
Research on Deep Learning-based Fractional
Interpolation in Video Coding

著者 Pham Do Kim Chi
出版者 法政大学大学院理工学研究科
journal or
publication title

法政大学大学院紀要. 理工学・工学研究科編

volume 61
page range 1-4
year 2020-03-24
URL http://doi.org/10.15002/00022869

Research on Deep Learning-based Fractional Interpolation in
Video Coding

17R8101 Pham Do Kim Chi

Supervisor: Jinjia Zhou

Abstract— Motion compensated prediction is one of the essential methods to reduce temporal redundancy in inter
coding. The target of motion compensated prediction is to predict the current frame from the list of reference frames.
Recent video coding standards commonly use interpolation filters to obtain sub-pixel for the best matching block
located in the fractional position of the reference frame. However, the fixed filters are not flexible to adapt to the
variety of natural video contents. Inspired by the success of CNN in super-resolution, we propose Convolutional
Neural Network-based fractional interpolation for Luminance (Luma) and Chrominance (Chroma) components in
motion compensated prediction to improve the coding efficiency. Moreover, two syntax elements indicate
interpolation methods for the Luminance and Chrominance components, have been added to bin-string and encoded
by CABAC using regular mode. As a result, our proposal gains 2.9%, 0.3%, 0.6% Y, U, V BD-rate reduction,
respectively, under low delay P configuration.

Keywords— Video coding, motion compensated prediction, fractional interpolation

I. INTRODUCTION

H.265/High Efficiency Video Coding (HEVC) [1] has
outperformed its predecessor H.264/AVC [2] to become the
state-of-the-art video coding standard. One of the critical
technologies that significantly contributes to the high
coding performance of HEVC is motion compensated
prediction (MCP). MCP aims to predict the current frame
from the reference frames which are previously
reconstructed and store the residual along with the motion
vector between the corresponding blocks, which benefits
for reducing the temporal redundancy in inter coding.
However, if the best matching block does not fall into
integer samples, fractional pixels and fractional motion
vector are required for these movements. Widely used,
MCP applies interpolation filters on the reference frame,
considered as integer samples, to obtain fractional samples.
However, the HEVC filters are not flexible enough for
video data.

Recently, deep learning-based methods have been
widely used and obtained remarkable results in image and
video processing. Convolutional Neural Network (CNN), a
most representative model of deep learning, well improves
the performance of the traditional method in high-level
computer vision such as classification detection to low-
level computer vision tasks like image denoising, de-
blurring, and super-resolution. Despite the robust of CNN
in improving super-resolution, they cannot be directly
applied for fraction interpolation in video coding because
of two main problems. First, CNN-based super-resolution
may change integer pixel after convolution. Second, the
training sets of super-resolution and fractional interpolation
in video coding are different. While the former aims to
recover the high-resolution image by "enhancing" quality
of the low-resolution image, the latter focuses on producing

fractional samples that close to the current block to be
encoded from the reference frames.

Recent studies have implemented diverse approaches to
deep learning-based fractional interpolation works to
improve the performance of MCP. To handle the problem
of changing integer pixel after convolution, the work [5]–
[9] aims to produce fractional pixels from an input of
integer pixels, and then, integer pixels are kept. Zhang et al.
[10] introduces a CNN model followed by a Constrained
mask with different weights for the integer pixels and three
half pixels.

For the second problem, besides the issue of different
training sets, another difficulty that needs to be solved is
fractional pixel does not exist in the real image. Generally,
existing works assume integer and fractional pixels in the
original frame, encode integer video, and learn the mapping
between the reconstructed integer and fractional pixels [3]–
[6] or the mapping between the interpolated frame of the
reconstructed reference frame and the original reference
image [7]. Another way is encoding the original video and
extracting the inter-coding block and its reference block to
be ground-truth label and input of CNN [8].

Although prior research generally confirms that CNN-
based fractional interpolation improves coding
performance, there are some drawbacks that could be
improved in these approaches: only half-pixel are supported
[6], [7], many models need to be trained for fractional
positions [8], or predicting fractional pixel from integer
pixel may not good because the motion shift between
integer and fractional pixel are not always stable [3], [5],
[6], [8]. In this paper, we take the next step towards the
CNN-based fractional interpolation in video coding: all
components can be processed by CNN. Our work makes
the following three contributions: First, we present two
CNN models for Luma and Chroma fractional pixels

interpolation in video coding. Only one model is trained for
15 fractional samples at each QP. Totally, there are eight
models for four QPs in Luma and Chroma components.
Secondly, we investigate a dataset generation method for
our Y, U, V fractional interpolation training. Finally, we
implement an RDO-based selection for Luma and Chroma
fractional interpolation. Each syntax element indicates the
interpolation method for Luma or Chroma components for
each CU that chooses inter coding with the fractional
motion vector. As a result, we archive 2.9%, 0.3%, 0.6%
BD-rate reduction compared to the anchor HEVC under
low delay P configuration.

II. PROPOSED CNN-BASED LUMA AND CHROMA
FRACTIONAL INTERPOLATION

A. Training set generation
Training set plays a vital role in training any network.

We then do the experiment to figure out what should be
ground truth for our training. In testing for ground-truth, we
down-sample the original video frames, do the encoding for
integer images and set fractional images extracted from the
original image as the interpolated image for encoding the
down-sampled video. For this experimentwe achieve
27.6%, 5.5%, 5.6% BD-rate reduction on Y, U, and V
components compare to the anchor HM under low delay P
configuration. Follow the successful of our experiment in
finding a training set for our CNN, our training set
generation method (Figure 2) can be described as follow:

• We extract the integer and fractional-position video by
assuming integer and fractional pixels in every 4-by-4
non-overlapping blocks of each frame. We then obtain
a low-resolution video of integer pixels (integer-
position video) and 15 low-resolution videos.

• Encode low-resolution video to get reconstructed
down-sampled video. Extract the Y component from
reconstructed frames and interpolate them to 15
fractional samples by DCTIF. These 15 fractional
samples are used as training input for our CNN.

• Extract the Y component from each fractional-position
video frame to be the CNN ground-truth label for
training. Each pair of the fractional sample interpolated
by DCTIF and the fractional sample extracted from the
original frame is considered as a training sample.

For generating the training set of the Chroma
component, we do the down-sampling to one eight samples.
All the processes for generating the Chroma training set are
the same as the Luma Y component, except we have 63
fractional positions for Chroma components. Note that we
use the default interpolation method DCTIF for the Y
component when we generate a training set for Chroma
components and vice versa.

For each and every fractional-position frame, we flip
and rotate input and the respective ground-truth label to
avoid training biases and overfitting.

B. Network Architecture
In this paper, we design two CNN models for fractional

pixel interpolation in Luma and Chroma components. We
train a CNN model for all the fractional samples in the
Luma-component model and keep the same architecture but
a different training set for the Chroma-component model.

Our network, inspired by VDSR [9], includes 20
convolutional layers. Each layer does convolution by
applying 64 3×3 filters with the stride of one. Padding is set
as one to keep the size of the input image after convolution.
For each convolutional layer, we set a ReLU activation
layer after convolution except for the final layer.

At testing, reconstructed images are interpolated to 15
fractional-sample images in Luma component and 63
fractional-samples in Chroma components before feeding
into CNN.

C. RDO-based Luma and Chroma interpolation selection
We note that DCTIF and CNN have the abilities to deal
with different signals. To take advantage of DCTIF and
CNN, we define two context models for a Luma and
Chroma interpolation method selection. One bit indicates
interpolation method for each context model will be store
in CABAC regular mode. Each and every sub-CU in the
same CU, if coded with fractional motion vector, share the
same interpolation method for Luma and Chroma
components.

III. RESULTS

For our experiments, we use HEVC Test Model (HM)
version 16.18 and the format of all the test sequences is
YUV 4:2:0. In our training, we use PyTorch 1.0.0 with the
support of the NVIDIA Tesla V100 GPU. As mentioned
earlier, we have trained two models for Luma and Chroma
components for each quantization parameter (QP) value.
Eight models have been trained for four QPs: 22, 27, 32,

…
DCTIF

h×w h×w
h×w×64

3
3

3
3
64

3
3
64

3
3 64

3
3 64

h×w×64 h×w×64 h×w×64
h×w h×w

Reconstructed
frame

(integer samples)
Fractional

frame j

Fractional
ground-truth

frame j

Figure 1. Our network architecture for Luma and Chroma
fractional interpolation in video coding.

Figure 2: Our training data generation method.

(1)

(2) (3)

(4)

Extracted fractional
frames

...

Half and quarter-
position video

Interpolated fractional
frames

Reconstructed
Integer-position

video

Integer-
position video

...

Original video
frames

i = 0, j = 1

i = 3, j = 3

......

i = 0, j = 1

i = 3, j = 3

... ...

and 37. Training set for QP 32 and 37 models are acquired
from three sequences Pedestrian, Traffic and
PeopleOntheStreet. For QP 22 and 27's models, we produce
training set from Traffic and PeopleOnTheStreet. We set all
coding configuration as default except full search is enabled.
We use a well-known measuring metric Bjøtegaard-Delta
bitrate (BD-rate) to evaluate our proposal. BD-rate takes at
least four samples from different video coding techniques
and tells how many bits are reduced between them at the
same video quality. For BD-rate, the low negative number
means the better result.

A. RDO-based Luma and Chroma fractional
interpolation results

Our experiments under Low Delay P, Low Delay B, and
Random Access configurations are shown in TABLE 1.
Generally, we obtain the highest BD-rate reduction on Low
Delay P configuration and the lowest saving bitrate belongs
to the test under Random Access configuration.

We obtain 3.6%, 0.6% and 1% Y, U, and V BD-rate
saving compared to the original HM under Low Delay P
configuration. Results show that proposal can deal with

high-resolution videos such as sequences in class A and E
where average BD-rate reductions for Y component are
over 4%.

For Low Delay B configuration results, the best
performance belongs to FourPeople class E, where 3.8%,
0.2%, and 0.7% Y, U, and V BD-rate reductions are
obtained, respectively.

For Random Access configuration, we achieve 1.4%,
0.2%, and 0.4% BD-rate reduction on Y, U, and V
components, respectively.

 Generally, we obtain the highest BD-rate reduction
on Low Delay P configuration and the lowest bitrate saving
belongs to the test under Random Access configuration.

In TABLE 2, it can be seen that our proposal does not work
well on screen-content sequence ChinaSpeed, SlideEditing,
and SlideShow under Low Delay P configuration since no
data for screen-content has been trained. The future work
may include training for the screen-content video data for
Low Delay P configuration. Although our models do not
work well on screen-content videos under Low Delay P

TABLE 1. BD-RATE (%) OF OUR PROPOSAL COMPARED TO HEVC UNDER LOW DELAY P, LOW DELAY B AND RANDOM
ACCESS CONFIGURATIONS ON CLASS B, C, D, E

Class Sequence Low Delay P Low Delay B Radom Access
 Y U V Y U V Y U V

B Kimono -4.7 1.1 0.6 -1.1 1.3 0.6 -0.7 0.6 0.0
ParkScene -1.3 1.1 0.2 -0.4 0.7 0.4 -0.5 0.2 0.0

Cactus -4.2 -1.6 -1.9 -3.2 -1.1 -0.6 -2.3 -0.5 -0.9
BasketbalDrive -4.2 -1.6 -1.9 -1.4 0.1 -0.8 -1.7 -0.1 0.3

BQterrace -6.5 -2.1 -2.9 -2.5 -0.2 -0.6 -1.6 -0.2 -0.2
C BasketballDrill -4.0 -0.2 -1.4 -3.1 0.5 -0.2 -1.5 -0.6 -0.9

BQMall -2.0 0.0 -0.3 -1.7 -0.1 -0.4 -0.9 -0.2 -0.4
PartyScene -1.8 -0.9 -0.6 -1.1 -0.2 -0.1 -0.6 -0.2 -0.5

RacehorsesC -2.6 -0.7 -0.3 -2.1 -0.1 -0.5 -1.6 -0.6 -1.5
D BasketballPass -2.6 -0.8 -0.7 -2.2 -1.6 -1.8 -1.1 0.2 -0.2

BQSquare -4.2 -1.6 -1.3 -2.2 -0.7 -0.4 -0.9 0.4 0.1
BlowingBubbles -2.5 -0.5 -1.3 -2.7 -0.8 -0.6 -1.0 -0.9 0.1

RaceHorses -2.9 0.3 -1.0 -2.8 -0.1 -1.4 -1.4 -0.8 -0.9
E FourPeople -4.3 -0.3 -0.4 -3.8 -0.2 -0.7 -2.9 -0.1 -0.4

Johnny -5.7 -2.3 -1.5 -2.6 -0.5 -0.5 -2.1 -0.1 -0.4
KristenAndSara -4.1 -0.9 -1.6 -3.4 -1.1 -0.8 -2.2 -0.3 -0.5

 Avg -3.6 -0.6 -1.0 -2.3 -0.2 -0.5 -1.4 -0.2 -0.4

TABLE 2. BD-RATE (%) OF OUR PROPOSAL COMPARED TO HEVC UNDER LOW DELAY P, LOW DELAY B AND RANDOM

ACCESS CONFIGURATIONS ON CLASS F

Sequence Low Delay P Low Delay B Radom Access
Y U V Y U V Y U V

BasketballDrillText -3.3 1.1 -0.1 -3.0 0.7 0.4 -1.0 -0.5 -1.2
ChinaSpeed 1.2 1.6 1.4 -0.6 -0.2 -0.4 -1.0 -0.9 -0.8
SlideEditing 1.3 1.0 1.0 -0.2 -0.2 -0.2 0.2 0.4 0.2
SlideShow 1.0 0.1 1.6 -0.5 -1.6 -2.0 -0.4 0.2 4.7

Avg 0.1 1.0 1.0 -1.1 -0.3 -0.5 -0.6 -0.2 0.7

configuration, they acquire the average BD-rate reduction
of 1.1%, 0.3%, and 0.5% on over class E under Low Delay
B configuration.

B. RDO-based Luma and Chroma fractional
interpolation results

Figure 3. Visualization on Luma and Chroma interpolation
method selection.

Figure 2 shows our visualization on the first P frame of
RaceHorseC under the Low Delay P configuration. In our
visualization, cyan blocks indicate CU that choose DCTIF
for interpolating all components, magenta blocks indicate
CUs that choose DCTIF for Y and CNN for UV
components, yellow blocks indicate CUs that choose CNN
for Y and DCTIF for UV components, and red blocks
indicate CUs that choose CNN for interpolating all
components. The rest parts are CUs coded with integer
motion vector or intra coding. As our visualizations, CUs at
the static background tend to choose DCTIF for fractional
interpolation and CUs at moving object tend to choose
CNN for fractional interpolation.
TABLE 3. HITTING RATIO (%) OF THE TWO INTERPOLATION METHODS FOR
LUMA AND CHROMA COMPONENTS

Class
𝐃𝐃𝐃𝐃𝐃𝐃𝐃𝐃𝐃𝐃𝐘𝐘
𝐃𝐃𝐃𝐃𝐃𝐃𝐃𝐃𝐃𝐃𝐔𝐔𝐔𝐔

𝐃𝐃𝐃𝐃𝐃𝐃𝐃𝐃𝐃𝐃𝐘𝐘
𝑪𝑪𝑪𝑪𝑪𝑪𝐔𝐔𝐔𝐔

𝐃𝐃𝐂𝐂𝐂𝐂𝐘𝐘
𝐃𝐃𝐃𝐃𝐃𝐃𝐃𝐃𝐃𝐃𝐔𝐔𝐔𝐔

𝑪𝑪𝑪𝑪𝑪𝑪𝐘𝐘
𝐃𝐃𝐂𝐂𝐂𝐂𝐔𝐔𝐔𝐔

B 54.51 0.51 44.36 0.62
C 53.18 0.78 45.07 0.97
D 57.75 0.47 41.34 0.44
E 64.18 0.32 34.71 0.79
F 71.84 1.51 26.14 0.51

All 60.29 0.72 38.32 0.67

On another hand, we measure the ratio of choosing
interpolation methods for each CU. In HEVC, CU size is
variety, which makes the calculating hitting ratio should be
on the area than on count. Since these two flags are
dependent, we calculate the hitting ratio on two flags as one
than separately counting. In TABLE 3, we show the hitting
ratio of using CNN and DCTIF for Luma and Chroma
components at CU-level. Class F, where Luma and Chroma
components rarely choose CNN for fractional
interpolations, obtains the lowest bitrate saving compare to
other classes.

C. Compare with the existing works
We also experiment to compare our proposal to existing

CNN-based fractional interpolation works. For a fair
comparison, we reimplement our proposal on HM 16.7 and

disable the CNN-based fractional interpolation and the
context model for the Chroma component. In this
comparison, we use the reimplemented results from paper
[4].
TABLE 4. BD-RATE COMPARISON OF CNN-BASED FRACTIONAL
INTERPOLATION AND OUR PROPOSAL .

Class [5] [4] Ours
B -3.0 -3.0 -3.8
C -1.7 -2.7 -3.0
D -1.5 -2.5 -3.5
E -1.9 -2.8 -4.6

Avg. -2.1 -2.8 -3.7

The results (TABLE 4) shows that our proposal surpasses
the GVTCNN [5] and the switch mode-based fractional
interpolation [4] on HM-16.7. In general, we achieve a
3.7% BD-rate reduction on average and rank first all
Classes from B to E.

IV. CONCLUSION

In this paper, we propose a deep learning-based method
for fractional interpolation in video coding and design a
training set for our CNN models. In our proposal, Luma
and Chroma components are interpolated by both DCTIF
and CNN, and an RDO cost-based interpolation method
selection chooses among them the best fractional
interpolation methods for Luma and Chroma components
at CU level. As a result, we obtain an average BD-rate
reduction of 2.9%, 0.3%, and 0.6% on Y, U, and V
component, respectively, under low Delay P configuration.
We also show the effects of training the separate models or
combining models for U and V components and a
comparison of our method compared to existing works.

REFERENCES
[1] G. J. Sullivan, J. R. Ohm, W. J. Han, and T. Wiegand, “Overview of the

High Efficiency Video Coding (HEVC) Standard,” IEEE Transactions
on Circuits and Systems for Video Technology, vol. 22, no. 12, pp. 1649–
1668, Dec. 2012.

[2] T. Wiegand, G. J. Sullivan, G. Bjontegaard, and A. Luthra, “Overview
of the H.264/AVC Video Coding Standard,” IEEE Trans. Cir. and Sys.
for Video Technol., vol. 13, no. 7, pp. 560–576, Jul. 2003.

[3] J. Liu, S. Xia, W. Yang, M. Li, and D. Liu, “One-for-All: Grouped
Variation Network-Based Fractional Interpolation in Video Coding,”
IEEE Transactions on Image Processing, vol. 28, no. 5, pp. 2140–2151,
May 2019.

[4] S. Xia, W. Yang, Y. Hu, W. Cheng, and J. Liu, “Switch Mode Based
Deep Fractional Interpolation in Video Coding,” in 2019 IEEE Int.
Symposium on Circuits and Systems (ISCAS), 2019, pp. 1–5.

[5] S. Xia, W. Yang, Y. Hu, S. Ma, and J. Liu, “A Group Variational
Transformation Neural Network for Fractional Interpolation of Video
Coding,” in 2018 Data Compression Conference, 2018, pp. 127–136.

[6] N. Yan, D. Liu, H. Li, and F. Wu, “A convolutional neural network
approach for half-pel interpolation in video coding,” in 2017 IEEE
International Symposium on Circuits and Systems (ISCAS), 2017, pp.
1–4.

[7] H. Zhang, L. Song, Z. Luo, and X. Yang, “Learning a convolutional
neural network for fractional interpolation in HEVC inter coding,” in
2017 IEEE Visual Communications and Image Processing (VCIP), 2017,
pp. 1–4.

[8] N. Yan, D. Liu, H. Li, B. Li, L. Li, and F. Wu, “Convolutional Neural
Network-Based Fractional-Pixel Motion Compensation,” IEEE Trans.
Circuits and Systems for Video Technology, pp. 1–1, 2018.

[9] J. Kim, J. K. Lee, and K. M. Lee, “Accurate Image Super-Resolution
Using Very Deep Convolutional Networks,” in 2016 IEEE Conference
on Computer Vision and Pattern Recognition (CVPR), 2016, pp. 1646–
1654.

	I. INTRODUCTION
	II. Proposed CNN-based Luma and Chroma fractional interpolation
	A. Training set generation
	B. Network Architecture
	C. RDO-based Luma and Chroma interpolation selection

	III. RESULTS
	A. RDO-based Luma and Chroma fractional interpolation results
	B. RDO-based Luma and Chroma fractional interpolation results
	C. Compare with the existing works

	IV. CONCLUSION
	References

