = 0.75 for generating two waves of ringing around the pre-corrected textual images. We obtained

this value by performing the trial and error approach. By performing the convolution between the

original image (𝐼 (𝑥, 𝑦)) and circular mask (𝑀𝑐𝑖𝑟𝑐𝑢𝑙𝑎𝑟 (𝑥, 𝑦)), the required mask (𝑀𝑟𝑒𝑞𝑢𝑖𝑟𝑒𝑑 (𝑥, 𝑦))

region is obtained (see equation 4.6 and figure 4.7)). Finally, the convolution operation between the

pre-corrected image (𝑝(𝑥, 𝑦)) and required mask (𝑀𝑟𝑒𝑞𝑢𝑖𝑟𝑒𝑑 (𝑥, 𝑦)) provides the final pre-corrected
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image (𝑝 𝑓 𝑖𝑛𝑎𝑙 (𝑥, 𝑦)) (see equation 4.7 and figure 4.7)). The output of these two convolution

operations is shown in figure 4.7.

𝑀𝑟𝑒𝑞𝑢𝑖𝑟𝑒𝑑 (𝑥, 𝑦) = 𝐼 (𝑥, 𝑦) ⊗ 𝑀𝑐𝑖𝑟𝑐𝑢𝑙𝑎𝑟 (𝑥, 𝑦) (4.6)

𝑝 𝑓 𝑖𝑛𝑎𝑙 (𝑥, 𝑦) = 𝑝(𝑥, 𝑦) ⊗ 𝑀𝑟𝑒𝑞𝑢𝑖𝑟𝑒𝑑 (𝑥, 𝑦) (4.7)

Figure 4.7: Process of generating final pre-corrected images. The process followed the description
of section 4.4 and considered the equations 4.4, 4.5, 4.6 and 4.7.

The results of the final pre-corrected images are shown in the final pre-corrected image rows of

figures 4.4, 4.5 and 4.6 for different combination of \ and CL(%) under the out-of-focus aberration

of +4.75𝐷 and pupil diameter of 5mm. It is important to note that in this section, we only

removed the unnecessary ringing waves from the pre-corrected images to make them tidy. The

TV-based algorithm’s parameters, characteristics, and behavior will remain the same for each final

pre-corrected image.

4.5 Analysis of Algorithmic Parameters

In the previous sections, we have seen the visual effects of our constrained TV-based deconvo-

lution algorithm’s parameters on the pre-corrected images for the out-of-focus aberration in AR.
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In this section, this research analyses the relationship between the algorithm’s parameters, optimal

value, and pre-corrected image generation time. The main parameters of the algorithm are CL(%),

regularization parameter (\), pupil diameter, and out-of-focus aberration values. To determine the

relationship, we consider the TV value which is the TV norm of pre-corrected image (
∇𝑝

𝐿1) of

the algorithm. This TV value also defines the amount of energy gained in the pre-corrected image

from the optimization. Further, we have considered ten different CL(%) amount (0%, 10%, 20%,

30%, 40%, 50%, 60%, 70%, 80%, and 90%,) and three \ values (1𝑒 − 02, 1𝑒 − 04, 1𝑒 − 06)

Figure 4.8: Relationship among CL (%), \ and TV value over the pupil diameter of 5mm under
out-of-focus aberration of +4.57𝐷. X-axis shows different amounts of CL(%) and y-axis denotes
the TV value (TV-norm of pre-corrected image(𝑝)). For each of the \ values, as the amount of
CL(%) increases, the TV value increases, but after reaching its optimal value, it decreases. Large
\ value gains a lower TV value in the pre-corrected image compared to the small \ values

CL (%), \ and TV value Figure 4.8 shows the relationship between the CL (%) and \ value for

the pupil diameter of 5mm under out-of-focus aberration of +4.57𝐷. Three colors in the figure
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denote three \ values where red is for 1𝑒 − 02 (large), blue is for 1𝑒 − 04 (medium) and green is for

1𝑒 − 06 (small) \ values. The observations from this figure are given below:

• For each of the \ values, as the amount of CL(%) increases, the TV value starts increasing,
but after reaching its optimal value, it starts decreasing. Based on our investigation -

– For large \, optimal TV value is obtained within the range of 50% - 60% of CL for the
textual information.

– For medium \, optimal TV value is obtained within the range of 70% of CL for the
textual information.

– For small \, optimal TV value is obtained within the range of 70% - 80% of CL for the
textual information.

• TV value depends on the magnitude of \. For each of the CL(%) amounts under each
type of textual information, the small \ value gains a high TV value (more ringing) in the
pre-corrected image compared to the large \ values.

• From the optimal values, it is clear that for a particular \ value, letter has much smaller
optimal TV value than word and phrase. Supporting this, word has larger TV value than a
letter but a smaller TV value than phrase. Phrase has the largest TV value than a letter and
a word for a specific \ value. Therefore, we can say that TV values further on the image
resolution. The letter contains very little information compared to the phrase, and to render
a letter required less space than a phrase. It implies that the image size of a letter is smaller
than a phrase, and it gains less TV value from the optimization than the phrase.

Optimal value analysis Figure 4.9 exhibits the CL(%) and \ values for generating the optimal

TV values of the algorithm over pupil diameters ranging from 2mm to 8mm. Across all the pupil

diameters and textual information (letter, word, and phase), the optimal TV value is obtained with

a small \ value rather than the large and medium \ values. For the pupil diameter of 2mm, 60%

CL is enough to obtain the optimal value for the letter, word, and phrase. For the pupil diameters

ranging from 3mm to 6mm, the CL(%) goes from 70% to 80% to obtain the optimal value. For the

large pupil sizes (7mm and 8mm), a high amount of CL(%) is necessary. Therefore, the takeaway

from this analysis is that a constrained TV-based deconvolution algorithm requires more than 50%
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Figure 4.9: CL(%) and \ for optimal TV-value over a range of pupil diameter from 2mm to 8mm.
The X-axis shows pupil diameter(mm), and the y-axis denotes the CL(%). Only \ = 1𝑒 − 06 is
responsible for generating the optimal TV value across all pupil diameters and textual information.
The black point represents the (CL%) responsible for obtaining the TV value for each pupil’s
diameter.

amount of CL and a small \ value (1e-06) for achieving the optimal value to generate pre-corrected

textual information for different pupil diameters.

Impact of pupil size on optimal pre-corrected images In the above analysis, we have seen the

optimal values of the system’s pre-corrected images for pupil diameters ranging from 2mm to

8mm with CL(%) and \ under the out-of-focus aberration of +4.75𝐷. The optimal pre-corrected

images ranges from 2mm to 8mm are given in Figure 4.10. It is important to notice here that our

algorithm works well only for pupil diameters ranging from 4mm to 6mm because the pre-corrected

image can preserve the shape of the original textual information, and the aberration is balanced

within this pupil size range. When the pupil diameter is too small, the algorithm is not performing

much pre-correction as the amount of aberration on the blurred image is small (see Chapter III,

Figure 3.9). On the other side, a larger pupil diameter (ranges from 7mm to 8mm) causes the
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Figure 4.10: Impact of pupil size ranges from 2mm to 8mm on optimal final pre-corrected images
with a letter, word, and phrase. The algorithm works only for pupil diameters ranging from 4mm
to 6mm, not small pupil diameter ranges (2mm to 3mm) and large pupil diameter ranges (7mm to
8mm).

images to be washed out because the blurred image contains unbalanced aberration in the blurred

image (see Chapter III, Figure 3.9) and ringing waves are not uniformly distributed.

Image Generation Time Figure 4.11 shows the mean time required to generate the pre-corrected

images for pupil diameters ranging from 2mm to 8mm. Here, the mean for each pupil diameter is
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Figure 4.11: Mean time required to generate the pre-corrected images for pupil diameters ranges
from 2mm to 8mm. Our approach takes approx. Twelve seconds to generate a pre-corrected image
for letter, approx. Seventeen seconds to generate a pre-corrected image for word and approx.
Seventy seconds to generate a pre-corrected image for a phrase.

calculated from the image generation time of 30 pre-corrected images. Each pre-corrected image

is generated with the unique combination of a \ and CL(%).

The algorithms for generating pre-corrected images are implemented in Matlab. The whole

system runs on a MSI Laptop with the following system configuration:

• Processor: Intel Core i7 with 2.60GHz

• RAM: 32 GB

• System type: 64-bit Windows 10 Pro Operating System

• Graphics card configuration: NVIDIA GeForce RTX 2070

Overall mean time of generating a letter (11.92 seconds) is smaller than a word (16.97 seconds)

and a phrase (69.74 seconds). Image with phrase requires more time to generate the pre-corrected

image. This is not surprising as the pre-corrected image generation fully depends on the image’s
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resolution and information. As the size of the image resolution of the letter is smaller than word

and phrase, it takes less time to generate than the word and phrase. In conclusion, we can say that

our approach takes approx. Twelve seconds to generate a pre-corrected image for letter, approx.

Seventeen seconds to generate a pre-corrected image for word and approx. Seventy seconds to

generate a pre-corrected image for a phrase.
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CHAPTER V

EVALUATION OF OUT-OF-FOCUS CORRECTION TECHNIQUE FOR AR SYSTEM

The dissertation research aims to design an AR font for the out-of-focus issue in AR, which

perceptually looks better (sharper) when seen out of focus than a regular unprocessed font. To

accomplish this research goal, in the previous chapters, we have seen the impact of focal distance

switching and out-of-focus, method of generating human perceptual out-of-focus blur, and out-of-

focus correction algorithm to render pre-corrected textual images. This chapter aims to evaluate the

out-of-focus correction algorithm with synthetic simulation and camera-captured images through

the optics of the OST AR display, named AR Haploscope. For evaluation purposes, the term

convolved image means the image is a computer under the synthetic simulation. Further, the term

captured image implies that a camera captures the image through the optics of the AR Haploscope.

For this evaluation, this research developed an image gradient-based sharpness measurement

technique by comparing the presence of blur in the edge region of the image and the pre-corrected

image. By using this method, the amount of out-of-focus blur can be quantified in an image.

Further, this research can determine which CL (%) amount and regularization parameter (\) value

are suitable for the +4.75𝐷 of out-of-focus aberration under the pupil diameter of 5mm.
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Figure 5.1: How can we define that the left image (sharper font) is sharper than the right image
(blur font)?

5.1 Sharpness Measurement Method

In the evaluation stage, one crucial question- how can we quantify the sharpness or improved

visual acuity of our constraint TV-based pre-corrected images in both simulated and camera-

captured output? For example, in figure 5.1, two fonts are given, a sharper font (left image) and

a blurred font (right image). It brings the question, how much sharper is the sharper font than

the blurred font? Therefore, in this dissertation research, the sharpness measurement method

determines the sharpness of the textual image based on the presence of blur around the edge region

of the font. The main goal of our sharpness measurement method is to process the image in such

a way that the image only contains the blur pixels, no sharp edges or pixels. Let’s assume that the

sharpness measurement method estimates the blur of the grayscale image 𝑡 (𝑥, 𝑦) where x and y

are the row and column of the image. Mathematical formulation to estimate the presence of blur

amount in 𝑡 (𝑥, 𝑦) image is given below:

1. Image gradient provides the strength of the edges of the image. At first, the method computes
the gradient (∇) of the image 𝑡 (𝑥, 𝑦) using the Sobel gradient operator and it’s corresponding
gradient magnitude. As the method’s goal is to compute only the blur region, we need to
obtain certain pixel values which are not contributing to the blur. Therefore, we calculated the
range of the magnitude image gradient (𝛿𝐺) based on the maximum and minimum magnitude
of the image gradient (

∇𝑡 (𝑥, 𝑦)) with a certain threshold (𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑𝐺). The threshold is
a value (%) that we added to decide the percentage of the range of the image gradient that
could contribute to blur. The corresponding equation is given below:
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𝛿𝐺 = (max
∇𝑡 (𝑥, 𝑦) − min

∇𝑡 (𝑥, 𝑦)) × 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑𝐺 (5.1)

2. To compute the meaningful blur region, we made everything of the magnitude of the image
gradient ((

∇𝑡 (𝑥, 𝑦))) below the 𝛿𝐺 equal to zero. Therefore, we do not need to account for
minimal pixel numbers. The equation is given below:

𝑡 (𝑥, 𝑦) =
{

0, if
∇𝑡 (𝑥, 𝑦) ≤ 𝛿𝐺

𝑡 (𝑥, 𝑦), Otherwise
(5.2)

3. From the previous two steps, theoretically, we could obtain the blur region for estimating
the sharpness of the image. However, there is still a possibility that the image contains a
certain amount of sharp edges and pixels, which are not part of the blur region. Therefore,
we computed the edge gradient of the image 𝑡 (𝑥, 𝑦) using the Sobel method as this method
estimates the edges at those points where the gradient is maximum. Similar to the step 1, we
calculated the range of the magnitude image edge gradient (𝛿𝑒𝑑𝑔𝑒) based on the maximum and
minimum magnitude of the image edge gradient (

∇𝑡𝑒𝑑𝑔𝑒 (𝑥, 𝑦)) with a specific threshold
(𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑𝑒𝑑𝑔𝑒). The threshold is a value (%) that we added to decide the percentage of the
range of the image edge gradient that could contribute to blur. The corresponding equation
is given below:

𝛿𝑒𝑑𝑔𝑒 = (max
∇𝑡𝑒𝑑𝑔𝑒 (𝑥, 𝑦) − min

∇𝑡𝑒𝑑𝑔𝑒 (𝑥, 𝑦)) × 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑𝑒𝑑𝑔𝑒 (5.3)

4. To compute the meaningful blur region without any sharp edges and pixels, we made
everything of the magnitude of the image edge gradient ((

∇𝑡𝑒𝑑𝑔𝑒 (𝑥, 𝑦))) above the 𝛿𝑒𝑑𝑔𝑒
equal to zero. Therefore, we do not need to account for huge pixel numbers. The equation
is given below:

𝑡 (𝑥, 𝑦) =
{

0, if
∇𝑡𝑒𝑑𝑔𝑒 (𝑥, 𝑦) ≥ 𝛿𝑒𝑑𝑔𝑒

𝑡 (𝑥, 𝑦), Otherwise
(5.4)

5. As described previously, this research considered the different amounts of CL(%) during
the generation of the pre-corrected images. Therefore, it is important to consider this
property in the sharpness measurement method before estimating the presence of blur. To
handle different amount of CL(%) images in the sharpness measurement technique, we have
calculated the contrast invariance by normalizing the image 𝑡 (𝑥, 𝑦) with the L-2 norm of the
image 𝑡 (𝑥, 𝑦) (see equation 5.5). Previously, Wee et al. [118] did a similar normalization step
while measuring the image sharpness using eigenvalues. By performing this normalization
step, our image sharpness measurement method becomes independent of the image contrast
effect.

𝑡 (𝑥, 𝑦) = 𝑡 (𝑥, 𝑦)𝑡 (𝑥, 𝑦)
𝐿2

(5.5)
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6. At the final step, the sharpness measurement method quantifies the blur amount in an image
by dividing the L1-norm the of the image (

𝑡 (𝑥, 𝑦)
𝐿1

) with a number of pixels (𝑥 × 𝑦)
contributes to the blur. The hypothesis is that the smaller the value of the blur amount, the
higher the sharpness of the textual information in the image. The equation is given below:

Blur amount =

𝑡 (𝑥, 𝑦)
𝐿1

(𝑥 × 𝑦) (5.6)

As mentioned earlier, we need to compare two images to determine the sharper image with

less blur in the edge region. Let’s assume that one image is 𝑡1 and its corresponding blur amount

is Blur amount𝑡1. Another image is 𝑡2 and its corresponding blur amount is Blur amount𝑡2.

Therefore, using the following equation, we could determine the sharper image between 𝑡1 and 𝑡2.

Sharpness (%) =
Blur amount𝑡1 − Blur amount𝑡2

Blur amount𝑡1
× 100 (5.7)

Here,

• if Sharpness (%) > 0, then 𝑡2 is sharper than 𝑡1.

• if Sharpness (%) < 0, then 𝑡1 is sharper than 𝑡2.

Figure 5.2 shows the steps of the sharpness measurement method. Starting from the figure 5.2a,

which is the original image, the out-of-focus blurred image was generated based on the description

of Chapter III (see figure 5.2b) under +4.75𝐷 out-of-focus aberration and 5mm diameter of

pupil size. Figure 5.2c shows the blurred edge region and figure 5.2d shows the pixel intensity

distribution of the blurred edge region. On the other side, figure 5.2e is the pre-corrected image

from the constrained TV-based deconvolution algorithm under +4.75𝐷 out-of-focus aberration

and 5mm diameter of pupil size (see description in Chapter IV). Figure 5.2f is the convolved

pre-corrected image. By following the steps of the sharpness measurement method figure 5.2g is
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Figure 5.2: Sharpness measurement method. (a) Original image without pre-processing. (b)
Blurred image with the out-of-focus aberration of +4.75𝐷. (c) Blurred edge region of the out-
of-focus aberrated image (b) based on the sharpness measurement method (steps 1-4). (f) Pre-
corrected image with CL=80% and \ = 1𝑒 − 06 for out-of-focus aberration of +4.75𝐷 and pupil
diameter of 5mm. (e) Convolved pre-corrected image. (d) Blurred edge region of the convolved
pre-corrected image (e) based on the sharpness measurement method (steps 1-4). Finally, (c) and
(d) are compared to determine the sharper image using equations 5.6 and 5.7.

generated to show the blurred edge region. Figure 5.2h shows the pixel intensity distribution of

the blurred edge region. By comparing the figures 5.2d and h and using the equation 5.7, we can

quantify which image is sharper and how much. In the figure 5.2, the figure 5.2h is 46.47% sharper

than the figure 5.2d figure.

5.2 Parameter Selection

In chapter III, this document showed that the following parameters are needed to generate the

out-of-focus blur in AR:

• Pupil size in diameter

• Focused real object distance in meter

• Out-of-focus AR object distance in meter

• Focused real object
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The parameters for the out-of-focus aberration in AR can be obtained or known before generat-

ing the corresponding pre-correcting image by following the constrained TV-based deconvolution

algorithm described in Chapter IV. Furthermore, for a single out-of-focus aberration, different

pre-corrected images can be generated under a specific pupil diameter based on different CL(%)

amount and regularization parameter(\) values (see the description of 4.2.1.1, 4.3,Figures 4.4, 4.5

and 4.6). Therefore, it is unknown which combination of CL(%) and regularization parameter(\) of

the pre-correction algorithm is appropriate and valid for enhancing the out-of-focus text legibility

over a particular out-of-focus aberration and pupil diameter.

Previously, while investigating the image-based correction for visually impaired people, Mon-

talto et al. [88] proposed a novel relative total variation term, denoted as 𝜏, for controlling the

trade-off between the contrast loss (%) and ringing (\) for the pre-corrected images. In their evalu-

ation, they measured 𝜏 values as an indicator of the performance of their framework. However, the

issue is that their approach can get only the optimal 𝜏 values. But, a single 𝜏 value can be obtained

from different combinations of CL(%) and \ for a particular visual aberration. For example:

1. 𝜏 = 15, CL(%) = 40 and \ = 1𝑒 − 02

2. 𝜏 = 15, CL(%) = 50 and \ = 1𝑒 − 02

3. 𝜏 = 15, CL(%) = 60 and \ = 1𝑒 − 02

According to Montalto et al. [88], the system only considered the first combination of CL(%) and

\ (CL(%) = 40, \ = 1𝑒 − 02) for 𝜏 = 15, and ignored the rest of the combination of CL(%) and \.

But, there is a possibility that other combinations of CL(%) and \ could improve better than the

optimal one perceptually, synthetically, and optically. Therefore, this research did not consider the

relative TV term (𝜏) for the evaluation. Instead, we considered the different amounts of CL(%)
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and \ values and determined the appropriate combination of CL(%) and \ that provides the best

text legibility under a specific out-of-focus aberration.

This dissertation research considered the following parameters for the evaluation:

Textual information: This research considered three types of textual information: a font (e.g.,

’B’), a word (e.g., ’TEXT’) and a phrase (e.g., ’School Zone Ahead’). While evaluating with

the camera, the real information will be a cross (e.g., ’X’). All information was displayed by

maintaining a constant visual angle of 1.60◦.

Out-of-focus aberration: A +4.75𝐷 of out-of-focus aberration was considered in the evaluation.

To achieve this aberration, this research considered the focused real information distance at 4.0m

based on our experimental room size. Further, out-of-focus virtual text distance was at 0.20m within

arm-length distance. Therefore, a total amount of 3.8m focal switching distance was evaluated in

this research.

Pupil diameter (mm): In general, pupil diameter ranges from 2mm to 8mm based on the lighting

conditions. This research considered the average range from 2mm to 8mm, which is 5mm in both

simulated and camera-based evaluation methods.

Contrast loss (CL)(%): Ten different CL(%) amount (0%, 10%, 20%, 30%, 40%, 50%, 60%,

70%, 80%, and 90%,) were considered in the evaluation.

Regularization parameter (\): The regularization parameter (\) controls the amount of ringing in

the pre-corrected image. The smaller value of the regularization parameter indicates high ringing,
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and the higher value indicates less ringing in the pre-corrected images. Here, three \ values

(1𝑒 − 02, 1𝑒 − 04, 1𝑒 − 06) were considered for the evaluation.

5.3 Evaluation Methods

In section 5.2, the document mentioned that the dissertation research considered three different

textual information (a letter, a word, and a sentence), +4.75𝐷 out-of-focus aberration, ten different

levels of CL (%), three different levels of regularization parameter (\) and pupil diameter of 5mm

for the evaluation. Further, section 5.1 discussed the sharpness measurement method to quantify

the sharpness of an image, which is an integral part of the whole evaluation process. Therefore,

by considering the parameters and following the steps of the sharpness measurement method, this

research evaluated the pre-corrected images of the TV-based out-of-focus correction method in

two ways: synthetic simulation evaluation and optically viewed camera captured evaluation.

5.3.1 Synthetic Simulation Evaluation

This evaluation method examines whether the pre-corrected images show sharper and im-

proved visual acuity in synthetic simulation. In this case, this research compared the synthetically

convolved pre-corrected image with the synthetically simulated out-of-focus blurred image to

determine whether the pre-corrected image mitigates the out-of-focus blur issue.

Procedure: Let’s assume that the pre-corrected image is 𝑝 and the PSF of the out-of-focus aber-

ration is 𝑘 . Then, the synthetically convolved pre-corrected image is generated by performing the

convolution operation between the (𝑘) and (𝑝), which is 𝑘 ⊗ 𝑝. Similarly, let’s consider the original

image is 𝐼 and the PSF of the out-of-focus aberration is 𝑘 . Then, the synthetically simulated
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out-of-focus retinal blurred image is generated by performing the convolution operation between

the (𝑘) and (𝐼), which is 𝑘 ⊗ 𝐼. The process of obtaining the PSF of out-of-focus aberration (𝑘) in

AR is described in Chapter III. The method of generating the constrained TV-based pre-corrected

image (𝑝) is provided in Chapter IV. For determining the sharpness of the image, we considered

the sharpness measurement method described in Section 5.1.

Figure 5.3: Results of the synthetic simulation evaluation. Each panel contains 30 data points
representing a unique combination of CL (%) and regularization parameter (\). The pre-corrected
image parameters of the highest sharpness (%) are reported for each panel.

Results: The results of the synthetic simulation evaluation are shown in figure 5.3. Figure 5.3 has

three panels to show the results of the three different textual information, the left panel for the

letter, the middle panel for the word, and the right panel for the Phrase. The X-axis shows the

amount of contrast loss (%). The y-axis shows the percentage of sharpness of the pre-corrected

image compared to the retinal out-of-focus blurred image under +4.75𝐷 out-of-focus aberration
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and 5mm diameter of pupil (see the first row of figures 5.4, 5.5 and 5.6). Each panel has 30

data points representing a unique combination of CL (%) and regularization parameter (\). Three

different color lines represent three different \ values. Figure 5.3 interprets that as the amount of

CL (%) increased, sharpness (%) increased for each \ value under each textual information in the

synthetic simulation. However, when the amount of CL (%) is huge (𝐶𝐿 (%) > 80), the sharpness

starts getting decrease, though it can maintain better resolution. The reason is that due to the severe

CL (%), the pixel intensity values cannot contribute to the sharper edge region. Furthermore,

when the amount of CL (%) is small (𝐶𝐿 (%) ≤ 25), the pre-corrected images showed hardly any

improvement for any textual information.

Figures 5.4 (for letter), 5.5 (for word) and 5.6 (for phrase) denotes the best 5 pre-corrected

images out of 30 pre-corrected images of the system for the out-of-focus aberration of +4.75𝐷 and

pupil diameter of 5mm based on the sharpness (%) values under the synthetic simulation evaluation.

Each row of CL (%) and \ are compared with the first row to compute the sharpness (%) according

to the sharpness measurement method. The blurred edge region column is obtained based on the

sharpness measurement method, and the pixel intensity column provides the distribution of pixel

values of the blurred edge region. The main findings of the synthetic simulation evaluation are

given below:

• Considering all panels of the figure 5.3, pre-corrected image with𝐶𝐿 = 80% and \ = 1𝑒−06
shows the best result for the +4.75𝐷 of out-of-focus aberration and 5mm diameter of pupil
size for all the textual information (letter, word and phrase).

• Best pre-corrected image (𝐶𝐿 = 80% and \ = 1𝑒 − 06) for letter presents 46.47% more
sharper representation than the out-of-focus blurred image in the synthetic simulation.

• Best pre-corrected image (𝐶𝐿 = 80% and \ = 1𝑒 − 06) for word presents 45.29% more
sharper representation than the out-of-focus blurred image in the synthetic simulation.
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Figure 5.4: Synthetic simulation evaluation for letter. The best five pre-corrected images of the
system for the out-of-focus aberration of +4.75𝐷 and pupil diameter of 5mm based on the sharpness
(%) values under the synthetic simulation evaluation are listed.

• Best pre-corrected image (𝐶𝐿 = 80% and \ = 1𝑒 − 06) for phrase presents 45.91% more
sharper representation than the out-of-focus blurred image in the synthetic simulation.
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Figure 5.5: Synthetic simulation evaluation for word. The best five pre-corrected images of the
system for the out-of-focus aberration of +4.75𝐷 and pupil diameter of 5mm based on the sharpness
(%) values under the synthetic simulation evaluation are listed.

5.3.2 Optically Viewed Camera Captured Image Evaluation

In this evaluation stage, the dissertation research examines whether the constrained TV-based

out-of-focus correction method signifies any sharper and improved visual acuity through the optics

of the OST AR display. In this case, this research compared the camera-captured pre-corrected

image with the camera-captured out-of-focus blurred image to determine whether the pre-corrected

image mitigates the out-of-focus blur issue. All the images in this evaluation are taken through the

optics of the AR display with the camera.
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Figure 5.6: Synthetic simulation evaluation for phrase. The best five pre-corrected images of
the system for the out-of-focus aberration of +4.75𝐷 and pupil diameter of 5mm based on the
sharpness (%) values under the synthetic simulation evaluation are listed.

Apparatus To achieve this, we have considered the tabletop custom-made OST AR Haplo-

scope [109, 99, 6, 98] as the experimental display. Unlike the traditional OST AR displays,

AR Haploscope can provide virtual information at different focal distances by changing the accom-

modative power of the accommodating lens of the optical configuration. A detailed description of

design, calibration and optical configurations are given in [109] (see figure 5.7) and figure 5.8b).
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Further, a DSLR camera (Nikon D3400) was used to capture images through the optics under

out-of-focus. The DSLR camera was mounted on a tripod and placed behind the beam splitter of

the AR Haploscope. A remote camera controller was used to reduce the displacement error from

clicking the DSLR camera’s button. A physical monitor was used to display real world information.

Figure 5.7: The augmented reality haploscope precisely presents virtual information at a particular
focal distance.

Setup and Procedure: The setup of the camera-based evaluation method is shown in figure 5.8a

and b. The DSLR camera was mounted on the tripod to look through one of the optical combiners

of the AR Haploscope. The camera’s lens was placed as close as to the behind of the optical

combiner (15% reflectivity) so that it could focus through the center of the optical combiner. The

camera focused on the real world information (cross (’X’)) which was displayed on a physical

monitor (Dell Ultra-sharp Monitor: U2913WM) with display resolution of 2560×1080 pixels (see

figure 5.8a) at 4.0m / 0.25D.
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Figure 5.8: Setup of the optically viewed camera captured image evaluation. (a) A DSLR camera
is mounted on a tripod and focused on a real cross (’X’) on the physical monitor, which is located
at 4.0m. (b) Pre-corrected image is displayed on the Haploscope’s monitor. This image passes
through the optics of the Haploscope and is displayed as virtual content in front of the camera
at 0.20m. The pre-corrected image is out-of-focus of the camera. This particular pre-corrected
image is generated with CL=80% and \ = 1𝑒 − 06 for out-of-focus aberration of +4.75𝐷 and pupil
diameter of 5mm. (c) The camera captured an image where the camera is focused on the real
cross, and our pre-corrected image looks sharper. It has improved visual acuity in the out-of-focus
AR situation. Further, the portion of the camera captured pre-corrected image is cropped for
evaluation.

Each virtual textural information was displayed on the AR Haploscope’s right image generators.

This information was passed through the optics of the Haploscope and displayed as virtual content

in front of the camera (figure 5.8b). The AR Haploscope’s right image generator (Feelworld F570

5.7” 4K) had a diagonal size of 14.5 cm and a display resolution of 1920 × 1080 pixels. AR

haploscope encoded the virtual information distance by using the accommodation lens. In our
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evaluation, we used 5𝐷 power of accommodation lens which placed the virtual information at

0.20m. Please note that virtual information was always out-of-focus of the camera.

The camera captured both real and virtual information through the optical combiner of the AR

Haploscope, see figure 5.8c, where the left image is virtual and the right image is real (cross).

Using an external remote controller’s button, the camera captured the image so that no shaking

noise contributed to the captured image.

Camera Settings: In our camera-based evaluation, the critical step is to confirm the camera is

perfectly focused on the real cross at 4.0m and that a sharp real cross image is formed in the

camera. To achieve this, this research considered the camera’s concept of depth of field (DoF). The

DoF of the camera is the distance or area between the DoF near the limit and the DoF far limit

of the camera. Any objects within the DoF of the camera formed an acceptably sharp image, and

any things beyond the DoF of the camera appeared blurred. Further, we can have deep or narrow

DoF based on the camera parameter settings. Deep DoF allows the camera to focus on more scene

information, whereas the narrow DoF is used to focus on a specific object. The camera was under

the manual setup option. Therefore, in our evaluation, we considered the deep DoF of the camera

by considering the following camera setting:

• Aperture f-stop number: 𝑓

22

• Lens focal length: 55𝑚𝑚

• ISO: 6400

• shutter speed: 1
50

According to the camera’s DoF calculator by Mah and Alambra [81], the above camera setting

achieved the DoF of 3𝑚 where the DoF far limit is 6𝑚, and DoF near limit is 3𝑚. According
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to Krueger [69], pupil diameter and aperture size could be different, and a specific eye model is

needed to make those equal, which is beyond this dissertation research.

Figure 5.9: Results of the optically viewed camera captured image evaluation. Each panel contains
30 data points representing a unique combination of CL (%) and regularization parameter (\). The
pre-corrected image parameters of the highest sharpness (%) are reported for each panel.

Results: For this dissertation, 540 images are captured through the camera, where each letter, word,

and phrase has 180 images. However, for this evaluation, a total of 183 images are considered, where

each letter, word, and phrase has 61 images. Among those 61 images of letters, words, or phrases,

30 images are considered when the camera focused on the real cross, and pre-corrected images

were presented as virtual content, termed as "Camera captured pre-corrected image". Another

30 images are considered when the camera directly focuses on the virtual pre-corrected images,

termed as "Camera captured focused pre-corrected image". Furthermore, a "Camera captured
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Figure 5.10: Optically viewed camera captured image evaluation for the letter. Best five pre-
corrected images of the system for the out-of-focus aberration of +4.75𝐷 and pupil diameter
of 5mm based on the sharpness (%) values under the optically viewed camera captured image
evaluation are listed.

blurred image" is considered when the camera is focused on the real cross, and the original image

without any pre-correction was presented as virtual information.

To measure the Sharpness (%), this evaluation step followed the steps provided by the sharpness

measurement method (see section 5.1). Unlike the convolved pre-corrected images of the synthetic
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Figure 5.11: Optically viewed camera captured image evaluation for word. Best five pre-corrected
images of the system for the out-of-focus aberration of +4.75𝐷 and pupil diameter of 5mm based
on the sharpness (%) values under the optically viewed camera captured image evaluation are
listed.

simulation approach, the camera-captured images are not noise-free (see figure 5.8c). The noises

on the camera captured pre-corrected images mainly came from the internal camera processing

mechanism. Therefore, we performed two additional steps of denoising operation in the sharpness

measurement method to reduce the noise. The two-dimensional pixel-wise adaptive noise-removal

Wiener filtering method was considered in the process. This method filters the image by estimating

the local image mean and standard deviation [75]. We performed this noise-removal operation

before the beginning of the sharpness measurement method and before the normalization steps of
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Figure 5.12: Optically viewed camera captured image evaluation for phrase. Best five pre-corrected
images of the system for the out-of-focus aberration of +4.75𝐷 and pupil diameter of 5mm based
on the sharpness (%) values under the optically viewed camera captured image evaluation are
listed.

the sharpness measurement method. In our evaluation, the Wiener filter size for letter is 20 × 20,

for word is 20 × 20 and for sentence is 15 × 15.

The results of the optically camera captured evaluation are shown in figure 5.9. Figure 5.9 has

three panels to show the results of the three different textual information, the left panel for the letter,

the middle panel for the word, and the right panel for the Phrase. The X-axis shows the amount
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of contrast loss (%), and the y-axis shows the percentage of sharpness of the camera captured

pre-corrected image compared to the blurred image under +4.75𝐷 of out-of-focus aberration and

5mm diameter of pupil size. Each panel has 30 data points representing a unique combination of

CL (%) and regularization parameter (\). Three different color lines represent three different \

values. Figure 5.9 indicates that as the amount of CL (%) increased, sharpness (%) increased for

each \ values under each textual information. Unlike the synthetic simulation approach, when the

amount of CL (%) is huge (CL (%) > 80), the sharpness does not start getting decrease. But, when

the amount of CL (%) is small (𝐶𝐿 (%) ≤ 25), the pre-corrected images showed little improvement

in visual acuity for any textual information.

Figures 5.10 (for letter), 5.11 (for word) and 5.12 (for phrase) represent the best 5 pre-corrected

images out of 30 pre-corrected images of the system for the out-of-focus aberration of +4.75𝐷 and

pupil diameter of 5mm based on the sharpness (%) values under the optically camera captured

evaluation. By considering the sharpness measurement method, each row of CL (%) and \

compared with the first row to compute the sharpness (%). The blurred edge region column is

obtained based on the sharpness measurement method, and the pixel intensity column provides the

distribution of pixel values of the blurred edge region. The main findings of the optically camera

captured evaluation are given below:

For letter: Under the +4.75𝐷 of out-of-focus aberration and 5mm diameter of pupil size, pre-

corrected image with 𝐶𝐿 = 80% and \ = 1𝑒 − 06 shows the best improved visual acuity in the

optically camera captured evaluation.

• Best pre-corrected image (𝐶𝐿 = 80% and \ = 1𝑒 − 06) shows 44.96% more sharper
representation than the out-of-focus camera captured blurred image.
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For word: Under the +4.75𝐷 of out-of-focus aberration and 5mm diameter of pupil size, pre-

corrected image with 𝐶𝐿 = 90% and \ = 1𝑒 − 06 shows the best improved visual acuity in the

optically camera captured evaluation.

• Best pre-corrected image (𝐶𝐿 = 90% and \ = 1𝑒 − 06) shows 28.12% more sharper
representation than the out-of-focus camera captured blurred image.

For phrase: Under the +4.75𝐷 of out-of-focus aberration and 5mm diameter of pupil size, pre-

corrected image with 𝐶𝐿 = 70% and \ = 1𝑒 − 06 shows the best improved visual acuity in the

optically camera captured evaluation.

• Best pre-corrected image (𝐶𝐿 = 70% and \ = 1𝑒 − 06) shows 40.21% more sharper
representation than the out-of-focus camera captured blurred image.
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CHAPTER VI

CONCLUSION AND FUTURE WORK

AR is an emerging technology, and it has all the promises of becoming the next generation’s

everyday usable digital medium. AR experiences with OST HMD technologies are growing in

prominence, mainly due to the increase in lower-cost commercially available devices, such as the

Microsoft Hololens2, Microsoft Hololens1, Magic Leap, Google Glass, Epson Moverio, BT-300,

and Meta 2. Due to the dramatic progress of research and the advancement of commercial AR

devices, AR is rapidly progressing to provide an unprecedented richer user experience in various

applications. As AR system has a wide range of applications, and commercial AR devices are

advancing daily, it is essential to consider AR display technologies’ current limitations and issues

from the human perspective. Although AR interface design issues such as context switching,

focal distance switching, and out-of-focus blur in AR are prevalent, only a few research works

have been conducted to explore these issues. Further, it is established that improving the clarity

of out-of-focus graphical contents during focal disparity in AR is an open research question in

the AR research domain. Therefore, this research investigated AR display context switching,

focal switching distance, and focal blur effects on human performance and eye fatigue under both

monocular and binocular viewing conditions. Further, this research proposed a novel SharpView

font to compensate for the effect of ubiquitous out-of-focus blur in AR, a font that looks sharper
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when seen at out-of-focus, by modeling the Zernike-based out-of-focus aberration and developing

a novel TV based deconvolution algorithm for the textual information. Several groups are pursuing

similar goals using many hardware-based implementations- multi-focal, varifocal, light field, and

holography AR display promise to eventually mitigate this problem. However, most of these

displays currently exist as workbench prototypes, facing enormous engineering challenges and

computational complexity. It is unknown whether or how long it will take for these solutions to

mature into wearable displays. Therefore, this part of the research adds a new AR capability to the

existing AR research.

In Chapter II, this research described the investigation of AR interface design issues from the

human perception perspective. It has uncovered that context switching and focal distance switching

are general OST AR interface design issues. The experiment partially replicated and extended the

text-based visual search task reported by Gabbard et al. [42] on a custom-built OST AR display,

AR Haploscope. Further, motivated by the vision science research, the research considered both

monocular and binocular viewing conditions in the experiment and presented the findings related

to the effects of context switching, focal distance switching, and out-of-focus blur in the context of

the human visual system. The research found that context switching did not reduce performance

but increased eye fatigue. As the amount of the focal switching distance increased, performance

decreased, and eye fatigue increased. Furthermore, out-of-focus blur during the focal distance

switching negatively affected the performance reduction. Further, as most currently available

OST AR displays have a fixed or single focal plane, there is always a mismatch between the

accommodation demand and vergence demand. Therefore, it is necessary to have a sharper or

enhanced visual representation of the virtual information to provide the need of accommodation
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required during the period of out-of-focus aberration. Chapter III and chapter IV addressed this

research paradigm by modeling the out-of-focus aberration for AR and developing a constrained

TV-based out-of-focus correction method for textual information in AR.

In Chapter III, the dissertation research modeled the out-of-focus visual aberration for the

AR system. To model the out-of-focus PSF, we considered the Zernike polynomials for defocus

aberration and modified the defocus Zernike co-efficient for the eye’s accommodation changes.

Therefore, the final parameters of the Zernike-based out-of-focus aberration are - (1) pupil size,

(2) focused real object distance, (3) out-of-focus virtual object distance, and (4) focused real object

size. Without properly modeling out-of-focus aberration and its corresponding retinal image, it

would be very difficult to correct the out-of-focus aberration. Further, this research investigated the

impact of pupil size and different amounts of out-focus aberrations in the retinal image. Under the

same amount of out-focus aberration, retinal image quality differs for different pupil sizes. Though

modeling both low-order and high-order human visual aberration with Zernike polynomials and

co-efficient are common in vision research, based on my knowledge, I did not find any research

discussed and modeled the Zernike-based out-of-focus aberration by examining the appropriate

model parameters for the out-of-focus AR problem in AR research domain.

After generating the out-of-focus aberrated image from Chapter III, this research considered a

constrained TV-based out-of-focus correction method for the textual information in AR. This part

of the research is presented in Chapter IV. This correction method is an entirely software-based

image processing approach where the algorithm’s goal is to pre-correct the image so that it looks

sharper and more legible when seen out-of-focus. Further, the optimal pre-corrected image always

has bounded pixel values between 0 and 1. This research only considered the required area of
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the region of the pre-corrected image and removed the unnecessary information, which makes the

pre-corrected images tidy and compact. A detailed analysis of the algorithmic parameter was also

performed, and research found that at least 50% contrast loss is necessary for obtaining the optimal

TV value. A constrained TV-based algorithm was previously used to generate imagery with

improved sharpness for individuals with refractive vision problems, including myopia, hyperopia,

presbyopia, and astigmatism. However, this approach has never been tested or implemented to

improve the visual acuity of out-of-focus virtual content in AR research. Therefore, this algorithm

and successful investigation will add a new dimension to the body of AR-VR research.

Chapter V describes the objective evaluation of the TV-based focus correction technique for

the out-of-focus problem in the AR system. We conducted the proof-of-concept evaluation with

synthetic simulation and optically viewed a camera-based approach to show that the developed

method improves the visual acuity of textual information under out-of-focus. We developed a

gradient-based sharpness measurement method to evaluate to find a sharper image. Both synthetic

simulation and camera-based approach revealed that pre-corrected images from our TV-based

out-of-correction method provide nearly 50% more sharpness of the textual information than the

blurred image under the +4.75𝐷 out-of-focus aberration in AR. It means that if the system uses

our generated pre-corrected font instead of general font, it will appear at most about 50% sharper

or text legibility when seen out-of-focus. However, to develop the pre-corrected image with the

best performance, we need to consider a certain amount of contrast loss, ranging between 70% to

90%, and a small regularization parameter.
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6.1 Limitations and Future Work

Although the dissertation research has successfully investigated the OST AR interface design

issues and implemented the constrained TV-based out-of-focus correction method for the AR

system, some specific limitations still exist. The limitation of my dissertation research leads to the

idea of future work. The limitations and future work of the dissertation research are given below:

User Based Evaluation In the dissertation research, we evaluated the constrained TV-based out-

of-focus correction algorithm through synthetic simulation and optically viewed camera-captured

approach. However, this research did not perform any formal user study to assess the parameters

of the focus correction algorithm. Therefore, it is necessary to consider human-based research to

determine how much and what values of the algorithm parameters are responsible for improving

the text legibility under out-of-focus with our developed out-of-focus correction method.

Other Out-of-Focus Aberrations and Pupil Diameters In this research, out-of-focus aberration

of +4.75𝐷 with pupil diameter of 5𝑚𝑚 was evaluated both synthetically and optically through

camera. A potential future research could consider a range of out-of-focus aberration values with a

range of pupil diameters to quantify and measure the effectiveness of the focus correction method.

Replicate Transient Focal Blur Experiment Our research found that due to the transient focal

blur, participants missed information during the text-based visual search task. Further, one of

the hypotheses behind the constrained TV-based out-of-focus correction method is that generated

pre-corrected images would mitigate the transient out-of-focal blur effect in AR. However, this

research did not perform any formal experiment to validate or verify this hypothesis. Therefore,

one of the potential future studies could include the pre-corrected image from the constrained
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TV-based out-of-focus correction method only during the transient focal blur period by replicating

the text-based visual search task reported by Gabbard et al. [42] and Arefin etl al. [4, 5, 6].

Integration of Eye Tracking The assumption behind the transient out-of-focus blur explanation

assumes that participants scan the right text in the standard reading direction of left-to-right, top-

to-bottom. The experiment should be replicated with an eye tracker, which could verify that the eye

gaze moves in the predicted pattern. This would allow testing the hypothesis that the participant’s

eye gaze is on the first line of text during the transient focal blur time period. Eye movement data

would also enrich understanding of context switching and focal switching distance effects.

Other Graphical Components We have developed and evaluated the constrained TV-based out-of-

focus correction method only for textual information. Future research could validate this algorithm

for other fundamental graphical components of OST AR systems, such as road signs, directions,

symbols, and digital notifications. The hypothesis is that this algorithm will compensate for the

out-of-focus problem in OST AR for other fundamental graphical contents.

Background Effects Throughout the dissertation research, we have considered the textual AR

information on the black background. However, the real world is complex and dynamic. Therefore,

one potential research direction would be replicating the dissertation research experiment outside

or under different real-world natural conditions [7].
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