1,054 research outputs found

    Solution of Different Types of Economic Load Dispatch Problems Using a Pattern Search Method

    No full text
    Direct search (DS) methods are evolutionary algorithms used to solve constrained optimization problems. DS methods do not require information about the gradient of the objective function when searching for an optimum solution. One such method is a pattern search (PS) algorithm. This study presents a new approach based on a constrained PS algorithm to solve various types of power system economic load dispatch (ELD) problems. These problems include economic dispatch with valve point (EDVP) effects, multi-area economic load dispatch (MAED), companied economic-environmental dispatch (CEED), and cubic cost function economic dispatch (QCFED). For illustrative purposes, the proposed PS technique has been applied to each of the above dispatch problems to validate its effectiveness. Furthermore, convergence characteristics and robustness of the proposed method has been assessed and investigated through comparison with results reported in literature. The outcome is very encouraging and suggests that PS methods may be very efficient when solving power system ELD problems

    Application of Pattern Search Method to Power System Economic Load Dispatch

    No full text
    Direct Search (DS) methods are evolutionary algorithms used to solve constrained optimization problems. DS methods do not require information about the gradient of the objective function while searching for an optimum solution. One of such methods is Pattern Search (PS) algorithm. This study examines the usefulness of a constrained pattern search algorithm to solve well-known power system Economic Load Dispatch problem (ELD) with a valve-point effect. For illustrative purposes, the proposed PS technique has been applied to various test systems to validate its effectiveness. Furthermore, convergence characteristics and robustness of the proposed method have been assessed and investigated through comparison with results reported in literature. The outcome is very encouraging and suggests that pattern search (PS) may be very useful in solving power system economic load dispatch problems

    Design optimization applied in structural dynamics

    Get PDF
    This paper introduces the design optimization strategies, especially for structures which have dynamic constraints. Design optimization involves first the modeling and then the optimization of the problem. Utilizing the Finite Element (FE) model of a structure directly in an optimization process requires a long computation time. Therefore the Backpropagation Neural Networks (NNs) are introduced as a so called surrogate model for the FE model. Optimization techniques mentioned in this study cover the Genetic Algorithm (GA) and the Sequential Quadratic Programming (SQP) methods. For the applications of the introduced techniques, a multisegment cantilever beam problem under the constraints of its first and second natural frequency has been selected and solved using four different approaches

    Application of pattern search method to power system valve-point economic load dispatch

    No full text
    Direct search (DS) methods are evolutionary algorithms used to solve constrained optimization problems. DS methods do not require any information about the gradient of the objective function at hand, while searching for an optimum solution. One of such methods is pattern search (PS) algorithm. This study presents a new approach based on a constrained pattern search algorithm to solve well-known power system economic load dispatch problem (ELD) with valve-point effect. For illustrative purposes, the proposed PS technique has been applied to various test systems to validate its effectiveness. Furthermore, convergence characteristics and robustness of the proposed method has been assessed and investigated through comparison with results reported in literature. The outcome is very encouraging and proves that pattern search (PS) is very applicable for solving power system economic load dispatch problem

    A hybrid GA–PS–SQP method to solve power system valve-point economic dispatch problems

    No full text
    This study presents a new approach based on a hybrid algorithm consisting of Genetic Algorithm (GA), Pattern Search (PS) and Sequential Quadratic Programming (SQP) techniques to solve the well-known power system Economic dispatch problem (ED). GA is the main optimizer of the algorithm, whereas PS and SQP are used to fine tune the results of GA to increase confidence in the solution. For illustrative purposes, the algorithm has been applied to various test systems to assess its effectiveness. Furthermore, convergence characteristics and robustness of the proposed method have been explored through comparison with results reported in literature. The outcome is very encouraging and suggests that the hybrid GA–PS–SQP algorithm is very efficient in solving power system economic dispatch problem

    Efficient Semidefinite Branch-and-Cut for MAP-MRF Inference

    Full text link
    We propose a Branch-and-Cut (B&C) method for solving general MAP-MRF inference problems. The core of our method is a very efficient bounding procedure, which combines scalable semidefinite programming (SDP) and a cutting-plane method for seeking violated constraints. In order to further speed up the computation, several strategies have been exploited, including model reduction, warm start and removal of inactive constraints. We analyze the performance of the proposed method under different settings, and demonstrate that our method either outperforms or performs on par with state-of-the-art approaches. Especially when the connectivities are dense or when the relative magnitudes of the unary costs are low, we achieve the best reported results. Experiments show that the proposed algorithm achieves better approximation than the state-of-the-art methods within a variety of time budgets on challenging non-submodular MAP-MRF inference problems.Comment: 21 page

    A hybrid genetic pattern search augmented Lagrangian method for constrained global optimization

    Get PDF
    Hybridization of genetic algorithms with local search approaches can enhance their performance in global optimization. Genetic algorithms, as most population based algorithms, require a considerable number of function evaluations. This may be an important drawback when the functions involved in the problem are computationally expensive as it occurs in most real world problems. Thus, in order to reduce the total number of function evaluations, local and global techniques may be combined. Moreover, the hybridization may provide a more effective trade-off between exploitation and exploration of the search space. In this study, we propose a new hybrid genetic algorithm based on a local pattern search that relies on an augmented Lagrangian function for constraint-handling. The local search strategy is used to improve the best approximation found by the genetic algorithm. Convergence to an ε\varepsilon-global minimizer is proved. Numerical results and comparisons with other stochastic algorithms using a set of benchmark constrained problems are provided.FEDER COMPETEFundação para a Ciência e a Tecnologia (FCT

    An augmented lagrangian fish swarm based method for global optimization

    Get PDF
    This paper presents an augmented Lagrangian methodology with a stochastic population based algorithm for solving nonlinear constrained global optimization problems. The method approximately solves a sequence of simple bound global optimization subproblems using a fish swarm intelligent algorithm. A stochastic convergence analysis of the fish swarm iterative process is included. Numerical results with a benchmark set of problems are shown, including a comparison with other stochastic-type algorithms.Fundação para a Ciência e a Tecnologia (FCT

    Hybrid genetic pattern search augmented Lagrangian algorithm : application to WWTP optimization

    Get PDF
    An augmented Lagrangian algorithm is presented to solve a global optimization problem that arises when modeling the activated sludge system in a Wastewater Treatment Plant, attempting to minimize both investment and operation costs. It is a heuristic-based algorithm that uses a genetic algorithm to explore the search space for a global optimum and a pattern search method for the local search refinement. The obtained results have physical meaning and show the effectiveness of the proposed method
    corecore