378,550 research outputs found

    Infinite Latent Feature Selection: A Probabilistic Latent Graph-Based Ranking Approach

    Get PDF
    Feature selection is playing an increasingly significant role with respect to many computer vision applications spanning from object recognition to visual object tracking. However, most of the recent solutions in feature selection are not robust across different and heterogeneous set of data. In this paper, we address this issue proposing a robust probabilistic latent graph-based feature selection algorithm that performs the ranking step while considering all the possible subsets of features, as paths on a graph, bypassing the combinatorial problem analytically. An appealing characteristic of the approach is that it aims to discover an abstraction behind low-level sensory data, that is, relevancy. Relevancy is modelled as a latent variable in a PLSA-inspired generative process that allows the investigation of the importance of a feature when injected into an arbitrary set of cues. The proposed method has been tested on ten diverse benchmarks, and compared against eleven state of the art feature selection methods. Results show that the proposed approach attains the highest performance levels across many different scenarios and difficulties, thereby confirming its strong robustness while setting a new state of the art in feature selection domain.Comment: Accepted at the IEEE International Conference on Computer Vision (ICCV), 2017, Venice. Preprint cop

    Graph-Based Feature Selection Approach for Molecular Activity Prediction

    Get PDF
    In the construction of QSAR models for the prediction of molecular activity, feature selection is a common task aimed at improving the results and understanding of the problem. The selection of features allows elimination of irrelevant and redundant features, reduces the effect of dimensionality problems, and improves the generalization and interpretability of the models. In many feature selection applications, such as those based on ensembles of feature selectors, it is necessary to combine different selection processes. In this work, we evaluate the application of a new feature selection approach to the prediction of molecular activity, based on the construction of an undirected graph to combine base feature selectors. The experimental results demonstrate the efficiency of the graph-based method in terms of the classification performance, reduction, and redundancy compared to the standard voting method. The graph-based method can be extended to different feature selection algorithms and applied to other cheminformatics problems

    Mining Brain Networks using Multiple Side Views for Neurological Disorder Identification

    Full text link
    Mining discriminative subgraph patterns from graph data has attracted great interest in recent years. It has a wide variety of applications in disease diagnosis, neuroimaging, etc. Most research on subgraph mining focuses on the graph representation alone. However, in many real-world applications, the side information is available along with the graph data. For example, for neurological disorder identification, in addition to the brain networks derived from neuroimaging data, hundreds of clinical, immunologic, serologic and cognitive measures may also be documented for each subject. These measures compose multiple side views encoding a tremendous amount of supplemental information for diagnostic purposes, yet are often ignored. In this paper, we study the problem of discriminative subgraph selection using multiple side views and propose a novel solution to find an optimal set of subgraph features for graph classification by exploring a plurality of side views. We derive a feature evaluation criterion, named gSide, to estimate the usefulness of subgraph patterns based upon side views. Then we develop a branch-and-bound algorithm, called gMSV, to efficiently search for optimal subgraph features by integrating the subgraph mining process and the procedure of discriminative feature selection. Empirical studies on graph classification tasks for neurological disorders using brain networks demonstrate that subgraph patterns selected by the multi-side-view guided subgraph selection approach can effectively boost graph classification performances and are relevant to disease diagnosis.Comment: in Proceedings of IEEE International Conference on Data Mining (ICDM) 201

    Exponential Random Graph Modeling for Complex Brain Networks

    Get PDF
    Exponential random graph models (ERGMs), also known as p* models, have been utilized extensively in the social science literature to study complex networks and how their global structure depends on underlying structural components. However, the literature on their use in biological networks (especially brain networks) has remained sparse. Descriptive models based on a specific feature of the graph (clustering coefficient, degree distribution, etc.) have dominated connectivity research in neuroscience. Corresponding generative models have been developed to reproduce one of these features. However, the complexity inherent in whole-brain network data necessitates the development and use of tools that allow the systematic exploration of several features simultaneously and how they interact to form the global network architecture. ERGMs provide a statistically principled approach to the assessment of how a set of interacting local brain network features gives rise to the global structure. We illustrate the utility of ERGMs for modeling, analyzing, and simulating complex whole-brain networks with network data from normal subjects. We also provide a foundation for the selection of important local features through the implementation and assessment of three selection approaches: a traditional p-value based backward selection approach, an information criterion approach (AIC), and a graphical goodness of fit (GOF) approach. The graphical GOF approach serves as the best method given the scientific interest in being able to capture and reproduce the structure of fitted brain networks

    Adaptive feature selection based on the most informative graph-based features

    Get PDF
    In this paper, we propose a novel method to adaptively select the most informative and least redundant feature subset, which has strong discriminating power with respect to the target label. Unlike most traditional methods using vectorial features, our proposed approach is based on graph-based features and thus incorporates the relationships between feature samples into the feature selection process. To efficiently encapsulate the main characteristics of the graph-based features, we probe each graph structure using the steady state random walk and compute a probability distribution of the walk visiting the vertices. Furthermore, we propose a new information theoretic criterion to measure the joint relevance of different pairwise feature combinations with respect to the target feature, through the Jensen-Shannon divergence measure between the probability distributions from the random walk on different graphs. By solving a quadratic programming problem, we use the new measure to automatically locate the subset of the most informative features, that have both low redundancy and strong discriminating power. Unlike most existing state-of-the-art feature selection methods, the proposed information theoretic feature selection method can accommodate both continuous and discrete target features. Experiments on the problem of P2P lending platforms in China demonstrate the effectiveness of the proposed method

    Ranking to Learn: Feature Ranking and Selection via Eigenvector Centrality

    Full text link
    In an era where accumulating data is easy and storing it inexpensive, feature selection plays a central role in helping to reduce the high-dimensionality of huge amounts of otherwise meaningless data. In this paper, we propose a graph-based method for feature selection that ranks features by identifying the most important ones into arbitrary set of cues. Mapping the problem on an affinity graph-where features are the nodes-the solution is given by assessing the importance of nodes through some indicators of centrality, in particular, the Eigen-vector Centrality (EC). The gist of EC is to estimate the importance of a feature as a function of the importance of its neighbors. Ranking central nodes individuates candidate features, which turn out to be effective from a classification point of view, as proved by a thoroughly experimental section. Our approach has been tested on 7 diverse datasets from recent literature (e.g., biological data and object recognition, among others), and compared against filter, embedded and wrappers methods. The results are remarkable in terms of accuracy, stability and low execution time.Comment: Preprint version - Lecture Notes in Computer Science - Springer 201
    • …
    corecore