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Abstract

In this article, an improved feature selection technique has been proposed. Mutual Information is taken as the basic criterion

to find the feature relevance and redundancy. The mutual information between a feature and class labels defines the relevance

of that feature. Again, the mutual information among different features defines the correlation i.e., the redundancy among those

features. Now our objective is to find such a feature set for which the mutual information among the features and the class labels

are maximized and the mutual information among the features are minimized. Therefore, the goal of the proposed method is to

find the most relevant and least redundant feature set. The number of output features is provided by the user. First the most relevant

feature is added to the empty final feature set. Then in each iteration a non-dominated feature set with respect to relevance and

redundancy is generated and from this set of features, the most relevant and non-redundant feature is included in the final feature

set. Thereafter, in an incremental way a feature is added in every iteration and this step is repeated while the size of the final feature

set is equal to the user given number of features. The features contained by the final feature set have maximum relevance and least

correlation. The proposed method is applied on microarray gene expression data to find the most relevant and non-redundant genes

and the performance of the proposed method is compared with that of the popular mRMR (MIQ) and mRMR (MID) schemes on

several real-life data sets.
c© 2013 The Authors. Published by Elsevier Ltd.
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1. Introduction

Data dimensionality reduction [1] is one of the important machine learning tasks while facing data with enormity

on size, missing values and noise. Feature selection is one of the ways to reduce the dimensionality of the data. It is

an essential step in successful data mining applications, which can efficiently reduce data dimensionality by removing

the irrelevant and redundant features from the original data [2,3]. At present there are various kinds of methods to

deal with the feature selection problem [4–10].
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The feature selection can be supervised or unsupervised. In a supervised scenario [11], the correct class labels of

all samples are additionally known and the feature evaluation criterion is based on the known class labels of the sam-

ples. In Unsupervised [12–15] case, the feature selection is performed on the basis of some distribution function or

clustering in the absence of class label information. In another context, the feature selection technique can be divided

into two categories namely filter-based and wrapper-based. Feature selection methods that make use of a proxy mea-

sure to estimate utility are termed ‘filter’ approaches [8,9,16] and feature selection methods that assess feature utility

with respect to a given classifier or clustering method, are referred to as ‘wrapper’ [7,11] approaches. Filter-based

approaches usually have good generalization properties, but may be less effective at decreasing the dimensionality of

the feature space and boosting classification accuracy. Filter-based approaches are computationally cheaper than the

wrapper approaches. The real-life data sets frequently contain attributes that are redundant or have a low information

content for which the attributes introduce noise and may slow down the classification process gradually. Moreover,

they also can introduce high cross-validation errors. Hence selecting the most discriminative attributes [17] may

therefore yield significant gains in terms of classification performance.

Whatever the way is, the focus of feature selection should be to select the features that are most relevant to clas-

sification while minimizing the redundancy [3]. But in most of the cases, it has been seen that the basic objective

of these methods is either relevance or redundancy. Motivated by this fact, we have proposed a method where both

relevance and redundancy are taken care of simultaneously. In the proposed method, the problem of feature selection

is modeled as a problem of identifying most relevant and nonredundant subset of features [2,3]. Here the relevance

of a feature is calculated as the mutual information [18,19] between the feature and the class label vector which is

to be maximized. The feature redundancy of a feature is calculated as the mutual information among the feature and

other features which is to be minimized. The number of output features is a user input. Let the number of the output

features is n. The final solution set is initially empty. At first the most relevant feature is added to the final solution.

Then a non-dominated solution set with respect to the two objectives is generated and from this solution set the most

relevant and minimum correlated feature is added to the final solution set. Thereafter, this step is repeated until the

size of the final solution set becomes n.

The performance of the proposed method has been demonstrated on several real-life microarray gene expression

datasets for selecting most relevant and nonredundant genes. Moreover, its performance is compared with that of the

well-known minimum Redundancy Maximum Relevance with (MIQ) and (MID) schemes [20] on these datasets.

2. Microarray Gene Expression Data

The recent advent of microarray gene expression [21,22] data has made it possible to measure and analysis the

high dimensional gene expression data. Moreover it enhances the field of genetic research. In fact, for molecular

classification of cancer, microarray gene expression analysis has taken an important role in these days. In raw level, it

can be seen as a sample versus gene two dimensional matrix with an additional column representing the corresponding

classes of samples. The rows of the microarray data sometimes contain the experimental condition instead of samples.

Most of the cases the unrefined data have noise or missing values. Again the enormous size of the dataset increases the

difficulty for the researcher. Yet again some genes are not significant to the corresponding class labels and although

make the data size bigger. Therefore before applying the microarray data it must be preprocessed with some technique.

3. Mutual Information as relevance and redundancy computation metric

It is very important to find the features which have the maximum information content. With respect to microarray

gene expression data, the goal of any relevant gene selection procedure is to identify genes having maximum infor-

mation with respect to the class labels of the samples. For identifying these genes, feature entropy is a suitable metric.

The initial uncertainty of the output class which is termed as the entropy [18] is defined as in Equation 1:

H(X) = −
Nx∑
x=1

Px(x)log(Px(x)), (1)
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Fig. 1. An example of N × M microarray dataset where N is the number of samples, M is the number of genes and {li | i = 1, 2, · · · ,N } is the class

labels.

where {Px(x)| x = 1, 2, · · · ,Nx} is the probabilities for the different classes, such as Px is the probability density for

class x. Then the average uncertainty with respect to the input feature vector calculated as the conditional entropy

which is defined as in Equation 2:

H(X|S ) =

Ns∑
s=1

P(s)

( Nx∑
x=1

Px(x|s)log(Px(x|s))

)
. (2)

Here the s is the input feature vector having Ns samples and Px(x|s) is the conditional probability for class x from

the input vector s. Usually, the conditional entropy will be less than or equal to the initial entropy. If there is total

independence between feature and output class then the conditional entropy is equal to the initial entropy. Therefore,

the mutual information [18,19] is defined by the quantity of uncertainty reduced. The mutual information I(X; S )

[18,19] between variables x and s can be defined as:

I(X; S ) = H(X) − H(X|S ). (3)

The above Equattion 3 can be rewritten as:

I(X; S ) = I(S ; X) =
∑
x,s

P(x, s)log
P(x, s)

P(x)P(s)
. (4)

As the function of mutual information is symmetric with respect to X and S so I(X; S ) is equal to I(S ; X).

4. Existing mRMR Technique

In this section the popular minimum redundancy maximum relevance with MIQ and MID scheme [20] is described

in detail. The genes with significantly different expressions in two different classes (normal and tumor or two different

subtypes of cancer) are called differentially expressed genes [17]. The relevance of a gene is referred as the degree

of differentially expression of that gene. The relevance of gene can be calculated by mutual information [18,19].

If the expression of a gene has randomly or uniformly distributed in different classes, its mutual information with

these classes is zero. If a gene is strongly differentially expressed for different classes, it should have large mutual

information. Here we consider mutual information for discrete variable only. For discrete variables, the mutual

information I of two variables X and S is defined in Equation 4. The basic concept of minimum redundancy is to

select the genes such that they are mutually maximally dissimilar to other genes. Let s denote the subset of genes that

we are seeking. The average minimum redundancy is given as Equation 5:

MinimumW =
1

|s|2
∑
i, j∈s

I(i, j), (5)
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Algorithm 1 Maximum relevance and minimum redundancy feature selection

Input: Discretized data d, class c, number of output features n, number of features in d is g.

Output: Output feature set F.

1: idle f t = [1 : g]

2: for i = 1 : g do
3: relevance(i) = mutual-info(d(:, i), c);

4: end for
5: [R, id] = Max(relevance);

6: F[1] = id;

7: idle f t = idle f t − F;

8: for i = 2 : n do
9: ob j1 = relevance(idle f t);

10: for j = 1 : |idle f t| do
11: sum =

∑F
k=1(mutual-info(d(:, k), d(:, idle f t)));

12: redun( j) = sum/|F|;
13: end for
14: ob j2 = relevance(idle f t)/(redun + 0.0001);

15: [newid, ob j2] = Nondominated-FeatureSelection(ob j1, ob j2, idle f t);
16: [R, id] = Max(ob j2);

17: F[i] = id;

18: idle f t = idle f t − F;

19: end for

where I(i, j) presents the mutual information between i-th gene and j-th gene and |s| is the number of genes in S . To

select the differentially expressed gene, again the mutual information can be used. The discriminant powers of a genes

by the mutual information I(h, gi) is calculated as Equation 6. That means the mutual information between targeted

classes h = h1, h2, · · · , hk and the gene expression gi is the measure of relevance of that gene. Thus the maximum

relevance condition is to maximize the average relevance of all genes in s is Equation 6:

MaximumV =
1

|s|
∑
i∈s

I(h, i). (6)

Therefore, the redundancy of a gene has to be minimized and relevance of a gene has to be maximized. Two conditions

are combined into a single criterion function in mRMR. As two conditions are equally important, then two simplest

combined criteria are: Max(V − W), and Max(V/W). Here we describe the mRMR for discrete variable in form of

mRMR mutual information difference (mRMR MID) and mRMR mutual information quotient (mRMR MIQ). The

mRMR with MID Scheme is formulated as Equation 7 and mRMR with MIQ Scheme is formulated as Equation 8

mRMRMID = maxi∈Ωs [I(i, h) − 1

|s|
∑
j∈s

I(i, j)], (7)

mRMRMIQ = maxi∈Ωs {I(i, h)/[
1

|s|
∑
j∈s

I(i, j)]}. (8)

5. Proposed Method

The data matrix has been preprocessed and discretized with respect to the mean of each gene’s expression (column).

The number of output features (genes) say n is provided from outside by the user. The data matrix with classes

c = {1, 2, · · · ,C} are the inputs. At the beginning, the first objective (obj1) i.e., the relevance of each gene is calculated

by mutual information as per Equation 6. From the relevance score, the highest scorer gene id is extracted and added
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Algorithm 2 Non-dominated Feature Selection

Input: The feature id idle f t, first objective ob j1, second objective ob j2, |ob j1| = |ob j2| = |idle f t|.
Output: Non-dominated feature id idns, the second objective ob j2ns of non-dominated features.

1: k = 1;

2: for i = 1 : |idle f t| do
3: t = 0;

4: for j = 1 : |idle f t| do
5: if then(i! = j)
6: if then(ob j1(i) ≤ ob j1( j)&ob j2(i) ≤ ob j2( j));
7: else if then(ob j1(i) < ob j1( j)&ob j2(i) > ob j2( j)||ob j1(i) > ob j1( j)&ob j2(i) < ob j2( j));
8: else
9: t = 1;

10: break;

11: end if
12: end if
13: end for
14: if then(t == 0& j == |idle f t|)
15: idns(k) = i;
16: ob j2ns(k) = ob j2(i);
17: k = k + 1;

18: end if
19: end for

in the final solution set. Next a looping is performed for the remaining output features. Now the redundancy between

the output feature and the remaining features (idle f t) is calculated as per Equation 5. If the output feature set contains

more than one feature then the mean is considered as the redundancy score as in Equation 9.

mean-redundancy(i) =
F∑

k=1

(mutual-info[xk, xi]))/|F|), (9)

where F is output feature set, Xk is output feature vector and xi is the ith feature vector. Then the second objective

(obj2) is modeled as the ratio of relevance to the redundancy and it is to be maximized. After calculating the two

objectives for each feature the non-dominated features are identified. A reference feature is called the non-dominated

feature if it satisfies the following conditions: 1) if the obj1 of the reference feature is greater than or equal to all the

other futures’ obj1 and the obj2 of the reference feature is greater than or equal to all the other features’ obj2 2) if the

obj1 of the reference feature is greater than all the other features’ obj1 and the obj2 of the reference feature is less than

all the other features’ obj2 and vice-versa. Afterwards, from the non-dominated features, the feature having maximum

obj2 is included in the output feature set. Thus an incremental procedure is adapted for finding the remaining output

features. The proposed algorithm is described in Algorithm 1 and the algorithm of ruling features or non-dominated

feature selection is illustrated in Algorithm 2.

6. Datasets and Results

Four real life data sets are used for the comparative study. The Overian Cancer dataset and ALL/AML Leukemia

dataset are obtained from the website: datam.i2r.a-star.edu.sg/datasets/krbd/, and Prostate Cancer dataset and Child-

hood ALL dataset are collected from the website: www.biolab.si/supp/bi-cancer/projections/info/. All the datasets

contain two classes of samples.

1. Prostate: Gene expression measurements for samples of prostate tumors and adjacent prostate tissue not contain-

ing tumor were used to build this classification model. It contains 50 normal tissue and 52 prostate tumor sample.

The expression matrix consists of 12533 numbers of genes and 102 numbers of samples.
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Table 1. Performance Analysis among Proposed method, mRMR(MID) and mRMR(MIQ) using different real-life datasets.

Data Set method Sensitivity Specificityy Accuracy Fscore Avg Corr AUC

Proposed 0.98 0.9423 0.9608 0.9608 0.23 0.9892

method
Prostate mRMR 0.96 0.9038 0.9314 0.932 0.322 0.9592

Cancer (MID)
mRMR 0.978 0.923 0.951 0.9513 0.237 0.983

(MIQ)
Proposed 0.9833 0.76 0.8818 0.9 0.443 0.949

method
Childhood mRMR 0.8167 0.74 0.7818 0.8033 0.454 0.8497

ALL (MID)
mRMR 0.832 0.74 0.7909 0.813 0.457 0.8717

(MIQ)
Proposed 1 1 0.998 1 0.442 1

method
Overian mRMR 0.9783 1 0.982 0.988 0.515 0.97

Cancer (MID)
mRMR 0.989 1 0.986 0.9641 0.4602 0.987

(MIQ)
Proposed 1 1 1 1 0.288 1

method
ALL/AML mRMR 0.96 0.9787 0.9722 0.96 0.3531 0.99

(MID)
mRMR 0.96 1 0.9861 0.9796 0.297 0.989

(MIQ)

2. Child-ALL (GSE412): This data includes genes expression information on 110 childhood acute lymphoblastic

leukemia samples. The dataset describes childhood acute lymphoblastic leukemia cells based on changes in gene

expression before and after treatment, regardless of the type of treatment used. The dataset has 50 examples of

type before therapy and 60 examples of type after therapy. The number of genes is 8280.

3. Ovarian Cancer (NCI PBSII Data): It contains 91 controls (Normal) and 162 ovarian cancers (benign) samples.

Therefore, total of 253 samples are there in the dataset. Also the dataset has 15154 genes.

4. ALL/AML Leukemia: This dataset consists of two classes of leukemia (1) Acute Lymphoblastic Leukemia

(ALL) (2) Acute Myeloblastic Leukemia (AML). The number genes and samples in the data matrix are 7129 and

72 respectively.

The above described real-life datasets are first normalized with Min-Max normalization technique. Then with respect

to the mean of each feature (gene) or column the data is discretized. In this article, the number of output features

is taken 100 for all the algorithms. Using 10-fold cross-validation, sensitivity, specificity, accuracy and fscore are

computed. Then the average correlation for assessing the redundancy of the selected features is also calculated.

Smaller value of correlation indicates that the selected features are less redundant. In addition, the area under ROC

curve (AUC) is also reported.

The performance metric values of the proposed method, mRMR(MID) and mRMR(MIQ) on the different real-life

datasets are reported in Table 1. It is evident from table that for the prostate cancer dataset the sensitivity, speci-

ficity, accuracy, fscore and AUC are 0.98, 0.9423, 0.9608, 0.9608, and 0.9892, respectively which are better than

mRMR(MID) and mRMR(MIQ) schemes in every case. Besides this, the average correlation of the proposed method

is 0.23 which is less than the other two methods and it indicates that the resultant features given by the proposed

method are least correlated.
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Secondly, for the childhood ALL dataset, the sensitivity is 0.9833, the specificity is 0.76, the accuracy is 0.8818, the

fscore is 0.9 and AUC is 0.949 which are again better than the other two comparative methods in every respect. The

average correlation of the proposed method is 0.443 which is less than 0.454 and 0.457 produced by mRMR(MID)

and mRMR(MIQ), respectively.

For overian cancer dataset, the table shows that proposed method results [1, 1, 0.998, 1 and 1] as sensitivity,

specificity, accuracy, fscore and AUC, respectively. Although, the specificity is same for all the methods but with

respect to all other performance metrics our method outperforms the two schemes of mRMR. The average correlation

which is the evidence of non-redundancy is 0.442 for the proposed method and is much less than other two methods.

Lastly, it is clear from the table that the outcome of the proposed method on ALL/AML dataset is [1, 1, 1, 1 and

1] with respect to sensitivity, specificity, accuracy, fscore and AUC. Therefore, the result is better than [0.96, 0.9787,

0.9722, 0.96 and 0.99] and [0.96, 1, 0.9861, 0.9796 and 0.989] generated by the two schemes of mRMR, respectively.

The resultant average correlation of the proposed method is also less than the other two methods. Hence the table

clearly demonstrates that the proposed method constantly outperforms the other techniques in all respects.

7. Conclusion

There are different kinds of feature selection methods available in the existing literature. But in most of the cases

it has been seen that the basic objective of the method is either relevance or redundancy. In this article, we have

proposed a method where both relevance and redundancy are taken care of parallely. For measuring the relevance and

redundancy of a feature or gene, the mutual information has been considered. The relevance is defined as mutual in-

formation between a feature vector and the class labels. The redundancy is described as the mutual information among

the features. The number of resulting features is provided by the user. The performance of the proposed technique

is evaluated based on some real-life microarray gene expression datasets for selecting non-redundant and relevant

genes. Moreover the performance of the proposed method is compared with that of very well-known mRMR(MID)

and mRMR(MIQ) schemes and the results show that the proposed method outperforms the mRMR schemes for all

the datasets.
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