888 research outputs found

    Research on Deep Learning-based Fractional Interpolation in Video Coding

    Get PDF
    Motion compensated prediction is one of the essential methods to reduce temporal redundancy in inter coding. The target of motion compensated prediction is to predict the current frame from the list of reference frames. Recent video coding standards commonly use interpolation filters to obtain sub-pixel for the best matching block located in the fractional position of the reference frame. However, the fixed filters are not flexible to adapt to the variety of natural video contents. Inspired by the success of CNN in super-resolution, we propose Convolutional Neural Network-based fractional interpolation for Luminance (Luma) and Chrominance (Chroma) components in motion compensated prediction to improve the coding efficiency. Moreover, two syntax elements indicate interpolation methods for the Luminance and Chrominance components, have been added to bin-string and encoded by CABAC using regular mode. As a result, our proposal gains 2.9%, 0.3%, 0.6% Y, U, V BD-rate reduction, respectively, under low delay P configuration.

    A Research on Enhancing Reconstructed Frames in Video Codecs

    Get PDF
    A series of video codecs, combining encoder and decoder, have been developed to improve the human experience of video-on-demand: higher quality videos at lower bitrates. Despite being at the leading of the compression race, the High Efficiency Video Coding (HEVC or H.265), the latest Versatile Video Coding (VVC) standard, and compressive sensing (CS) are still suffering from lossy compression. Lossy compression algorithms approximate input signals by smaller file size but degrade reconstructed data, leaving space for further improvement. This work aims to develop hybrid codecs taking advantage of both state-of-the-art video coding technologies and deep learning techniques: traditional non-learning components will either be replaced or combined with various deep learning models. Note that related studies have not made the most of coding information, this work studies and utilizes more potential resources in both encoder and decoder for further improving different codecs.In the encoder, motion compensated prediction (MCP) is one of the key components that bring high compression ratios to video codecs. For enhancing the MCP performance, modern video codecs offer interpolation filters for fractional motions. However, these handcrafted fractional interpolation filters are designed on ideal signals, which limit the codecs in dealing with real-world video data. This proposal introduces a deep learning approach for all Luma and Chroma fractional pixels, aiming for more accurate motion compensation and coding efficiency.One extraordinary feature of CS compared to other codecs is that CS can recover multiple images at the decoder by applying various algorithms on the one and only coded data. Note that the related works have not made use of this property, this work enables a deep learning-based compressive sensing image enhancement framework using multiple reconstructed signals. Learning to enhance from multiple reconstructed images delivers a valuable mechanism for training deep neural networks while requiring no additional transmitted data.In the encoder and decoder of modern video coding standards, in-loop filters (ILF) dedicate the most important role in producing the final reconstructed image quality and compression rate. This work introduces a deep learning approach for improving the handcrafted ILF for modern video coding standards. We first utilize various coding resources and present novel deep learning-based ILF. Related works perform the rate-distortion-based ILF mode selection at the coding-tree-unit (CTU) level to further enhance the deep learning-based ILF, and the corresponding bits are encoded and transmitted to the decoder. In this work, we move towards a deeper approach: a reinforcement-learning based autonomous ILF mode selection scheme is presented, enabling the ability to adapt to different coding unit (CU) levels. Using this approach, we require no additional bits while ensuring the best image quality at local levels beyond the CTU level.While this research mainly targets improving the recent video coding standard VVC and the sparse-based CS, it is also flexibly designed to adapt the previous and future video coding standards with minor modifications.博士(工学)法政大学 (Hosei University

    Connecting mathematical models for image processing and neural networks

    Get PDF
    This thesis deals with the connections between mathematical models for image processing and deep learning. While data-driven deep learning models such as neural networks are flexible and well performing, they are often used as a black box. This makes it hard to provide theoretical model guarantees and scientific insights. On the other hand, more traditional, model-driven approaches such as diffusion, wavelet shrinkage, and variational models offer a rich set of mathematical foundations. Our goal is to transfer these foundations to neural networks. To this end, we pursue three strategies. First, we design trainable variants of traditional models and reduce their parameter set after training to obtain transparent and adaptive models. Moreover, we investigate the architectural design of numerical solvers for partial differential equations and translate them into building blocks of popular neural network architectures. This yields criteria for stable networks and inspires novel design concepts. Lastly, we present novel hybrid models for inpainting that rely on our theoretical findings. These strategies provide three ways for combining the best of the two worlds of model- and data-driven approaches. Our work contributes to the overarching goal of closing the gap between these worlds that still exists in performance and understanding.Gegenstand dieser Arbeit sind die Zusammenhänge zwischen mathematischen Modellen zur Bildverarbeitung und Deep Learning. Während datengetriebene Modelle des Deep Learning wie z.B. neuronale Netze flexibel sind und gute Ergebnisse liefern, werden sie oft als Black Box eingesetzt. Das macht es schwierig, theoretische Modellgarantien zu liefern und wissenschaftliche Erkenntnisse zu gewinnen. Im Gegensatz dazu bieten traditionellere, modellgetriebene Ansätze wie Diffusion, Wavelet Shrinkage und Variationsansätze eine Fülle von mathematischen Grundlagen. Unser Ziel ist es, diese auf neuronale Netze zu übertragen. Zu diesem Zweck verfolgen wir drei Strategien. Zunächst entwerfen wir trainierbare Varianten von traditionellen Modellen und reduzieren ihren Parametersatz, um transparente und adaptive Modelle zu erhalten. Außerdem untersuchen wir die Architekturen von numerischen Lösern für partielle Differentialgleichungen und übersetzen sie in Bausteine von populären neuronalen Netzwerken. Daraus ergeben sich Kriterien für stabile Netzwerke und neue Designkonzepte. Schließlich präsentieren wir neuartige hybride Modelle für Inpainting, die auf unseren theoretischen Erkenntnissen beruhen. Diese Strategien bieten drei Möglichkeiten, das Beste aus den beiden Welten der modell- und datengetriebenen Ansätzen zu vereinen. Diese Arbeit liefert einen Beitrag zum übergeordneten Ziel, die Lücke zwischen den zwei Welten zu schließen, die noch in Bezug auf Leistung und Modellverständnis besteht.ERC Advanced Grant INCOVI

    Invertible Rescaling Network and Its Extensions

    Full text link
    Image rescaling is a commonly used bidirectional operation, which first downscales high-resolution images to fit various display screens or to be storage- and bandwidth-friendly, and afterward upscales the corresponding low-resolution images to recover the original resolution or the details in the zoom-in images. However, the non-injective downscaling mapping discards high-frequency contents, leading to the ill-posed problem for the inverse restoration task. This can be abstracted as a general image degradation-restoration problem with information loss. In this work, we propose a novel invertible framework to handle this general problem, which models the bidirectional degradation and restoration from a new perspective, i.e. invertible bijective transformation. The invertibility enables the framework to model the information loss of pre-degradation in the form of distribution, which could mitigate the ill-posed problem during post-restoration. To be specific, we develop invertible models to generate valid degraded images and meanwhile transform the distribution of lost contents to the fixed distribution of a latent variable during the forward degradation. Then restoration is made tractable by applying the inverse transformation on the generated degraded image together with a randomly-drawn latent variable. We start from image rescaling and instantiate the model as Invertible Rescaling Network (IRN), which can be easily extended to the similar decolorization-colorization task. We further propose to combine the invertible framework with existing degradation methods such as image compression for wider applications. Experimental results demonstrate the significant improvement of our model over existing methods in terms of both quantitative and qualitative evaluations of upscaling and colorizing reconstruction from downscaled and decolorized images, and rate-distortion of image compression.Comment: Accepted by IJC
    corecore