9,366 research outputs found

    A Greedy Algorithm for Subspace Approximation Problem

    Get PDF
    In the subspace approximation problem, given m points in R^{n} and an integer k <= n, the goal is to find a k-dimension subspace of R^{n} that minimizes the l_{p}-norm of the Euclidean distances to the given points. This problem generalizes several subspace approximation problems and has applications from statistics, machine learning, signal processing to biology. Deshpande et al. [Deshpande et al., 2011] gave a randomized O(sqrt{p})-approximation and this bound is proved to be tight assuming NP != P by Guruswami et al. [Guruswami et al., 2016]. It is an intriguing question of determining the performance guarantee of deterministic algorithms for the problem. In this paper, we present a simple deterministic O(sqrt{p})-approximation algorithm with also a simple analysis. That definitely settles the status of the problem in term of approximation up to a constant factor. Besides, the simplicity of the algorithm makes it practically appealing

    Stochastic subspace correction in Hilbert space

    Full text link
    We consider an incremental approximation method for solving variational problems in infinite-dimensional Hilbert spaces, where in each step a randomly and independently selected subproblem from an infinite collection of subproblems is solved. we show that convergence rates for the expectation of the squared error can be guaranteed under weaker conditions than previously established in [Constr. Approx. 44:1 (2016), 121-139]. A connection to the theory of learning algorithms in reproducing kernel Hilbert spaces is revealed.Comment: 15 page

    Approximation of Eigenfunctions in Kernel-based Spaces

    Full text link
    Kernel-based methods in Numerical Analysis have the advantage of yielding optimal recovery processes in the "native" Hilbert space \calh in which they are reproducing. Continuous kernels on compact domains have an expansion into eigenfunctions that are both L2L_2-orthonormal and orthogonal in \calh (Mercer expansion). This paper examines the corresponding eigenspaces and proves that they have optimality properties among all other subspaces of \calh. These results have strong connections to nn-widths in Approximation Theory, and they establish that errors of optimal approximations are closely related to the decay of the eigenvalues. Though the eigenspaces and eigenvalues are not readily available, they can be well approximated using the standard nn-dimensional subspaces spanned by translates of the kernel with respect to nn nodes or centers. We give error bounds for the numerical approximation of the eigensystem via such subspaces. A series of examples shows that our numerical technique via a greedy point selection strategy allows to calculate the eigensystems with good accuracy

    Low-rank approximate inverse for preconditioning tensor-structured linear systems

    Full text link
    In this paper, we propose an algorithm for the construction of low-rank approximations of the inverse of an operator given in low-rank tensor format. The construction relies on an updated greedy algorithm for the minimization of a suitable distance to the inverse operator. It provides a sequence of approximations that are defined as the projections of the inverse operator in an increasing sequence of linear subspaces of operators. These subspaces are obtained by the tensorization of bases of operators that are constructed from successive rank-one corrections. In order to handle high-order tensors, approximate projections are computed in low-rank Hierarchical Tucker subsets of the successive subspaces of operators. Some desired properties such as symmetry or sparsity can be imposed on the approximate inverse operator during the correction step, where an optimal rank-one correction is searched as the tensor product of operators with the desired properties. Numerical examples illustrate the ability of this algorithm to provide efficient preconditioners for linear systems in tensor format that improve the convergence of iterative solvers and also the quality of the resulting low-rank approximations of the solution
    • …
    corecore