127,107 research outputs found

    A narrative approach to collaborative writing: A business process model

    No full text
    Narratives have been used in the past to enhance technical documents such as research proposals by implementing a single-user writing tool called CANS (Computer-Aided Narrative Support). This study has now been extended to collaborative writing (CW); another area that can greatly benefit from a narrative-based writing tool. Before implementing such an asynchronous, multi-user system, however, it was imperative to do a concrete design for it. Therefore, after studying existing CW tools and strategies, a concise business process (BP) model was designed to describe the process of narrative-based CW. This paper introduces narrative-based CW for technical authors, the BP model for it and discusses the benefits of such an implementation on particular areas of research, such as the development of Grid applications

    A conceptual V2G aggregation platform

    Get PDF
    In this work is proposed the design of a system to create and handle an Electric Vehicle (EV) community, based on social networks collaborative approach and a credit mechanism to incentive participation and divide profits. This system is part of a V2G (Vehicle-to-Grid) module that allows EV owners to be aggregated in communities and participate in the electricity market. With this system it is possible for the EV owners to win money while the EVs are parked and plugged, delivering back to the electrical grid part of the energy stored in the batteries, increasing the attractiveness of EVs.Fundação para a Ciência e a Tecnologia (FCT) - Project MIT-Pt/EDAM-SMS/0030/2008.MIT-Portugal Progra

    Towards a generic platform for developing CSCL applications using Grid infrastructure

    Get PDF
    The goal of this paper is to explore the possibility of using CSCL component-based software under a Grid infrastructure. The merge of these technologies represents an attractive, but probably quite laborious enterprise if we consider not only the benefits but also the barriers that we have to overcome. This work presents an attempt toward this direction by developing a generic platform of CSCL components and discussing the advantages that we could obtain if we adapted it to the Grid. We then propose a means that could make this adjustment possible due to the high degree of genericity that our library component is endowed with by being based on the generic programming paradigm. Finally, an application of our library is proposed both for validating the adequacy of the platform which it is based on and for indicating the possibilities gained by using it under the Grid.Peer ReviewedPostprint (published version

    A grid-based approach for processing group activity log files

    Get PDF
    The information collected regarding group activity in a collaborative learning environment requires classifying, structuring and processing. The aim is to process this information in order to extract, reveal and provide students and tutors with valuable knowledge, awareness and feedback in order to successfully perform the collaborative learning activity. However, the large amount of information generated during online group activity may be time-consuming to process and, hence, can hinder the real-time delivery of the information. In this study we show how a Grid-based paradigm can be used to effectively process and present the information regarding group activity gathered in the log files under a collaborative environment. The computational power of the Grid makes it possible to process a huge amount of event information, compute statistical results and present them, when needed, to the members of the online group and the tutors, who are geographically distributed.Peer ReviewedPostprint (author's final draft

    Supporting collaboration within the eScience community

    Get PDF
    Collaboration is a core activity at the heart of large-scale co- operative scientific experimentation. In order to support the emergence of Grid-based scientific collaboration, new models of e-Science working methods are needed. Scientific collaboration involves production and manipulation of various artefacts. Based on work done in the software engineering field, this paper proposes models and tools which will support the representation and production of such artefacts. It is necessary to provide facilities to classify, organise, acquire, process, share, and reuse artefacts generated during collaborative working. The concept of a "design space" will be used to organise scientific design and the composition of experiments, and methods such as self-organising maps will be used to support the reuse of existing artefacts. It is proposed that this work can be carried out and evaluated in the UK e-Science community, using an "industry as laboratory" approach to the research, building on the knowledge, expertise, and experience of those directly involved in e-Science

    Collaboration in the Semantic Grid: a Basis for e-Learning

    Get PDF
    The CoAKTinG project aims to advance the state of the art in collaborative mediated spaces for the Semantic Grid. This paper presents an overview of the hypertext and knowledge based tools which have been deployed to augment existing collaborative environments, and the ontology which is used to exchange structure, promote enhanced process tracking, and aid navigation of resources before, after, and while a collaboration occurs. While the primary focus of the project has been supporting e-Science, this paper also explores the similarities and application of CoAKTinG technologies as part of a human-centred design approach to e-Learning

    Supporting collaborative grid application development within the escience community

    Get PDF
    The systemic representation and organisation of software artefacts, e.g. specifications, designs, interfaces, and implementations, resulting from the development of large distributed systems from software components have been addressed by our research within the Practitioner and AMES projects [1,2,3,4]. Without appropriate representations and organisations, large collections of existing software are not amenable to the activities of software reuse and software maintenance, as these activities are likely to be severely hindered by the difficulties of understanding the software applications and their associated components. In both of these projects, static analysis of source code and other development artefacts, where available, and subsequent application of reverse engineering techniques were successfully used to develop a more comprehensive understanding of the software applications under study [5,6]. Later research addressed the maintenance of a component library in the context of component-based software product line development and maintenance [7]. The classic software decompositions, horizontal and vertical, proposed by Goguen [8] influenced all of this research. While they are adequate for static composition, they fail to address the dynamic aspects of composing large distributed software applications from components especially where these include software services. The separation of component co-ordination concerns from component functionality proposed in [9] offers a partial solution

    Supporting security-oriented, collaborative nanoCMOS electronics research

    Get PDF
    Grid technologies support collaborative e-Research typified by multiple institutions and resources seamlessly shared to tackle common research problems. The rules for collaboration and resource sharing are commonly achieved through establishment and management of virtual organizations (VOs) where policies on access and usage of resources by collaborators are defined and enforced by sites involved in the collaboration. The expression and enforcement of these rules is made through access control systems where roles/privileges are defined and associated with individuals as digitally signed attribute certificates which collaborating sites then use to authorize access to resources. Key to this approach is that the roles are assigned to the right individuals in the VO; the attribute certificates are only presented to the appropriate resources in the VO; it is transparent to the end user researchers, and finally that it is manageable for resource providers and administrators in the collaboration. In this paper, we present a security model and implementation improving the overall usability and security of resources used in Grid-based e-Research collaborations through exploitation of the Internet2 Shibboleth technology. This is explored in the context of a major new security focused project at the National e-Science Centre (NeSC) at the University of Glasgow in the nanoCMOS electronics domain
    corecore