1,318 research outputs found

    Real-Time Online Re-Planning for Grasping Under Clutter and Uncertainty

    Full text link
    We consider the problem of grasping in clutter. While there have been motion planners developed to address this problem in recent years, these planners are mostly tailored for open-loop execution. Open-loop execution in this domain, however, is likely to fail, since it is not possible to model the dynamics of the multi-body multi-contact physical system with enough accuracy, neither is it reasonable to expect robots to know the exact physical properties of objects, such as frictional, inertial, and geometrical. Therefore, we propose an online re-planning approach for grasping through clutter. The main challenge is the long planning times this domain requires, which makes fast re-planning and fluent execution difficult to realize. In order to address this, we propose an easily parallelizable stochastic trajectory optimization based algorithm that generates a sequence of optimal controls. We show that by running this optimizer only for a small number of iterations, it is possible to perform real time re-planning cycles to achieve reactive manipulation under clutter and uncertainty.Comment: Published as a conference paper in IEEE Humanoids 201

    On Grasping a Tumbling Debris Object with a Free-Flying Robot

    Get PDF
    The grasping and stabilization of a tumbling, non-cooperative target satellite by means of a free-flying robot is a challenging control problem, which has been addressed in increasing degree of complexity since 20 years. A novel method for computing robot trajectories for grasping a tumbling target is presented. The problem is solved as a motion planning problem with nonlinear optimization. The resulting solution includes a first maneuver of the Servicer satellite which carries the robot arm, taking account of typical satellite control inputs. An analysis of the characteristics of the motion of a grasping point on a tumbling body is used to motivate this grasping method, which is argued to be useful for grasping targets of larger size

    Global Search with Bernoulli Alternation Kernel for Task-oriented Grasping Informed by Simulation

    Full text link
    We develop an approach that benefits from large simulated datasets and takes full advantage of the limited online data that is most relevant. We propose a variant of Bayesian optimization that alternates between using informed and uninformed kernels. With this Bernoulli Alternation Kernel we ensure that discrepancies between simulation and reality do not hinder adapting robot control policies online. The proposed approach is applied to a challenging real-world problem of task-oriented grasping with novel objects. Our further contribution is a neural network architecture and training pipeline that use experience from grasping objects in simulation to learn grasp stability scores. We learn task scores from a labeled dataset with a convolutional network, which is used to construct an informed kernel for our variant of Bayesian optimization. Experiments on an ABB Yumi robot with real sensor data demonstrate success of our approach, despite the challenge of fulfilling task requirements and high uncertainty over physical properties of objects.Comment: To appear in 2nd Conference on Robot Learning (CoRL) 201
    • …
    corecore