
Research on Deep Learning-based Fractional
Interpolation in Video Coding

著者 Pham Do Kim Chi
出版者 法政大学大学院理工学研究科
journal or
publication title

法政大学大学院紀要. 理工学・工学研究科編

volume 61
page range 1-4
year 2020-03-24
URL http://doi.org/10.15002/00022869



Research on Deep Learning-based Fractional Interpolation in  
Video Coding 

 
17R8101 Pham Do Kim Chi 

Supervisor: Jinjia Zhou 
 

Abstract— Motion compensated prediction is one of the essential methods to reduce temporal redundancy in inter 
coding. The target of motion compensated prediction is to predict the current frame from the list of reference frames. 
Recent video coding standards commonly use interpolation filters to obtain sub-pixel for the best matching block 
located in the fractional position of the reference frame. However, the fixed filters are not flexible to adapt to the 
variety of natural video contents. Inspired by the success of CNN in super-resolution, we propose Convolutional 
Neural Network-based fractional interpolation for Luminance (Luma) and Chrominance (Chroma) components in 
motion compensated prediction to improve the coding efficiency. Moreover, two syntax elements indicate 
interpolation methods for the Luminance and Chrominance components, have been added to bin-string and encoded 
by CABAC using regular mode. As a result, our proposal gains 2.9%, 0.3%, 0.6% Y, U, V BD-rate reduction, 
respectively, under low delay P configuration.   
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I. INTRODUCTION 

H.265/High Efficiency Video Coding (HEVC) [1] has 
outperformed its predecessor H.264/AVC [2] to become the 
state-of-the-art video coding standard. One of the critical 
technologies that significantly contributes to the high 
coding performance of HEVC is motion compensated 
prediction (MCP). MCP aims to predict the current frame 
from the reference frames which are previously 
reconstructed and store the residual along with the motion 
vector between the corresponding blocks, which benefits 
for reducing the temporal redundancy in inter coding. 
However, if the best matching block does not fall into 
integer samples, fractional pixels and fractional motion 
vector are required for these movements. Widely used, 
MCP applies interpolation filters on the reference frame, 
considered as integer samples, to obtain fractional samples. 
However, the HEVC filters are not flexible enough for 
video data. 

Recently, deep learning-based methods have been 
widely used and obtained remarkable results in image and 
video processing. Convolutional Neural Network (CNN), a 
most representative model of deep learning, well improves 
the performance of the traditional method in high-level 
computer vision such as classification detection to low-
level computer vision tasks like image denoising, de-
blurring, and super-resolution. Despite the robust of CNN 
in improving super-resolution, they cannot be directly 
applied for fraction interpolation in video coding because 
of two main problems. First, CNN-based super-resolution 
may change integer pixel after convolution. Second, the 
training sets of super-resolution and fractional interpolation 
in video coding are different. While the former aims to 
recover the high-resolution image by "enhancing" quality 
of the low-resolution image, the latter focuses on producing 

fractional samples that close to the current block to be 
encoded from the reference frames. 

Recent studies have implemented diverse approaches to 
deep learning-based fractional interpolation works to 
improve the performance of MCP. To handle the problem 
of changing integer pixel after convolution, the work [5]–
[9] aims to produce fractional pixels from an input of 
integer pixels, and then, integer pixels are kept. Zhang et al. 
[10] introduces a CNN model followed by a Constrained 
mask with different weights for the integer pixels and three 
half pixels. 

For the second problem, besides the issue of different 
training sets, another difficulty that needs to be solved is 
fractional pixel does not exist in the real image. Generally, 
existing works assume integer and fractional pixels in the 
original frame, encode integer video, and learn the mapping 
between the reconstructed integer and fractional pixels [3]–
[6] or the mapping between the interpolated frame of the 
reconstructed reference frame and the original reference 
image [7]. Another way is encoding the original video and 
extracting the inter-coding block and its reference block to 
be ground-truth label and input of CNN [8].  

Although prior research generally confirms that CNN-
based fractional interpolation improves coding 
performance, there are some drawbacks that could be 
improved in these approaches: only half-pixel are supported 
[6], [7], many models need to be trained for fractional 
positions [8], or predicting fractional pixel from integer 
pixel may not good because the motion shift between 
integer and fractional pixel are not always stable [3], [5], 
[6], [8]. In this paper, we take the next step towards the 
CNN-based fractional interpolation in video coding: all 
components can be processed by CNN. Our work makes 
the following three contributions: First, we present two 
CNN models for Luma and Chroma fractional pixels 



interpolation in video coding. Only one model is trained for 
15 fractional samples at each QP. Totally, there are eight 
models for four QPs in Luma and Chroma components. 
Secondly, we investigate a dataset generation method for 
our Y, U, V fractional interpolation training. Finally, we 
implement an RDO-based selection for Luma and Chroma 
fractional interpolation. Each syntax element indicates the 
interpolation method for Luma or Chroma components for 
each CU that chooses inter coding with the fractional 
motion vector. As a result, we archive 2.9%, 0.3%, 0.6% 
BD-rate reduction compared to the anchor HEVC under 
low delay P configuration. 

II. PROPOSED CNN-BASED LUMA AND CHROMA 
FRACTIONAL INTERPOLATION 

A. Training set generation 
Training set plays a vital role in training any network. 

We then do the experiment to figure out what should be 
ground truth for our training. In testing for ground-truth, we 
down-sample the original video frames, do the encoding for 
integer images and set fractional images extracted from the 
original image as the interpolated image for encoding the 
down-sampled video. For this experimentwe achieve 
27.6%, 5.5%, 5.6% BD-rate reduction on Y, U, and V 
components compare to the anchor HM under low delay P 
configuration. Follow the successful of our experiment in 
finding a training set for our CNN, our training set 
generation method (Figure 2) can be described as follow:  

• We extract the integer and fractional-position video by 
assuming integer and fractional pixels in every 4-by-4 
non-overlapping blocks of each frame. We then obtain 
a low-resolution video of integer pixels (integer-
position video) and 15 low-resolution videos.  

• Encode low-resolution video to get reconstructed 
down-sampled video. Extract the Y component from 
reconstructed frames and interpolate them to 15 
fractional samples by DCTIF. These 15 fractional 
samples are used as training input for our CNN. 

• Extract the Y component from each fractional-position 
video frame to be the CNN ground-truth label for 
training. Each pair of the fractional sample interpolated 
by DCTIF and the fractional sample extracted from the 
original frame is considered as a training sample. 

For generating the training set of the Chroma 
component, we do the down-sampling to one eight samples. 
All the processes for generating the Chroma training set are 
the same as the Luma Y component, except we have 63 
fractional positions for Chroma components. Note that we 
use the default interpolation method DCTIF for the Y 
component when we generate a training set for Chroma 
components and vice versa.  

For each and every fractional-position frame, we flip 
and rotate input and the respective ground-truth label to 
avoid training biases and overfitting. 

B. Network Architecture 
In this paper, we design two CNN models for fractional 

pixel interpolation in Luma and Chroma components. We 
train a CNN model for all the fractional samples in the 
Luma-component model and keep the same architecture but 
a different training set for the Chroma-component model.  

Our network, inspired by VDSR [9], includes 20 
convolutional layers. Each layer does convolution by 
applying 64 3×3 filters with the stride of one. Padding is set 
as one to keep the size of the input image after convolution. 
For each convolutional layer, we set a ReLU activation 
layer after convolution except for the final layer.  

At testing, reconstructed images are interpolated to 15 
fractional-sample images in Luma component and 63 
fractional-samples in Chroma components before feeding 
into CNN. 

C. RDO-based Luma and Chroma interpolation selection 
We note that DCTIF and CNN have the abilities to deal 
with different signals. To take advantage of DCTIF and 
CNN, we define two context models for a Luma and 
Chroma interpolation method selection. One bit indicates 
interpolation method for each context model will be store 
in CABAC regular mode. Each and every sub-CU in the 
same CU, if coded with fractional motion vector, share the 
same interpolation method for Luma and Chroma 
components. 

III. RESULTS 

For our experiments, we use HEVC Test Model (HM) 
version 16.18 and the format of all the test sequences is 
YUV 4:2:0. In our training, we use PyTorch 1.0.0 with the 
support of the NVIDIA Tesla V100 GPU. As mentioned 
earlier, we have trained two models for Luma and Chroma 
components for each quantization parameter (QP) value. 
Eight models have been trained for four QPs: 22, 27, 32, 
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Figure 1. Our network architecture for Luma and Chroma 
fractional interpolation in video coding. 

Figure 2: Our training data generation method. 
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and 37. Training set for QP 32 and 37 models are acquired 
from three sequences Pedestrian, Traffic and 
PeopleOntheStreet. For QP 22 and 27's models, we produce 
training set from Traffic and PeopleOnTheStreet. We set all 
coding configuration as default except full search is enabled. 
We use a well-known measuring metric Bjøtegaard-Delta 
bitrate (BD-rate) to evaluate our proposal. BD-rate takes at 
least four samples from different video coding techniques 
and tells how many bits are reduced between them at the 
same video quality. For BD-rate, the low negative number 
means the better result. 

A. RDO-based Luma and Chroma fractional 
interpolation results 

Our experiments under Low Delay P, Low Delay B, and 
Random Access configurations are shown in TABLE 1. 
Generally, we obtain the highest BD-rate reduction on Low 
Delay P configuration and the lowest saving bitrate belongs 
to the test under Random Access configuration.  

We obtain 3.6%, 0.6% and 1% Y, U, and V BD-rate 
saving compared to the original HM under Low Delay P 
configuration. Results show that proposal can deal with 

high-resolution videos such as sequences in class A and E 
where average BD-rate reductions for Y component are 
over 4%.  

For Low Delay B configuration results, the best 
performance belongs to FourPeople class E, where 3.8%, 
0.2%, and 0.7% Y, U, and V BD-rate reductions are 
obtained, respectively. 

For Random Access configuration, we achieve 1.4%, 
0.2%, and 0.4% BD-rate reduction on Y, U, and V 
components, respectively. 

  Generally, we obtain the highest BD-rate reduction 
on Low Delay P configuration and the lowest bitrate saving 
belongs to the test under Random Access configuration. 

In TABLE 2, it can be seen that our proposal does not work 
well on screen-content sequence ChinaSpeed, SlideEditing, 
and SlideShow under Low Delay P configuration since no 
data for screen-content has been trained. The future work 
may include training for the screen-content video data for 
Low Delay P configuration. Although our models do not 
work well on screen-content videos under Low Delay P 

TABLE 1. BD-RATE (%) OF OUR PROPOSAL COMPARED TO HEVC UNDER LOW DELAY P, LOW DELAY B AND RANDOM 
ACCESS CONFIGURATIONS ON CLASS B, C, D, E 

Class Sequence Low Delay P Low Delay B Radom Access 
 Y U V Y U V Y U V 

B Kimono -4.7 1.1 0.6 -1.1 1.3 0.6 -0.7 0.6 0.0 
ParkScene  -1.3 1.1 0.2 -0.4 0.7 0.4 -0.5 0.2 0.0 

Cactus -4.2 -1.6 -1.9 -3.2 -1.1 -0.6 -2.3 -0.5 -0.9 
BasketbalDrive -4.2 -1.6 -1.9 -1.4 0.1 -0.8 -1.7 -0.1 0.3 

BQterrace -6.5 -2.1 -2.9 -2.5 -0.2 -0.6 -1.6 -0.2 -0.2 
C BasketballDrill -4.0 -0.2 -1.4 -3.1 0.5 -0.2 -1.5 -0.6 -0.9 

BQMall -2.0 0.0 -0.3 -1.7 -0.1 -0.4 -0.9 -0.2 -0.4 
PartyScene -1.8 -0.9 -0.6 -1.1 -0.2 -0.1 -0.6 -0.2 -0.5 

RacehorsesC -2.6 -0.7 -0.3 -2.1 -0.1 -0.5 -1.6 -0.6 -1.5 
D BasketballPass -2.6 -0.8 -0.7 -2.2 -1.6 -1.8 -1.1 0.2 -0.2 

BQSquare  -4.2 -1.6 -1.3 -2.2 -0.7 -0.4 -0.9 0.4 0.1 
BlowingBubbles -2.5 -0.5 -1.3 -2.7 -0.8 -0.6 -1.0 -0.9 0.1 

RaceHorses -2.9 0.3 -1.0 -2.8 -0.1 -1.4 -1.4 -0.8 -0.9 
E FourPeople -4.3 -0.3 -0.4 -3.8 -0.2 -0.7 -2.9 -0.1 -0.4 

Johnny -5.7 -2.3 -1.5 -2.6 -0.5 -0.5 -2.1 -0.1 -0.4 
KristenAndSara -4.1 -0.9 -1.6 -3.4 -1.1 -0.8 -2.2 -0.3 -0.5 

 Avg -3.6 -0.6 -1.0 -2.3 -0.2 -0.5 -1.4 -0.2 -0.4 

TABLE 2. BD-RATE (%) OF OUR PROPOSAL COMPARED TO HEVC UNDER LOW DELAY P, LOW DELAY B AND RANDOM 

ACCESS CONFIGURATIONS ON CLASS F 

Sequence Low Delay P Low Delay B Radom Access 
Y U V Y U V Y U V 

BasketballDrillText -3.3 1.1 -0.1 -3.0 0.7 0.4 -1.0 -0.5 -1.2 
ChinaSpeed 1.2 1.6 1.4 -0.6 -0.2 -0.4 -1.0 -0.9 -0.8 
SlideEditing 1.3 1.0 1.0 -0.2 -0.2 -0.2 0.2 0.4 0.2 
SlideShow 1.0 0.1 1.6 -0.5 -1.6 -2.0 -0.4 0.2 4.7 

Avg 0.1 1.0 1.0 -1.1 -0.3 -0.5 -0.6 -0.2 0.7 

 



configuration, they acquire the average BD-rate reduction 
of 1.1%, 0.3%, and 0.5% on over class E under Low Delay 
B configuration. 

B. RDO-based Luma and Chroma fractional 
interpolation results 

 
Figure 3. Visualization on Luma and Chroma interpolation 
method selection. 

Figure 2 shows our visualization on the first P frame of 
RaceHorseC under the Low Delay P configuration. In our 
visualization, cyan blocks indicate CU that choose DCTIF 
for interpolating all components, magenta blocks indicate 
CUs that choose DCTIF for Y and CNN for UV 
components, yellow blocks indicate CUs that choose CNN 
for Y and DCTIF for UV components, and red blocks 
indicate CUs that choose CNN for interpolating all 
components. The rest parts are CUs coded with integer 
motion vector or intra coding. As our visualizations, CUs at 
the static background tend to choose DCTIF for fractional 
interpolation and CUs at moving object tend to choose 
CNN for fractional interpolation. 
TABLE 3. HITTING RATIO (%) OF THE TWO INTERPOLATION METHODS FOR 
LUMA AND CHROMA COMPONENTS 

Class 
𝐃𝐃𝐃𝐃𝐃𝐃𝐃𝐃𝐃𝐃𝐘𝐘 
𝐃𝐃𝐃𝐃𝐃𝐃𝐃𝐃𝐃𝐃𝐔𝐔𝐔𝐔 

𝐃𝐃𝐃𝐃𝐃𝐃𝐃𝐃𝐃𝐃𝐘𝐘 
𝑪𝑪𝑪𝑪𝑪𝑪𝐔𝐔𝐔𝐔 

𝐃𝐃𝐂𝐂𝐂𝐂𝐘𝐘 
𝐃𝐃𝐃𝐃𝐃𝐃𝐃𝐃𝐃𝐃𝐔𝐔𝐔𝐔 

𝑪𝑪𝑪𝑪𝑪𝑪𝐘𝐘 
𝐃𝐃𝐂𝐂𝐂𝐂𝐔𝐔𝐔𝐔 

B 54.51 0.51 44.36 0.62 
C 53.18 0.78 45.07 0.97 
D 57.75 0.47 41.34 0.44 
E 64.18 0.32 34.71 0.79 
F 71.84 1.51 26.14 0.51 

All 60.29 0.72 38.32 0.67 

On another hand, we measure the ratio of choosing 
interpolation methods for each CU. In HEVC, CU size is 
variety, which makes the calculating hitting ratio should be 
on the area than on count. Since these two flags are 
dependent, we calculate the hitting ratio on two flags as one 
than separately counting. In TABLE 3, we show the hitting 
ratio of using CNN and DCTIF for Luma and Chroma 
components at CU-level. Class F, where Luma and Chroma 
components rarely choose CNN for fractional 
interpolations, obtains the lowest bitrate saving compare to 
other classes. 

C. Compare with the existing works 
We also experiment to compare our proposal to existing 

CNN-based fractional interpolation works. For a fair 
comparison, we reimplement our proposal on HM 16.7 and 

disable the CNN-based fractional interpolation and the 
context model for the Chroma component. In this 
comparison, we use the reimplemented results from paper 
[4]. 
TABLE 4. BD-RATE COMPARISON OF CNN-BASED FRACTIONAL 
INTERPOLATION AND OUR PROPOSAL . 

Class [5] [4] Ours 
B -3.0 -3.0 -3.8 
C -1.7 -2.7 -3.0 
D -1.5 -2.5 -3.5 
E -1.9 -2.8 -4.6 

Avg. -2.1 -2.8 -3.7 

The results (TABLE 4) shows that our proposal surpasses 
the GVTCNN [5] and the switch mode-based fractional 
interpolation [4] on HM-16.7. In general, we achieve a 
3.7% BD-rate reduction on average and rank first all 
Classes from B to E. 

IV. CONCLUSION 

In this paper, we propose a deep learning-based method 
for fractional interpolation in video coding and design a 
training set for our CNN models. In our proposal, Luma 
and Chroma components are interpolated by both DCTIF 
and CNN, and an RDO cost-based interpolation method 
selection chooses among them the best fractional 
interpolation methods for Luma and Chroma components 
at CU level. As a result, we obtain an average BD-rate 
reduction of 2.9%, 0.3%, and 0.6% on Y, U, and V 
component, respectively, under low Delay P configuration. 
We also show the effects of training the separate models or 
combining models for U and V components and a 
comparison of our method compared to existing works.  
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