1,922 research outputs found

    Graph Theory and Networks in Biology

    Get PDF
    In this paper, we present a survey of the use of graph theoretical techniques in Biology. In particular, we discuss recent work on identifying and modelling the structure of bio-molecular networks, as well as the application of centrality measures to interaction networks and research on the hierarchical structure of such networks and network motifs. Work on the link between structural network properties and dynamics is also described, with emphasis on synchronization and disease propagation.Comment: 52 pages, 5 figures, Survey Pape

    Strategy Logic with Imperfect Information

    Full text link
    We introduce an extension of Strategy Logic for the imperfect-information setting, called SLii, and study its model-checking problem. As this logic naturally captures multi-player games with imperfect information, the problem turns out to be undecidable. We introduce a syntactical class of "hierarchical instances" for which, intuitively, as one goes down the syntactic tree of the formula, strategy quantifications are concerned with finer observations of the model. We prove that model-checking SLii restricted to hierarchical instances is decidable. This result, because it allows for complex patterns of existential and universal quantification on strategies, greatly generalises previous ones, such as decidability of multi-player games with imperfect information and hierarchical observations, and decidability of distributed synthesis for hierarchical systems. To establish the decidability result, we introduce and study QCTL*ii, an extension of QCTL* (itself an extension of CTL* with second-order quantification over atomic propositions) by parameterising its quantifiers with observations. The simple syntax of QCTL* ii allows us to provide a conceptually neat reduction of SLii to QCTL*ii that separates concerns, allowing one to forget about strategies and players and focus solely on second-order quantification. While the model-checking problem of QCTL*ii is, in general, undecidable, we identify a syntactic fragment of hierarchical formulas and prove, using an automata-theoretic approach, that it is decidable. The decidability result for SLii follows since the reduction maps hierarchical instances of SLii to hierarchical formulas of QCTL*ii

    Reparameterizing the Birkhoff Polytope for Variational Permutation Inference

    Full text link
    Many matching, tracking, sorting, and ranking problems require probabilistic reasoning about possible permutations, a set that grows factorially with dimension. Combinatorial optimization algorithms may enable efficient point estimation, but fully Bayesian inference poses a severe challenge in this high-dimensional, discrete space. To surmount this challenge, we start with the usual step of relaxing a discrete set (here, of permutation matrices) to its convex hull, which here is the Birkhoff polytope: the set of all doubly-stochastic matrices. We then introduce two novel transformations: first, an invertible and differentiable stick-breaking procedure that maps unconstrained space to the Birkhoff polytope; second, a map that rounds points toward the vertices of the polytope. Both transformations include a temperature parameter that, in the limit, concentrates the densities on permutation matrices. We then exploit these transformations and reparameterization gradients to introduce variational inference over permutation matrices, and we demonstrate its utility in a series of experiments

    Ranking and Repulsing Supermartingales for Reachability in Probabilistic Programs

    Full text link
    Computing reachability probabilities is a fundamental problem in the analysis of probabilistic programs. This paper aims at a comprehensive and comparative account on various martingale-based methods for over- and under-approximating reachability probabilities. Based on the existing works that stretch across different communities (formal verification, control theory, etc.), we offer a unifying account. In particular, we emphasize the role of order-theoretic fixed points---a classic topic in computer science---in the analysis of probabilistic programs. This leads us to two new martingale-based techniques, too. We give rigorous proofs for their soundness and completeness. We also make an experimental comparison using our implementation of template-based synthesis algorithms for those martingales

    Price Competition under Limited Comparability

    Get PDF
    This paper studies market competition when firms can influence consumers' ability to compare market alternatives, through their choice of price "formats". We introduce random graphs as a tool for modelling limited comparability of formats. Our main results concern the interaction between firms' equilibrium price and format decisions and its implications for industry profits and consumer switching rates. We show that narrow regulatory interventions that aim to facilitate comparisons may have adverse consequences for consumer welfare. Finally, we argue that our limited-comparability approach provides a new perspective into the phenomenon of product differentiation.price competition, industrial organization, limited comparability, bounded rationality, framing, consumer protection, product differentiation, complexity
    • …
    corecore