25 research outputs found

    Biosensors for screening kinase inhibitors

    Get PDF
    For successful drug discovery it is important to understand the fundamentals of the underlying causes and consequences of the diseases for which the drug is being developed. One such physiological process in eukaryotic cells is protein phosphorylation, which is the main post-translational modification of proteins responsible for the onset or progression of Alzheimer's disease, diabetes and various cancers. Protein phosphorylation is facilitated by kinases and inhibitors of kinases act as drugs in controlling or curing these diseases by reducing protein phosphorylation. This review discusses the technologies capable of detecting kinase activity and screening candidate compounds to identify novel inhibitors of protein kinases

    Integration of thrombin-binding aptamers in point-of-care devices for continuous monitoring of thrombin in plasma

    Get PDF
    La thrombine est l'enzyme principale dans le processus d'hémostase. Les dérèglements de la concentration de thrombine clinique prédisposent les patients à des complications hémorragiques ou thromboemboliques. Le suivi en temps réel de la thrombine dans le sang est donc nécessaire pour améliorer le traitement de patients en état critique. Les aptamères, qui sont de courts nucléotides monobrins semblent constituer des candidats prometteurs pour la reconnaissance moléculaire dans les biocapteurs. L'objectif de ces travaux est l'étude de différentes solutions d'intégration des aptamères dans des dispositifs de diagnostic de type "point of care" pour le suivi en continu de la thrombine dans le plasma. La cinétique d'interaction des aptamères avec la thrombine et leur spécificité vis-à-vis de la prothrombine et des inhibiteurs de la thrombine ont été étudiés par résonance par plasmons de surface. Ces travaux ont démontré la faible spécificité de l'aptamère HD1 vis-à-vis de la thrombine, et la présence d'interactions non-spécifiques avec la prothrombine, les inhibiteurs naturels de la thrombine et l'albumine. Inversement, nous avons observé une bonne affinité de l'aptamère HD22 avec la même liste de cible. Parallèlement, nous avons évalué des stratégies d'intégration d'aptamères dans des dispositifs d'analyse. Le principe de reconnaissance a ensuite été validé et la possibilité de détecter la thrombine dans des gammes de concentration de 5 à 500nM a été démontrée. Enfin, afin d'augmenter la spécificité de la détection de la thrombine, nous avons proposé une nouvelle approche basée sur l'ingénierie de structures dimères interconnectant HD1 et HD22.Thrombin is the central enzyme in the process of hemostasis. Normally, in vivo concentration of thrombin is rigorously regulated; however, clinically impaired or unregulated thrombin generation predisposes patients either to hemorrhagic or thromboembolic complications. Monitoring thrombin in real-time is therefore needed to enable rapid and accurate determination of drug administration strategy for patients under vital threat. Aptamers, short single-stranded oligonucleotide ligands represent promising candidates as biorecognition elements for new-generation biosensors. The aim of this PhD work therefore is to investigate different solutions for the integration of thrombin-binding aptamers in point-of-care devices for continuous monitoring of thrombin in plasma. The kinetics of aptamer interaction with thrombin and specificity towards prothrombin and thrombin - inhibitor complexes was rigorously investigated using Surface Plasmon Resonance. These experiments unveiled the complex character of interaction of the HD1 with thrombin, confirming nonspecific interactions with prothrombin, natural inhibitors of thrombin, serum albumin whereas another 29-bp aptamer HD22 proved to be highly affine and specific towards thrombin. On the other hand we explored aptamer integration options. We validated the principle and at the same managed to detect different concentrations of thrombin (5-500 nM). We finally proposed a novel approach to increase sensitivity and specificity for thrombin detection based on the engineering of aptadimer structures bearing aptamers HD1and HD22 interconnected with a nucleic acid spacer

    Nanostructured biosensors with DNA-based receptors for real-time detection of small analytes

    Get PDF
    In zahlreichen lebenswichtigen Bereichen haben sich Biosensoren als unverzichtbare Messgeräte erwiesen. Der Nachweis von spezifischen Molekülen im Körper für eine frühzeitige Krankheitserkennung erfordert empfindliche und zugleich zuverlässige Messmethoden. Ein rasantes Fortschreiten im Bereich der Nanotechnologie führt dabei zur Entwicklung von Materialien mit neuen Eigenschaften, und damit verbunden, auch zu innovativen Anwendungsmöglichkeiten im Bereich der Biosensorik. Das Zusammenspiel von Nanotechnologie und Sensortechnik gewährleistet die Konstruktion von Sensoren mit empfindlicheren Nachweisgrenzen und kürzeren Reaktionszeiten. Die Option zur Integration und Miniaturisierung stellen daher einen erfolgreichen Einsatz in direkter Patientennähe in Aussicht, sodass Nanobiosensoren die Brücke zwischen Laborddiagnostik und Standardanwendungen schließen können. Die folgende Arbeit widmet sich der Anwendung von nanostrukturierten Biosensoren für einen empfindlichen und markierungsfreien Nachweis von Zielmolekülen. Ein Hauptaugenmerk liegt dabei auf der kontinuierlichen Messung von Biomarkern mit kompakten Auslesesystemen, die eine direkte Signalmeldung und somit eine Detektion in Echtzeit ermöglichen. Dies erfordert zunächst die sorgfältige Funktionalisierung von Sensoroberflächen mit geeigneten DNA-basierten Rezeptoren. Infolgedessen werden beispielhaft verschiedene Sensorsysteme, Analyten und Charakterisierungsmethoden vorgestellt sowie universelle Strategien für die erfolgreiche Konfiguration von Nanobiosensorplattformen präsentiert. Das erste Anwendungsbeispiel widmet sich einem plasmonischen Biosensor, bei dem vertikal ausgerichtete Gold-Nanoantennen Signale mittels sog. lokalisierter Oberflächenplasmonenresonanz (LSPR) erzeugen. Mit dem Sensor konnte erfolgreich die Immobilisierung, das nachträgliche Blocken sowie die anschließende Hybridisierung von DNA nachgewiesen werden. Mithilfe des LSPR-Sensors wurden gleichzeitig grundlegende Hybridisierungsmechanismen auf nanostrukturierten und planaren Oberflächen verglichen und damit verbunden die einzigartigen optischen Eigenschaften metallischer Nanostrukturen betont. In einem zweiten Anwendungsbeispiel misst ein elektrischer Biosensor kontinuierlich die Konzentration des Stressmarkers Cortisol im menschlichen Speichel. Der direkte, markierungsfreie Nachweis von Cortisol mit Silizium-Nanodraht basierten Feldeffekttransistoren (SiNW FET) wurde anhand zugrunde liegender Ladungsverteilungen innerhalb des entstandenen Rezeptor-Analyte-Komplexes bewertet, sodass ein Nachweis des Analyten innerhalb der sog. Debye-Länge ermöglicht wird. Die erfolgreiche Strategie zur Oberflächenfunktionalisierung im Zusammenspiel mit dem Einsatz von SiNW FETs auf einem tragbaren Messgerät wurde anhand des Cortisolnachweises im Speichel belegt. Ein übereinstimmender Vergleich der gemessenen Corisolkonzentrationen mit Werten, die mit einer kommerziellen Alternative ermittelt wurden, verdeutlichen das Potential der entwickelten Plattform. Zusammenfassend veranschaulichen beide vorgestellten Nanobiosensor-Plattformen die vielseitige und vorteilhafte Leistungsfähigkeit der Systeme für einen kontinuierlichen Nachweis von Biomarkern in Echtzeit und vorzugsweise in Patientennähe.:Kurzfassung I Abstract III Abbreviations and symbols V Content VII 1 Introduction 1 1.1 Scope of the thesis 4 1.2 References 6 2 Fundamentals 9 2.1 Biosensors 9 2.2 Influence of nanotechnology on sensor development 10 2.3 Biorecognition elements 12 2.3.1 Biorecognition element: DNA 13 2.3.2 Aptamers 14 2.3.3 Immobilization of receptors 15 2.4 Transducer systems 17 2.4.1 Optical biosensors - surface plasmon resonance 17 2.4.2 Electric Biosensors – Field-effect transistors (FETs) 21 2.5 Metal oxide semiconductor field-effect transistor - MOSFET 21 2.6 Summary 26 2.7 References 27 3 Materials and methods 33 3.1 Plasmonic biosensors based on vertically aligned gold nanoantennas 33 3.1.1 Materials 33 3.1.2 Manufacturing of nanoantenna arrays 34 3.1.3 Surface modification and characterization 35 3.1.4 Measurement setup for detection of analytes 38 3.2 SiNW FET-based real-time monitoring of cortisol 40 3.2.1 Materials 40 3.2.2 Manufacturing of silicon nanowire field effect transistors (SiNW FETs) 42 3.2.3 Integration of SiNW FETs into a portable platform 42 3.2.4 Biomodification and characterization of electronic biosensors SiNW FETs 42 3.2.5 Electric characterization of FETs 47 3.3 References 50 4 Plasmonic DNA biosensor based on vertical arrays of gold nanoantennas 51 4.1 Introduction - Optical biosensors operating by means of LSPR 53 4.2 Biosensing with vertically aligned gold nanoantennas 56 4.2.1 Sensor fabrication, characterization, and integration 56 4.2.2 Integration of microfluidics 58 4.2.3 Immobilization of probe DNA and backfilling 58 4.2.4 Hybridization of complementary DNA strands 62 4.2.5 Surface coverage and hybridization efficiency of DNA 69 4.2.6 Refractive index sensing 72 4.2.7 Backfilling and blocking 73 4.3 Summary 75 4.4 References 77 5 Label-free detection of salivary cortisol with SiNW FETs 83 5.1 Introduction 85 5.2 Design, integration, and performance of SiNW FETs into a portable platform 89 5.2.1 Structure and electrical characteristics of honeycomb SiNW FETs 89 5.2.2 Integration of SiNW FET into a portable measuring unit 91 5.2.3 Performance of SiNW FET arrays 93 5.3 Detection of biomolecules with SiNW FETs 102 5.3.1 General considerations for biodetection with FETs 102 5.3.2 Sensing aptamers with FETs 103 5.3.3 Biodetection of the analyte cortisol with SiNW FETs 104 5.3.4 Detection of cortisol with SiNW FETs 112 5.4 Summary 119 5.5 References 121 6 Summary and outlook 131 6.1 Summary 131 6.2 Perspectives – toward multiplexed biosensing applications 134 6.3 References 137 Appendix i A.1 Protocols i A.1.1 Functionalization of gold antennas with thiolated DNA i A.1.2 Functionalization of SiO2 with TESPSA and amino-modified receptors i A.1.3 Functionalization with APTES and carboxyl-modified receptors ii A.1.4 Preparation of microfluidic channels via soft lithography ii A.2 Predicted secondary structures iv A.2.1 Secondary structures of 100base pair target without probe-strands iv A.2.2 Secondary structures of 100base pair target with 25 base pair probe-strand x Versicherung xvii Acknowledgments xix List of publications xxi Peer-reviewed publications xxi Publications in preparation xxi Selected international conferences xxii Curriculum Vitae xxiiiBiosensors have proven to be indispensable in numerous vital areas. For example, detecting the presence and concentration of specific biomarkers requires sensitive and reliable measurement methods. Rapid developments in the field of nanotechnology lead to nanomaterials with new properties and associated innovative applications. Thus, nanotechnology has a far-reaching impact on biosensors' development, e.g., delivery of biosensing devices with greater sensitivity, shorter response times, and precise but cost-effective sensor platforms. In addition, nanobiosensors hold high potential for integration and miniaturization and can operate directly at the point of care - serving as a bridge between diagnostics and routine tests. This work focuses on applying nanostructured biosensors for the sensitive and label-free detection of analytes. A distinct aim is the continuous monitoring of biomarkers with compact read-out systems to provide direct, valuable feedback in real-time. The first step in achieving this goal is the adequate functionalization of nanostructured sensor surfaces with suitable receptors to detect analytes of interest. Due to their thermal and chemical stability with the possibility for customizable functionalization, DNA-based receptors are selected. Thereupon, universal strategies for confining nanobiosensor platforms are presented using different sensor systems, analytes, and characterization methods. As a first application, a plasmonic biosensor based on vertically aligned gold nanoantennas tracked the immobilization, blocking, and subsequent hybridization of DNA by means of localized surface plasmon resonance (LSPR). At the same time, the LSPR sensor was used to evaluate fundamental hybridization mechanisms on nanostructured and planar surfaces, emphasizing the unique optical properties of metallic nanostructures. In a second application, an electric sensor based on silicon nanowire field-effect transistors (SiNW FET) monitored the level of the stress marker cortisol in human saliva. Based on evaluating the underlying charge distributions within the resulting receptor-analyte complex of molecules, the detection of cortisol within the Debye length is facilitated. Thus, direct, label-free detection of cortisol in human saliva using SiNW FET was successfully applied to the developed platform and compared to cortisol levels obtained using a commercial alternative. In summary, both presented platforms indicate a highly versatile and beneficial performance of nanobiosensors for continuous detection of biomarkers in real-time and preferably point-of-care (POC).:Kurzfassung I Abstract III Abbreviations and symbols V Content VII 1 Introduction 1 1.1 Scope of the thesis 4 1.2 References 6 2 Fundamentals 9 2.1 Biosensors 9 2.2 Influence of nanotechnology on sensor development 10 2.3 Biorecognition elements 12 2.3.1 Biorecognition element: DNA 13 2.3.2 Aptamers 14 2.3.3 Immobilization of receptors 15 2.4 Transducer systems 17 2.4.1 Optical biosensors - surface plasmon resonance 17 2.4.2 Electric Biosensors – Field-effect transistors (FETs) 21 2.5 Metal oxide semiconductor field-effect transistor - MOSFET 21 2.6 Summary 26 2.7 References 27 3 Materials and methods 33 3.1 Plasmonic biosensors based on vertically aligned gold nanoantennas 33 3.1.1 Materials 33 3.1.2 Manufacturing of nanoantenna arrays 34 3.1.3 Surface modification and characterization 35 3.1.4 Measurement setup for detection of analytes 38 3.2 SiNW FET-based real-time monitoring of cortisol 40 3.2.1 Materials 40 3.2.2 Manufacturing of silicon nanowire field effect transistors (SiNW FETs) 42 3.2.3 Integration of SiNW FETs into a portable platform 42 3.2.4 Biomodification and characterization of electronic biosensors SiNW FETs 42 3.2.5 Electric characterization of FETs 47 3.3 References 50 4 Plasmonic DNA biosensor based on vertical arrays of gold nanoantennas 51 4.1 Introduction - Optical biosensors operating by means of LSPR 53 4.2 Biosensing with vertically aligned gold nanoantennas 56 4.2.1 Sensor fabrication, characterization, and integration 56 4.2.2 Integration of microfluidics 58 4.2.3 Immobilization of probe DNA and backfilling 58 4.2.4 Hybridization of complementary DNA strands 62 4.2.5 Surface coverage and hybridization efficiency of DNA 69 4.2.6 Refractive index sensing 72 4.2.7 Backfilling and blocking 73 4.3 Summary 75 4.4 References 77 5 Label-free detection of salivary cortisol with SiNW FETs 83 5.1 Introduction 85 5.2 Design, integration, and performance of SiNW FETs into a portable platform 89 5.2.1 Structure and electrical characteristics of honeycomb SiNW FETs 89 5.2.2 Integration of SiNW FET into a portable measuring unit 91 5.2.3 Performance of SiNW FET arrays 93 5.3 Detection of biomolecules with SiNW FETs 102 5.3.1 General considerations for biodetection with FETs 102 5.3.2 Sensing aptamers with FETs 103 5.3.3 Biodetection of the analyte cortisol with SiNW FETs 104 5.3.4 Detection of cortisol with SiNW FETs 112 5.4 Summary 119 5.5 References 121 6 Summary and outlook 131 6.1 Summary 131 6.2 Perspectives – toward multiplexed biosensing applications 134 6.3 References 137 Appendix i A.1 Protocols i A.1.1 Functionalization of gold antennas with thiolated DNA i A.1.2 Functionalization of SiO2 with TESPSA and amino-modified receptors i A.1.3 Functionalization with APTES and carboxyl-modified receptors ii A.1.4 Preparation of microfluidic channels via soft lithography ii A.2 Predicted secondary structures iv A.2.1 Secondary structures of 100base pair target without probe-strands iv A.2.2 Secondary structures of 100base pair target with 25 base pair probe-strand x Versicherung xvii Acknowledgments xix List of publications xxi Peer-reviewed publications xxi Publications in preparation xxi Selected international conferences xxii Curriculum Vitae xxii

    Fabrication and electrochemical characterization of highly efficient hierarchically assembled hybrid two-dimensional nanointerfaces for electrochemical biosensing and bioelectronics

    Get PDF
    Abstract : Two dimensional (2D) materials have provided a new era to biosensors research. Biosensors are functional biodevices which include the integration of biology with electronics. The integration of 2D materials with other nanomaterials has transformed the understanding of the biological and electronics world and has paved a way for the design and fabrication of novel 2D nanointerfaces. The use of 2D nanointerfaces has given great success to biosensors and bioelectronics field which ultimately impacts on biomedical diagnosis and sensing applications. The superior properties of 2D materials such as large surface area, ease of hybridization, good biocompatibility, and high electron transfer properties make them ideal interface materials for the design and fabrication of bioelectronic devices including biosensors. The thesis focused on the fabrication of 2D nanointerfaces by combining two 2D hybrid materials and then nanostructuring with metal nanoparticles for better electron transfer within the interface which is followed by immobilization of enzyme as a bio-recognition element for biosensing purposes. The conjugation of the 2D hybrid nanointerface materials was achieved through the self-assembly technique. Cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) were used in the study for characterization of the 2D hybrid nanointerface structures and chronoamperometry studies were employed to investigate the electrobiocatalytic properties of the 2D hybrid nanointerfaces structures. Structural characterization was done by using X-ray diffraction (XRD), transmission electron microscopy (TEM) and scanning electron microscopy (SEM) techniques for morphological details of 2D hybrid nanointerfaces structures. The fabrication of bioelectrodes was achieved by using the conjugated 2D hybrid nanointerface materials. ix There are three different segments in this research study. All of these different segments involved the use of 2D materials for bioelectronics purposes. The first phase involved the fabrication of smart hierarchically self-assembled 2D electrobiocatalytic interface system based on the combination of gold nanoparticles (AuNPs) doped graphene oxide (GO)-molybdenum disulfide (MoS2) layered nanohybrid, conjugated with poly (N-isopropylacrylamide, PNIPAAm) resulting in GO/AuNPs/MoS2/PNIPAAm interface. The introduction of PNIPAAm improved the stability of the self-assembled GO/AuNPs/MoS2 interface structure. Horseradish peroxidase (HRP) was subsequently immobilized on the GO/AuNPs/MoS2/PNIPAAm interface through electrostatic interactions giving GO/AuNPs/MoS2/PNIPAAm/Peroxidase electrobiocatalytic interface system as a platform for electrobiocatalysis reactions for biosensing applications. Morphological characterization of GO/AuNPs/MoS2/PNIPAAm indicates that this 2D nanointerface structure has a wide surface area for enzyme immobilization due to their flake-like structure. CV showed diffusion-controlled electron transfer properties at the interface. The electrobiocatalytic activity of the nanohybrid interface structure was studied using hydrogen peroxide (H2O2) as a model analyte. The fabricated bioelectrode exhibits a wide linear response to the detection of H2O2 from 1.57 to 11.33 mM, with a detection limit of 3.34 mM (S/N=3) and a capacitance of 8.6 F/cm2. The second phase of the study involved the fabrication of hybrid dual 2D-nanohybrid structure through self-assembly combination AuNPs with hybrid 2D materials consisting of boron nitride (BN) and tungsten disulphide (WS2) as a nanointerface system for electrochemical biosensing. HRP was immobilized on the hybrid dual 2Dnanoparticle systems to form a biointerface. Structural characterization showed high crystallinity in the fabricated structure, while morphological characterization confirmed x the high surface to volume area of the hybrid material and the presence of welldispersed AuNPs. Electrochemical characterization also confirmed that the fabricated HRP/BN/WS2/AuNPs/GC bioelectrode exhibited excellent electron transfer properties at the interface. The electrobiocatalytic activity of the nanohybrid interface structure was studied using H2O2 as a model analyte. The fabricated bioelectrode exhibited a wide linear range from 0.15 mM to 15.01 mM towards detection of H2O2 with a limit of detection of 3.0 mM (S/N = 3) and a sensitivity of 19.16 μA/mM/cm2. Theoretical studies of the BN/Au/WS2(001) nanohybrid structure was carried out using density functional theory (DFT) calculation for confirming the charge transport mobility and conductivity of the fabricated material. DFT calculations combined with the experimental studies showed that the self-assembled combination of the BN/Au/WS2(001) nanocomposite enhances the performance of the fabricated biosensor due to an introduced new electronic state emanating from the N 2p orbital. The third phase of the study involved the synthesis of acetylene sourced graphene (Gr) by chemical vapour deposition (CVD) method. Self-assembly method was used to prepare the 2D nanohybrid interfaces, which consist of Gr, WS2, AuNPs and HRP for fabricating electrochemical biosensor for detection of H2O2. The XRD results revealed that Gr/WS2/AuNPs nanohybrid structure has good crystalline nature. CV and electrochemical impedance spectroscopy results showed that due to the incorporation of AuNPs, the redox properties of Gr/WS2/AuNPs/HRP conjugate 2D hybrid structure improved in comparison to Gr/WS2/HRP. The same trend was observed in the chronoamperometric results. The Gr/WS2/AuNPs/HRP/GCE modified bioelectrode exhibited a good electrobiocatalytic performance towards the detection of H2O2 over a relatively wider linear range (0.40 mM to 23 mM), with a higher xi sensitivity (11.07 μA/mM/cm2) than that of Gr/WS2/HRP/GCE modified bioelectrode (9.23 μA/mM/cm2). The results have shown that electrobiocatalytic reactions can be controlled by modifying the nanohybrid interfaces.D.Phil. (Chemistr

    Aptamers: a novel targeted theranostic platform for pancreatic ductal adenocarcinoma

    Get PDF
    Pancreatic ductal adenocarcinoma (PDAC) is an extremely challenging disease with a high mortality rate and a short overall survival time. The poor prognosis can be explained by aggressive tumor growth, late diagnosis, and therapy resistance. Consistent efforts have been made focusing on early tumor detection and novel drug development. Various strategies aim at increasing target specificity or local enrichment of chemotherapeutics as well as imaging agents in tumor tissue. Aptamers have the potential to provide early detection and permit anti-cancer therapy with significantly reduced side effects. These molecules are in-vitro selected single-stranded oligonucleotides that form stable three-dimensional structures. They are capable of binding to a variety of molecular targets with high affinity and specificity. Several properties such as high binding affinity, the in vitro chemical process of selection, a variety of chemical modifications of molecular platforms for diverse function, non-immunoreactivity, modification of bioavailability, and manipulation of pharmacokinetics make aptamers attractive targets compared to conventional cell-specific ligands. To explore the potential of aptamers for early diagnosis and targeted therapy of PDAC - as single agents and in combination with radiotherapy - we summarize the generation process of aptamers and their application as biosensors, biomarker detection tools, targeted imaging tracers, and drug-delivery carriers. We are furthermore discussing the current implementation aptamers in clinical trials, their limitations and possible future utilization

    Biosensors for drug discovery applications

    Get PDF

    Recent Achievements in Electrochemical and Surface Plasmon Resonance Aptasensors for Mycotoxins Detection

    Full text link
    Mycotoxins are secondary metabolites of fungi that contaminate agriculture products. Their release in the environment can cause severe damage to human health. Aptasensors are compact analytical devices that are intended for the fast and reliable detection of various species able to specifically interact with aptamers attached to the transducer surface. In this review, assembly of electrochemical and surface plasmon resonance (SPR) aptasensors are considered with emphasis on the mechanism of signal generation. Moreover, the properties of mycotoxins and the aptamers selected for their recognition are briefly considered. The analytical performance of bio-sensors developed within last three years makes it possible to determine mycotoxin residues in water and agriculture/food products on the levels below their maximal admissible concentrations. Requirements for the development of sample treatment and future trends in aptasensors are also discussed. © 2021 by the authors. Licensee MDPI, Basel, Switzerland.Funding: T.K. acknowledges funding by the subsidy allocated to Kazan Federal University for the state assignment in the sphere of scientific activities (grant No 0671–2020−0063). T.H. acknowledges funding from the Science Grant Agency VEGA, project No.: 1/0419/20

    Supramolecular Aptamers on Graphene Oxide for Efficient Inhibition of Thrombin Activity

    Get PDF
    Graphene oxide (GO), a two-dimensional material with a high aspect ratio and polar functional groups, can physically adsorb single-strand DNA through different types of interactions, such as hydrogen bonding and π-π stacking, making it an attractive nanocarrier for nucleic acids. In this work, we demonstrate a strategy to target exosites I and II of thrombin simultaneously by using programmed hybrid-aptamers for enhanced anticoagulation efficiency and stability. The targeting ligand is denoted as Supra-TBA15/29 (supramolecular TBA15/29), containing TBA15 (a 15-base nucleotide, targeting exosite I of thrombin) and TBA29 (a 29-base nucleotide, targeting exosite II of thrombin), and it is designed to allow consecutive hybridization of TBA15 and TBA29 to form a network of TBAs (i.e., supra-TBA15/29). The programmed hybrid-aptamers (Supra-TBA15/29) were self-assembled on GO to further boost anticoagulation activity by inhibiting thrombin activity, and thus suppress the thrombin-induced fibrin formation from fibrinogen. The Supra-TBA15/29-GO composite was formed mainly through multivalent interaction between poly(adenine) from Supra-TBA15/29 and GO. We controlled the assembly of Supra-TBA15/29 on GO by regulating the preparation temperature and the concentration ratio of Supra-TBA15/29 to GO to optimize the distance between TBA15 and TBA29 units, aptamer density, and aptamer orientation on the GO surfaces. The dose-dependent thrombin clotting time (TCT) delay caused by Supra-TBA15/29-GO was >10 times longer than that of common anticoagulant drugs including heparin, argatroban, hirudin, and warfarin. Supra-TBA15/29-GO exhibits high biocompatibility, which has been proved by in vitro cytotoxicity and hemolysis assays. In addition, the thromboelastography of whole-blood coagulation and rat-tail bleeding assays indicate the anticoagulation ability of Supra-TBA15/29-GO is superior to the most widely used anticoagulant (heparin). Our highly biocompatible Supra-TBA15/29-GO with strong multivalent interaction with thrombin [dissociation constant (Kd) = 1.9 × 10−11 M] shows great potential as an effective direct thrombin inhibitor for the treatment of hemostatic disorders

    Interfacing fluorescent DNA oligonucleotides with graphene oxide and metal oxides: from adsorption to sensing

    Get PDF
    DNA, apart from being the mode of genomic information storage, has found several uses in catalysis (DNAzymes) and target detection (aptamers). Developing novel biosensors utilizing these properties has therefore been a significant avenue for research in recent decades. Of these avenues, interfacing fluorescent dye-labelled DNA with various nanomaterials has birthed many sensors which have been implemented in several environments such as lake water, food, and even within the cell. In this thesis, we provide an improved understanding of DNA adsorption on such nanomaterials and interpretation of sensor results. In Chapter 1, background information related to DNA, fluorescence and nanomaterials are introduced, with associated examples of different biosensor design. The fundamental questions arising from these sensor designs are also stated, along with thesis objectives. In Chapter 2, a comparison is made between graphene oxide and inorganic metal oxides for aptamer-based fluorescence sensing. It was found that, for graphene oxide, target/aptamer interactions dominate the sensor response. This is in contrast to the metal oxide nanoparticles, where sensing is achieved through the target simply displacing DNA from the nanomaterial surface. In Chapter 3, the properties of carboxyfluorescein-labelled poly-C DNA are explored in detail. Through fluorescence and circular dichroism experiments, it was seen that carboxyfluorescein stabilizes i-motif formation in poly-C DNA, even at neutral pH. This folding was irreversible upon heating. Unfolding of the structure led to improved adsorption on GO demonstrated through fluorescence desorption experiments. In Chapter 4, the anomalously high affinity of poly-C adsorption was investigated using both fluorescence experiments and simulations. It was found that the arrangement of cytosines within the chain did not affect affinity, merely their total number. Through simulations, it was determined that poly-C DNA spreads out on the GO surface due to its lack of intrastrand interactions. This results in more phosphate-backbone hydrogen bond sites and a more favourable bond. At lower pH, i-motif formation drastically reduces poly-C affinity to GO; intrastrand interactions dominate over GO/DNA binding. In Chapter 5, fluorescence polarization was used to characterize labelled DNA interactions with various nanomaterials. First, it was determined that, at low labelled-DNA concentrations, polarization is artificially increased by scattering of incident polarized light. Polarization is also increased with the addition of GO to this DNA. Through a simple mathematical derivation, it was shown that the increase in polarization with this kind of surface was due to low concentration of free DNA, rather than adsorption to the GO surface. This was compared to a low-quenching surface (Yttrium oxide), in which the total polarization observed was dominated by the binding DNA rather than free DNA. Overall, the work presented in this thesis improves the current understanding of both fundamental DNA/nanomaterial interactions, as well as its implementation in fluorescence-based sensor designs. Future biosensor construction can incorporate these concepts for better sensitivity, specificity and signal interpretation

    Gold Nanoparticle-Based Colorimetric Sensors for Detection of DNA and Small Molecules

    Get PDF
    Biosensors have proven to be a powerful tool for detecting diverse targets, such as proteins, DNA, and small molecules representing disease biomarkers, toxins, drugs and their metabolites, environmental pollutants, agrichemicals, and antibiotics with high sensitivity and specificity. The major objective of the research described in this dissertation was to develop low cost, low sample volume, highly sensitive and specific AuNP-based colorimetric sensor platforms for the detection of DNA and small molecules. With this in mind, we propose an instrument-free approach in chapter three for the detection of NADH with a sensor constructed on a paper substrate, based on the target-induced inhibition of AuNP dissolution. The successful detection of this important molecule opens the door to numerous possibilities for dehydrogenase characterization, because NAD+/NADH are essential cofactors for more than 300 dehydrogenase enzymes. To further increase the sensitivity of our hybridization-based assay for DNA detection, we developed an enzyme-assisted target recycling (EATR) strategy in chapter four and have applied such an EATR-based colorimetric assay to detect single-nucleotide mismatches in a target DNA with DNA-functionalized AuNPs. This assay is based on the principle that nuclease enzymes recognize probe–target complexes, cleaving only the probe strand. This results in target release, enabling subsequent binding to and cleavage of another probe molecule. When the probe is conjugated onto AuNPs, complete cleavage from the AuNP surface produces a detectable signal in high ionic strength environments as the nanoparticles undergo aggregation. With such enzyme-assisted amplification, target detection can occur with a very low nM detection limit within 15 minutes. The extent of DNA loading on the AuNP surface plays an important role in the efficiency of DNA hybridization and aptamer-target assembly. Many studies have shown that high surface-coverage is associated with steric hindrance, electrostatic repulsive interactions and elevated surface salt concentration, whereas low surface-coverage can result in nonspecific binding of oligonucleotides to the particle surface. In chapter five, we investigated DNA surface coverage effects, and apply this optimization in conjunction with a highly-specific aptamer to develop a sensitive colorimetric sensor for rapid cocaine detection based on the inhibition of nuclease enzyme activity
    corecore