71 research outputs found

    A cross-stack, network-centric architectural design for next-generation datacenters

    Get PDF
    This thesis proposes a full-stack, cross-layer datacenter architecture based on in-network computing and near-memory processing paradigms. The proposed datacenter architecture is built atop two principles: (1) utilizing commodity, off-the-shelf hardware (i.e., processor, DRAM, and network devices) with minimal changes to their architecture, and (2) providing a standard interface to the programmers for using the novel hardware. More specifically, the proposed datacenter architecture enables a smart network adapter to collectively compress/decompress data exchange between distributed DNN training nodes and assist the operating system in performing aggressive processor power management. It also deploys specialized memory modules in the servers, capable of performing general-purpose computation and network connectivity. This thesis unlocks the potentials of hardware and operating system co-design in architecting application-transparent, near-data processing hardware for improving datacenter's performance, energy efficiency, and scalability. We evaluate the proposed datacenter architecture using a combination of full-system simulation, FPGA prototyping, and real-system experiments

    Runtime-assisted optimizations in the on-chip memory hierarchy

    Get PDF
    Following Moore's Law, the number of transistors on chip has been increasing exponentially, which has led to the increasing complexity of modern processors. As a result, the efficient programming of such systems has become more difficult. Many programming models have been developed to answer this issue. Of particular interest are task-based programming models that employ simple annotations to define parallel work in an application. The information available at the level of the runtime systems associated with these programming models offers great potential for improving hardware design. Moreover, due to technological limitations, Moore's Law is predicted to eventually come to an end, so novel paradigms are necessary to maintain the current performance improvement trends. The main goal of this thesis is to exploit the knowledge about a parallel application available at the runtime system level to improve the design of the on-chip memory hierarchy. The coupling of the runtime system and the microprocessor enables a better hardware design without hurting the programmability. The first contribution is a set of insertion policies for shared last-level caches that exploit information about tasks and task data dependencies. The intuition behind this proposal revolves around the observation that parallel threads exhibit different memory access patterns. Even within the same thread, accesses to different variables often follow distinct patterns. The proposed policies insert cache lines into different logical positions depending on the dependency type and task type to which the corresponding memory request belongs. The second proposal optimizes the execution of reductions, defined as a programming pattern that combines input data to form the resulting reduction variable. This is achieved with a runtime-assisted technique for performing reductions in the processor's cache hierarchy. The proposal's goal is to be a universally applicable solution regardless of the reduction variable type, size and access pattern. On the software level, the programming model is extended to let a programmer specify the reduction variables for tasks, as well as the desired cache level where a certain reduction will be performed. The source-to-source compiler and the runtime system are extended to translate and forward this information to the underlying hardware. On the hardware level, private and shared caches are equipped with functional units and the accompanying logic to perform reductions at the cache level. This design avoids unnecessary data movements to the core and back as the data is operated at the place where it resides. The third contribution is a runtime-assisted prioritization scheme for memory requests inside the on-chip memory hierarchy. The proposal is based on the notion of a critical path in the context of parallel codes and a known fact that accelerating critical tasks reduces the execution time of the whole application. In the context of this work, task criticality is observed at a level of a task type as it enables simple annotation by the programmer. The acceleration of critical tasks is achieved by the prioritization of corresponding memory requests in the microprocessor.Siguiendo la ley de Moore, el número de transistores en los chips ha crecido exponencialmente, lo que ha comportado una mayor complejidad en los procesadores modernos y, como resultado, de la dificultad de la programación eficiente de estos sistemas. Se han desarrollado muchos modelos de programación para resolver este problema; un ejemplo particular son los modelos de programación basados en tareas, que emplean anotaciones sencillas para definir los Trabajos paralelos de una aplicación. La información de que disponen los sistemas en tiempo de ejecución (runtime systems) asociada con estos modelos de programación ofrece un enorme potencial para la mejora del diseño del hardware. Por otro lado, las limitaciones tecnológicas hacen que la ley de Moore pueda dejar de cumplirse próximamente, por lo que se necesitan paradigmas nuevos para mantener las tendencias actuales de mejora de rendimiento. El objetivo principal de esta tesis es aprovechar el conocimiento de las aplicaciones paral·leles de que dispone el runtime system para mejorar el diseño de la jerarquía de memoria del chip. El acoplamiento del runtime system junto con el microprocesador permite realizar mejores diseños hardware sin afectar Negativamente en la programabilidad de dichos sistemas. La primera contribución de esta tesis consiste en un conjunto de políticas de inserción para las memorias caché compartidas de último nivel que aprovecha la información de las tareas y las dependencias de datos entre estas. La intuición tras esta propuesta se basa en la observación de que los hilos de ejecución paralelos muestran distintos patrones de acceso a memoria e, incluso dentro del mismo hilo, los accesos a diferentes variables a menudo siguen patrones distintos. Las políticas que se proponen insertan líneas de caché en posiciones lógicas diferentes en función de los tipos de dependencia y tarea a los que corresponde la petición de memoria. La segunda propuesta optimiza la ejecución de las reducciones, que se definen como un patrón de programación que combina datos de entrada para conseguir la variable de reducción como resultado. Esto se consigue mediante una técnica asistida por el runtime system para la realización de reducciones en la jerarquía de la caché del procesador, con el objetivo de ser una solución aplicable de forma universal sin depender del tipo de la variable de la reducción, su tamaño o el patrón de acceso. A nivel de software, el modelo de programación se extiende para que el programador especifique las variables de reducción de las tareas, así como el nivel de caché escogido para que se realice una determinada reducción. El compilador fuente a Fuente (compilador source-to-source) y el runtime ssytem se modifican para que traduzcan y pasen esta información al hardware subyacente, evitando así movimientos de datos innecesarios hacia y desde el núcleo del procesador, al realizarse la operación donde se encuentran los datos de la misma. La tercera contribución proporciona un esquema de priorización asistido por el runtime system para peticiones de memoria dentro de la jerarquía de memoria del chip. La propuesta se basa en la noción de camino crítico en el contexto de los códigos paralelos y en el hecho conocido de que acelerar tareas críticas reduce el tiempo de ejecución de la aplicación completa. En el contexto de este trabajo, la criticidad de las tareas se considera a nivel del tipo de tarea ya que permite que el programador las indique mediante anotaciones sencillas. La aceleración de las tareas críticas se consigue priorizando las correspondientes peticiones de memoria en el microprocesador.Seguint la llei de Moore, el nombre de transistors que contenen els xips ha patit un creixement exponencial, fet que ha provocat un augment de la complexitat dels processadors moderns i, per tant, de la dificultat de la programació eficient d’aquests sistemes. Per intentar solucionar-ho, s’han desenvolupat diversos models de programació; un exemple particular en són els models basats en tasques, que fan servir anotacions senzilles per definir treballs paral·lels dins d’una aplicació. La informació que hi ha al nivell dels sistemes en temps d’execució (runtime systems) associada amb aquests models de programació ofereix un gran potencial a l’hora de millorar el disseny del maquinari. D’altra banda, les limitacions tecnològiques fan que la llei de Moore pugui deixar de complir-se properament, per la qual cosa calen nous paradigmes per mantenir les tendències actuals en la millora de rendiment. L’objectiu principal d’aquesta tesi és aprofitar els coneixements que el runtime System té d’una aplicació paral·lela per millorar el disseny de la jerarquia de memòria dins el xip. L’acoblament del runtime system i el microprocessador permet millorar el disseny del maquinari sense malmetre la programabilitat d’aquests sistemes. La primera contribució d’aquesta tesi consisteix en un conjunt de polítiques d’inserció a les memòries cau (cache memories) compartides d’últim nivell que aprofita informació sobre tasques i les dependències de dades entre aquestes. La intuïció que hi ha al darrere d’aquesta proposta es basa en el fet que els fils d’execució paral·lels mostren diferents patrons d’accés a la memòria; fins i tot dins el mateix fil, els accessos a variables diferents sovint segueixen patrons diferents. Les polítiques que s’hi proposen insereixen línies de la memòria cau a diferents ubicacions lògiques en funció dels tipus de dependència i de tasca als quals correspon la petició de memòria. La segona proposta optimitza l’execució de les reduccions, que es defineixen com un patró de programació que combina dades d’entrada per aconseguir la variable de reducció com a resultat. Això s’aconsegueix mitjançant una tècnica assistida pel runtime system per dur a terme reduccions en la jerarquia de la memòria cau del processador, amb l’objectiu que la proposta sigui aplicable de manera universal, sense dependre del tipus de la variable a la qual es realitza la reducció, la seva mida o el patró d’accés. A nivell de programari, es realitza una extensió del model de programació per facilitar que el programador especifiqui les variables de les reduccions que usaran les tasques, així com el nivell de memòria cau desitjat on s’hauria de realitzar una certa reducció. El compilador font a font (compilador source-to-source) i el runtime system s’amplien per traduir i passar aquesta informació al maquinari subjacent. A nivell de maquinari, les memòries cau privades i compartides s’equipen amb unitats funcionals i la lògica corresponent per poder dur a terme les reduccions a la pròpia memòria cau, evitant així moviments de dades innecessaris entre el nucli del processador i la jerarquia de memòria. La tercera contribució proporciona un esquema de priorització assistit pel runtime System per peticions de memòria dins de la jerarquia de memòria del xip. La proposta es basa en la noció de camí crític en el context dels codis paral·lels i en el fet conegut que l’acceleració de les tasques que formen part del camí crític redueix el temps d’execució de l’aplicació sencera. En el context d’aquest treball, la criticitat de les tasques s’observa al nivell del seu tipus ja que permet que el programador les indiqui mitjançant anotacions senzilles. L’acceleració de les tasques crítiques s’aconsegueix prioritzant les corresponents peticions de memòria dins el microprocessador

    Similarity search in the blink of an eye with compressed indices

    Full text link
    Nowadays, data is represented by vectors. Retrieving those vectors, among millions and billions, that are similar to a given query is a ubiquitous problem of relevance for a wide range of applications. In this work, we present new techniques for creating faster and smaller indices to run these searches. To this end, we introduce a novel vector compression method, Locally-adaptive Vector Quantization (LVQ), that simultaneously reduces memory footprint and improves search performance, with minimal impact on search accuracy. LVQ is designed to work optimally in conjunction with graph-based indices, reducing their effective bandwidth while enabling random-access-friendly fast similarity computations. Our experimental results show that LVQ, combined with key optimizations for graph-based indices in modern datacenter systems, establishes the new state of the art in terms of performance and memory footprint. For billions of vectors, LVQ outcompetes the second-best alternatives: (1) in the low-memory regime, by up to 20.7x in throughput with up to a 3x memory footprint reduction, and (2) in the high-throughput regime by 5.8x with 1.4x less memory

    Extending Memory Capacity in Consumer Devices with Emerging Non-Volatile Memory: An Experimental Study

    Full text link
    The number and diversity of consumer devices are growing rapidly, alongside their target applications' memory consumption. Unfortunately, DRAM scalability is becoming a limiting factor to the available memory capacity in consumer devices. As a potential solution, manufacturers have introduced emerging non-volatile memories (NVMs) into the market, which can be used to increase the memory capacity of consumer devices by augmenting or replacing DRAM. Since entirely replacing DRAM with NVM in consumer devices imposes large system integration and design challenges, recent works propose extending the total main memory space available to applications by using NVM as swap space for DRAM. However, no prior work analyzes the implications of enabling a real NVM-based swap space in real consumer devices. In this work, we provide the first analysis of the impact of extending the main memory space of consumer devices using off-the-shelf NVMs. We extensively examine system performance and energy consumption when the NVM device is used as swap space for DRAM main memory to effectively extend the main memory capacity. For our analyses, we equip real web-based Chromebook computers with the Intel Optane SSD, which is a state-of-the-art low-latency NVM-based SSD device. We compare the performance and energy consumption of interactive workloads running on our Chromebook with NVM-based swap space, where the Intel Optane SSD capacity is used as swap space to extend main memory capacity, against two state-of-the-art systems: (i) a baseline system with double the amount of DRAM than the system with the NVM-based swap space; and (ii) a system where the Intel Optane SSD is naively replaced with a state-of-the-art (yet slower) off-the-shelf NAND-flash-based SSD, which we use as a swap space of equivalent size as the NVM-based swap space

    Hardware Mechanisms for Efficient Memory System Security

    Full text link
    The security of a computer system hinges on the trustworthiness of the operating system and the hardware, as applications rely on them to protect code and data. As a result, multiple protections for safeguarding the hardware and OS from attacks are being continuously proposed and deployed. These defenses, however, are far from ideal as they only provide partial protection, require complex hardware and software stacks, or incur high overheads. This dissertation presents hardware mechanisms for efficiently providing strong protections against an array of attacks on the memory hardware and the operating system’s code and data. In the first part of this dissertation, we analyze and optimize protections targeted at defending memory hardware from physical attacks. We begin by showing that, contrary to popular belief, current DDR3 and DDR4 memory systems that employ memory scrambling are still susceptible to cold boot attacks (where the DRAM is frozen to give it sufficient retention time and is then re-read by an attacker after reboot to extract sensitive data). We then describe how memory scramblers in modern memory controllers can be transparently replaced by strong stream ciphers without impacting performance. We also demonstrate how the large storage overheads associated with authenticated memory encryption schemes (which enable tamper-proof storage in off-chip memories) can be reduced by leveraging compact integer encodings and error-correcting code (ECC) DRAMs – without forgoing the error detection and correction capabilities of ECC DRAMs. The second part of this dissertation presents Neverland: a low-overhead, hardware-assisted, memory protection scheme that safeguards the operating system from rootkits and kernel-mode malware. Once the system is done booting, Neverland’s hardware takes away the operating system’s ability to overwrite certain configuration registers, as well as portions of its own physical address space that contain kernel code and security-critical data. Furthermore, it prohibits the CPU from fetching privileged code from any memory region lying outside the physical addresses assigned to the OS kernel and drivers. This combination of protections makes it extremely hard for an attacker to tamper with the kernel or introduce new privileged code into the system – even in the presence of software vulnerabilities. Neverland enables operating systems to reduce their attack surface without having to rely on complex integrity monitoring software or hardware. The hardware mechanisms we present in this dissertation provide building blocks for constructing a secure computing base while incurring lower overheads than existing protections.PHDComputer Science & EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttps://deepblue.lib.umich.edu/bitstream/2027.42/147604/1/salessaf_1.pd
    corecore