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Abstract. An augmented Lagrangian algorithm is presented to solve
a global optimization problem that arises when modeling the activated
sludge system in a Wastewater Treatment Plant, attempting to minimize
both investment and operation costs. It is a heuristic-based algorithm
that uses a genetic algorithm to explore the search space for a global
optimum and a pattern search method for the local search refinement.
The obtained results have physical meaning and show the effectiveness
of the proposed method.

1 Introduction

The high costs associated with the design of Wastewater Treatment Plants
(WWTP) have motivated research in the area of process modeling and opti-
mization of the treatment water processes. This paper is part of an ongoing
research project in which we are engaged to optimize the design and operation
of WWTP in terms of minimum total cost (investment and operation costs). The
model herein presented focuses only on the secondary treatment, the one that
mostly affects the WWTP design. This search for a minimum is a challenge,
due to the complexity of the model. In order to find the global minimum of
the WWTP problem, we propose a Hybrid Genetic Pattern Search Augmented
Lagrangian (HGPSAL) algorithm that hybridizes a genetic algorithm with a
derivative-free pattern search method to refine the best solution found by the
genetic search. Equality and inequality constraints of the problem are handled
by an augmented Lagrangian framework.

Penalty function methods provide powerful theoretical and computational
tools for the study of constrained optimization problems. Many engineering de-
sign problems can be formulated as constrained optimization problems. The
presence of constraints has been affecting the performance of most optimization
algorithms for unconstrained problems. Constraint-handling techniques, in par-
ticular when embedded with stochastic algorithms for solving difficult noncon-
vex real optimization problems, provide today a hot topic of research. The most
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popular technique to handle constraints is indeed the penalty function method.
The simple principle and the easy implementation motivated the popularity of
the method. The approach augments the function that is being optimized by
adding in weighted terms that incorporate the constraints. A penalty parameter
is used to balance the search for the global optimum and the satisfaction of the
constraints. The constrained problem is transformed into unconstrained ones.
Besides interior penalty functions that are not well suited for an evolutionary
framework, due to the mutation operator, the exterior penalty functions have
been widely used in the literature [2, 19, 21]. The two most common penalty func-
tions involve absolute and quadratic penalty terms. While the absolute penalty
function is exact for a nonzero value of the penalty parameter, the correspond-
ing penalty approach produces a narrow valley floor in the search space, with
a ‘V’ shape. On the other hand, the quadratic penalty approach tends to pro-
duce a wider valley floor, with a ‘U’ shape, to search for the solution. However,
it has been shown that the quadratic penalty approach only converges to the
optimal solution of the constrained problem if the penalty parameter is driven
to zero. Numerically, the problem becomes more ill-conditioning as the penalty
parameter approaches zero. An augmented Lagrangian is a more sophisticated
penalty function for which a nonzero penalty parameter value is sufficient to
yield convergence to the solution of the constrained problem [3]. Furthermore,
an augmented Lagrangian framework provides a wider valley floor search space.
The augmented Lagrangian functions depend on the Lagrange multiplier vector,
which ought to be updated as the technique approaches the optimal solution.
There are different formulae for updating the multiplier vector. It can be shown
that the overall rate of convergence depends on the rate of convergence of the
variables, and of the multiplier vector. When Newton’s method is used to solve
the unconstrained problems, second order update formulae for the multiplier vec-
tor should be used so that the quadratic nature of the entire process is retained.
However, since genetic algorithms may be considered zero order methods, any
updating formula for the multiplier vector is suitable.

In this paper, we address the implementation of an augmented Lagrangian
method combined with a genetic algorithm for solving a particularly difficult
engineering design problem. Further, a derivative-free local search procedure,
like the one proposed in [17], is incorporated into the iterative process to re-
fine the search in the neighborhood of the solution. This work has been moti-
vated by other papers published in the area of augmented Lagrangian functions
[4–6, 18]. Birgin et al. [5] combine an augmented Lagrangian approach with a
deterministic global optimization method (the αBB method) and its convex
α-underestimation. Conn et al. [6] and Lewis and Torczon [18] presented mod-
ified augmented Lagrangian methods for nonconvex optimization with equality
constraints and proved global convergence results without assuming that the
sequence of multiplier vectors is bounded. Methods based on augmented La-
grangians are common in local search methods [6, 9, 16, 18] and in deterministic
type methods for global optimization, for example in [4, 5, 20], but rare when
combined with heuristics that rely on a population of points to converge to the
solution [1, 22, 23].



2 Hybrid genetic pattern search augmented Lagrangian
algorithm

In order to solve the problem, an algorithm based on a hybridization of an aug-
mented Lagrangian with a genetic algorithm is presented. Further, the hybridiza-
tion of global and local optimizers provides a more effective tradeoff between
exploitation and exploration of the search space. It is well-known that overall
successful and efficient general solvers do not exist. Stochastic population based
algorithms like genetic algorithms [13] are good at identifying promising areas
of the search space (exploration), but less good at fine-tuning approximations
to the minimum (exploitation). Conversely, local search algorithms like pattern
search are good at improving approximations to the minimum. This algorithm
aims to find a global solution of an optimization problem in the form:

minimize
x∈Ω

f(x)

subject to bi(x) = 0, i = 1, . . . ,m
gj(x) ≤ 0, j = 1, . . . , p

(1)

where x is an n dimensional vector and Ω = {x ∈ Rn : l ≤ x ≤ u} ⊂ Rn, f(x) is
the objective function, b(x) = 0 are the equality constraints and g(x) ≤ 0 are the
inequality constraints.The herein implemented augmented Lagrangian function
is

Φ(x;λ, δ, µ) = f(x) +λT b(x) +
1

2µ
‖b(x)‖22 +

µ

2

p∑
i=1

(
max

{
0, δi +

gi(x)

µ

}2

− δ2i

)

where µ is a positive penalty parameter, λ = (λ1, . . . , λm)T and δ = (δ1, . . . , δp)
T

are the Lagrange multiplier vectors associated with the equality and inequality
constraints respectively. Function Φ aims to penalize solutions that violate the
equality and inequality constraints only. The simple bounds l ≤ x ≤ u are not
integrated into the penalty terms. Hence, the bound constrained subproblem has
the form:

minimize
x∈Ω

Φj(x) ≡ Φ(x;λj , δj , µj). (2)

The solution of (2) for each set of fixed λj , δj and µj , gives an approximation
to the solution of (1). We refer to [3, 11] for details. Denote this approximation
by xj+1. Here the index j is the counter of the outer iterative process. The
Lagrange multipliers λj and δj are estimated in this iterative process according
to the well-known first-order updating formulae,

λj+1
i = max

{
λmin,min

{
λji +

bi(x
j+1)

µj
, λmax

}}
, i = 1, . . . ,m, (3)

δj+1
i = max

{
0,min

{
δji +

gi(x
j+1)

µj
, δmax

}}
, i = 1, . . . , p, (4)

where a safeguard scheme is used to maintain the multiplier vectors bounded
throughout the process, λji ∈ [λmin, λmax], i = 1, . . . ,m, δji ∈ [0, δmax], i =



1, . . . , p. It is expected that the sequence of penalty parameters {µj} decreases
although very small values may cause numerical difficulties when solving sub-
problem (2). Our proposal defines a lower bound µmin as follows:

µj+1 = max
{

min
{
µjν,

(
µj
)θµ}

, µmin

}
, 0 < ν ≤ 1, 0 < θµ ≤ 1. (5)

The traditional augmented Lagrangian methods are locally convergent if the
subproblems (2) are solved according to a certain tolerance, herein denoted by
εj [18]. Further, when j →∞, the sequence {εj} should approach zero. To define
these tolerances, the idea in [18] is extended to include the multipliers associated
with the inequality constraints:

εj = τ
(
1 + ‖λj‖+ ‖δj‖+ (µj)−1

)−1
, 0 < τ < 1. (6)

Note that a decreasing sequence of µ values will cause a decreasing sequence
of ε values if the multiplier vectors have a reasonable behavior. The general
augmented Lagrangian algorithm for solving problem (1) is the following.

Algorithm 1 HGPSAL Algorithm

1. Given 0 < τ < 1, λmin < λmax, δmax > 0, µmin � 1, λ0i ∈ [λmin, λmax],
i = 1, . . . ,m, δ0i ∈ [0, δmax], i = 1, . . . , p, µ0 > 0, 0 < θµ ≤ 1, 0 < ν ≤ 1,
x0 ∈ Ω, lmax, set j = 0;

2. Compute ε0 using (6);
3. While the stopping criterion is not met do

3.1. Find an εj approximate minimizer xj+1 to the subproblem (2) using
Algorithm 2;

3.2. Update λj+1 using (3), δj+1 using (4) and µj+1 using (5);
3.3. Compute εj+1 using (6);
3.4. Set j = j + 1;

The algorithm stops when the current objective function value improves 80%
over the objective function value at x0, and the constraints violation improves
99% over the violation at x0. A maximum number of iterations lmax is also
defined in case the stopping criterion is not met. The herein proposed technique
for solving (2) uses a population based algorithm, known as genetic algorithm,
followed by a local search procedure. The general form for the bound constrained
algorithm implemented in this paper is shown below.

Algorithm 2 Hybrid Genetic Pattern Search Bound Constrained Algorithm

1. Given xj ∈ Ω;
2. Find yj ← GA(xj), using the genetic algorithm presented in Subsection 2.1;
3. Find xj+1 ← HJ(yj), using the Hooke and Jeeves version of the pattern

search algorithm described in Subsection 2.2.

We remark that since the genetic algorithm is a population based method,
yj is the point with best fitness found by the algorithm. Details concerning each
step of the algorithm are presented below.



2.1 Genetic algorithm for global search

A Genetic Algorithm (GA) is a population based algorithm that uses techniques
inspired by evolutionary biology such as inheritance, mutation, selection, and
crossover [13]. Thus, unlike conventional algorithms, GAs start from a popula-
tion of points P of size s. In spite of the traditional binary representation used
by GAs, in our implementation, a real representation is used since we are lead-
ing with a continuous problem. Therefore, each point of the population z(l), for
l = 1, . . . s, is an n dimensional vector. A fitness function is defined as evalu-
ation function in order to compare the points of the population and to apply
a stochastic selection that guarantees that better points are more likely to be
selected. The fitness function corresponds to the objective function of the sub-
problem (2), i.e., Φj(x). New points in the search space are generated by the
application of genetic operators (crossover and mutation) to the selected points
from population. Elitism was implemented by maintaining, during the search, a
given number e, of the best points in the population.

Crossover combines two points in order to generate new ones. A Simulated
Binary Crossover (SBX) [7] that simulates the working principle of single-point
crossover operator for binary strings was implemented. Two points, z(1) and z(2),
are randomly selected from the pool and, with probability pc, two new points,
w(1) and w(2) are generated according to

w
(1)
i = 0.5

(
(1 + βi)z

(1)
i + (1− βi)z(2)i

)
w

(2)
i = 0.5

(
(1− βi)z(1)i + (1 + βi)z

(2)
i

)
,
βi =

 (2ri)
1

ηc+1 if ri ≤ 0.5(
1

2(1−ri)

) 1
ηc+1

if ri > 0.5

(7)
for i = 1, . . . , n, where ri ∼ U(0, 1) and ηc > 0 is an external parameter of the
distribution. This procedure is repeated until the number of generated points
equals the number of points in the pool.

A Polynomial Mutation is applied, with a probability pm, to the points pro-
duced by the crossover operator. Mutation introduces diversity in the population
since crossover, exclusively, could not assure the exploration of new regions of
the search space. This operator guarantees that the probability of creating a
new point t(l) closer to the previous one w(l) (l = 1, . . . , s) is more than the
probability of creating one away from it. It can be expressed by:

t
(l)
i = w

(l)
i + (ui − li)ιi , ιi =

{
(2ri)

1
ηm+1 − 1 if ri < 0.5

1− (2(1− ri))
1

ηm+1 if ri ≥ 0.5
(8)

for i = 1, . . . , n, where ri ∼ U(0, 1) and ηm > 0 is an external parameter of the
distribution. The GA proceeds as the following algorithm.

Algorithm 3 Genetic Algorithm

1. Given xj, e > 1, s > 1, 0 < pc < 1, ηc > 0, 0 < pm < 1, ηm > 0, k∆ ≥ 1,
kmax > 1, set k = 0;

2. Set z(1),k = xj and randomly generate z(l),k ∈ Ω, for l = 2, . . . , s



3. While the stopping criterion is not met do

3.1. Compute Φj(z(l),k), for l = 1, . . . , s
3.2. Select by tournaments s− e points from P
3.3. Apply SBX crossover to the s− e points, with probability pc using (7)
3.4. Apply mutation to the s− e points with probability pm using (8)
3.5. Replace the worst s− e points of P
3.6. Set k = k + 1;

4. Set yj = zkbest;

This procedure stops when |Φj(zkbest) − Φj(z
k−k∆
best )| ≤ εj where Φj(zkbest) is the

fitness value of the best point in population, at iteration k, and k∆ is a param-
eter that defines a periodicity for testing the criterion. However, if the previous
criterion is not satisfied in kmax iterations, the procedure is terminated and the
best point in the population is returned.

2.2 Pattern search algorithm for local search

A pattern search method is a derivative-free method that performs, at each
iteration k, a series of exploratory moves along the coordinate axes around a
current approximation, zk, in order to find a new approximation zk+1 = zk +
∆ksk, with a lower fitness value. We use k for the iteration counter of this
inner iterative process. For k = 0, the initial approximation to begin the search
is z0 = yj (see Algorithm 2). The scalar ∆k represents the step length and the
vector sk determines the direction of the step. The exploratory moves to produce
∆ksk and the updating of ∆k and sk define a particular pattern search method
and their choices are crucial to the success of the algorithm. The iteration is
considered successful if Φj(zk+1) < Φj(zk); otherwise it is unsuccessful. When
an iteration is successful, the step length is not modified, while in an unsuccessful
iteration, ∆k is reduced.

The step ∆ksk is computed by the Hooke and Jeeves (HJ) search method [15].
When the previous iteration was successful and zk was accepted as the new
approximation, a pattern move is defined by zk−zk−1. A new trial approximation
is then defined as zk + (zk − zk−1) and an exploratory move is then carried out
around this trial point. If this search is successful, the new approximation is
accepted as zk+1. We refer to [15, 17] for details. A new approximation to the
problem (1), xj+1 ← zk+1 is provided if the condition ∆k ≤ εj holds. However,
if this stopping condition does not hold for kmax iterations, then the procedure
is stopped with the last available approximation. The main steps of this local
search are displayed in Algorithm 4. We note that any infeasible approximation
generated by both Algorithms 3 and 4 is projected onto the set Ω [17].

Algorithm 4 Pattern Search Algorithm

1. Given yj, εj, ∆0, kmax > 1, set k = 0;
2. Set zk = yj;
3. While the stopping criterion is not met do

3.1. Compute ∆ksk using HJ exploratory moves such that zk +∆ksk ∈ Ω;



3.2. If Φj(zk)− Φj(zk +∆ksk) > 0 then zk+1 = zk +∆ksk else zk+1 = zk;
3.3. Update ∆k and sk;
3.4. Set k = k + 1;

4. Set xj+1 = zk.

3 The case study: WWTP optimal design

The problem of economically and at the same time optimally designing the
activated sludge system of a WWTP amounts to determining the values of the
variables such that the investment and operation costs associated with the design
of the WWTP are minimal. All the other constraints that have to be considered
during the design process should also be taken into consideration.

3.1 Mathematical model of the system

The system under study consists of an aeration tank, where the biological reac-
tions take place, and a secondary settler for the sedimentation of the sludge and
clarification of the effluent. To describe the aeration tank we chose the activated
sludge model n.1, described by Henze et al. [14], which considers both the elimi-
nation of the carbonaceous matter and the removal of the nitrogen compounds.
A set of constraints arises from the mass balances around the aeration tank using
the Peterson matrix of the ASM1 model [14]. The generic equation for a mass
balance around a certain system considering a completely stirred tank reactor
(CSTR) is

Q

Va
(ξin − ξ) + rξ =

dξ

dt
, (9)

where Q is the flow that enters the tank, Va is the aeration tank volume, ξ and
ξin are the concentrations of the component around which the mass balances
are being made inside the reactor and on entry, respectively. It is convenient
to refer that in a CSTR the concentration of a compound is the same at any
point inside the reactor and at the effluent of that reactor. The reaction term
for the compound in question, rξ, is obtained by the sum of the product of
the stoichiometric coefficients, νξj , with the expression of the process reaction
rate, ρj , of the ASM1 Peterson matrix [14] rξ =

∑
j νξjρj . In steady state,

the accumulation term in (9) given by dξ
dt is zero, because the concentration

is constant in time. A WWTP in labor for a sufficiently long period of time
without significant variations can be considered at steady state. As our purpose
is to make cost predictions in a long term basis it is reasonable to do so. The
ASM1 model involves 8 processes incorporating 13 different components, such
as the substrate, the bacteria, dissolved oxygen, among others. For the sake
of clearness, we include here the mass balance equation related to one of the
components - the soluble substrate (SS):

−µH

YH

SS

KS + SS

(
SO

KOH + SO
+

ηgKOH

KOH + SO

SNO

KNO + SNO

)
XBH +

khXBH

KXXBH +XS



(
SO

KOH + SO
+

ηhKOH

KOH + SO

SNO

KNO + SNO

)
XS +

Q

Va
(SSin − SS) = 0 .

We denote all the soluble components by S? and the particulates by X?. All
the other symbols are stoichiometric or kinetic parameters for the wastewater
considered. (See [14] for details on how to obtain all the other equations.)

Another set of constraints is concerned with the secondary settler. When the
wastewater leaves the aeration tank, the treated water should be separated from
the biological sludge, otherwise, the chemical oxygen demand would be higher
than it is at the entry of the system. The ATV design procedure [8] contemplates
the peak wet weather flow (PWWF) events, during which there is a reduction
in the sludge concentration. To turn around this problem, a certain depth (h3)
is allocated to support the fluctuation of solids during these events. This way
a reduction in the sedimentation area (As) is allowed. A compaction zone (h4)
where the sludge is thickened in order to achieve the convenient concentration to
return to the biological reactor, also has to be contemplated and depends only
on the characteristics of the sludge. A clear water zone (h1) and a separation
zone (h2) should also be considered and are set empirically. The depth of the
settling tank, h, is the sum of these four zones. The sedimentation area is still
related to the peak flow, Qp. The described relations are the following:

h3 = ∆X Va
DV SI

480As
, h4 = Xp

DV SI

1000
,
Qp

As
≤ 2400 (XpDV SI)

−1.34

where DV SI is the diluted volumetric sludge index and ∆X is the variation of
the sludge concentration inside the aeration tank in a PWWF event.

Besides the ATV procedure, the double exponential model [24] is also used to
describe the sedimentation process [10]. This model assumes a one dimensional
settler, in which the tank is divided into 10 layers of equal thickness. It assumes
that no biological reactions take place, meaning that the dissolved matter con-
centration is maintained across all the layers. Only vertical flux is considered
and the solids are uniformly distributed across the entire cross-sectional area of
the feed layer (j = 7, in our case). This model is based on a traditional solids
flux analysis but the flux in a particular layer is limited by what can be handled
by the adjacent layer. The settling function is given by

υs,j = max
(

0,min
(
υ′0, υ0

(
e−rh(TSSj−fns TSS7) − e−rp(TSSj−fns TSS7)

)))
where υs,j is the settling velocity in layer j (m/day), TSSj is the total suspended
solids concentration in each of the ten considered layers of the settler and υ0,
υ′0, rh, rp and fns are settling parameters [24]. The solids flux due to the bulk
movement of liquid may be up or down, υup and υdn respectively, depending on
its position relative to the feed layer, thus Asυup = Qef and Asυdn = Qr + Qw.
As to the subscripts, ‘r’ is concerned with the recycled sludge, ‘w’ corresponds
to the wasted sludge and ‘ef’ is the treated effluent. The sedimentation flux, Js,
for the layers under the feed layer (j = 7, . . . , 10) is given by Js,j = υs,jTSSj ,



and above the feed layer (j = 1, . . . , 6) the clarification flux, Jclar, is given by

Jclar,j =

{
υs,jTSSj , if TSSj+1 ≤ TSSt
min (υs,jTSSj , υs,j+1TSSj+1) otherwise,

where TSSt is the threshold concentration of the sludge. The resulting solids
balances around each layer, considering steady state, are the following:

υup (TSS2 − TSS1)− Jclar,1 = 0,
υup (TSSj+1 − TSSj) + Jclar,j−1 − Jclar,j = 0, j = 2, . . . , 6,

(Q TSS7)/As + Jclar,6 − (υup + υdn) TSS7 −min (Js,7, Js,8) = 0,
υdn (TSSj−1 − TSSj) + min (Js,j , Js,j−1)−min (Js,j , Js,j+1) = 0, j = 8, 9,

υdn (TSS9 − TSS10) + min (Js,9, Js,10) = 0.

The other important group of constraints are a set of linear equalities and
define composite variables. In a real system, some state variables are, most of the
time, not available for evaluation. Thus, readily measured composite variables
are used instead. For example, the chemical oxygen demand (COD) is composed
by soluble and particulate components, that are related by the equation

COD = SI + SS +XI +XS +XBH +XBA +XP .

Similar equations can be defined for the volatile suspended solids (V SS), total
suspended solids (TSS), biochemical oxygen demand (BOD), total nitrogen of
Kjeldahl (TKN) and total nitrogen (N).

The system behavior, in terms of concentration and flows, may be predicted
by balances. In order to achieve a consistent system, these balances must be
done around the entire system and not only around each unitary process. They
were done to the suspended matter, dissolved matter and flows. The equations
for particulate compounds (organic and inorganic) have the following form

(1 + r)QinfX?ent = QinfX?inf
+(1 + r)QinfX?−

VaX?

SRTX?r

(X?r −X?ef )−QinfX?ef

and the equations for the solubles are (1 + r)QinfS?in = QinfS?inf + rQinfS?r ,
where r is the recycle rate, SRT is the sludge retention time and Q? represents
the volumetric flows. The subscripts in the previous equations mean: ‘inf’ repre-
sents the influent wastewater, ‘ent’ is related to the entry of the aeration tank,
‘r’ is the recycled sludge and ‘ef’ represents the treated effluent.

It is also necessary to add some system variables definitions, in order to
define the system correctly. In this group we include the sludge retention time,
the recycle rate, hydraulic retention time (HRT ), recycle rate in a PWWF event

(rp), recycle flow rate in a PWWF event (Qrp) and maximum overflow rate (
Qp

As
):

SRT =
VaX

QwXr
, HRT =

Va
Q
, r =

Qr

Qinf
, rp =

0.7 TSS

TSSmaxp
− 0.7 TSS

,

Qrp = rpQp, Qp ≤ 2As .



A fixed value of 0.7 for the relation between volatile (V SS) and total suspended
solids (TSS) was considered. All the variables are considered nonnegative, al-
though more restricted bounds are imposed to some of them due to operational
consistencies. For example, the dissolved oxygen has to be always greater or equal
to 2 mg/L. These conditions define a set of simple bounds on the variables. Fi-
nally, the quality of the effluent has to be imposed. The quality constraints are
usually derived from law restrictions. The most used are related with limits in
the COD, N and TSS at the effluent. In mathematical terms, these constraints
are defined by portuguese laws as CODef ≤ 125, Nef ≤ 15 and TSSef ≤ 35.

3.2 The objective function

The objective function of the problem represents the total cost and includes both
investment and operation costs. The operation cost is usually on annual basis,
so it has to be updated to a present value using the adequate economic factors
of conversion. Each term in the objective function is based on the basic model
C = aZb [25], where a and b are the parameters to be estimated, C is the cost
and Z is the characteristic of the unitary process that most influences the cost.
For example, for the investment cost of the aeration tank, the volume (Va) and
air flow (GS) are considered. The parameters a and b are estimated by the least
squares technique, using real data collected from a WWTP building company.
The operation cost of the aeration tank considers the air flow, and the investment
and operation costs of the secondary settler depend on the sedimentation area,
As, and the depth, h. Summing up all these terms, we get the following objective
cost function:

f(Va, GS, As, h) = 174.2V 1.07
a +12487G0.62

S +114.8GS+955.5A0.97
s +41.3 (Ash)

1.07
.

4 Numerical results and conclusion

The mathematical model has 71 parameters, 113 variables, 103 equality con-
straints and one inequality constraint. All the variables are bounded below and
above. The stoichiometric, kinetic and operational parameters are the default
values presented in the GPS-X simulator [12], and they are usually found in
real activated sludge based plants. The HGPSAL algorithm was coded in Mat-

Table 1. Results of 20 runs for the WWTP problem

fbest favg fworst standard deviation function evaluations

HGPSAL 0.6677 1.0352 1.2221 0.1294 1035201
GA 2.6728 8.6111 15.1273 4.4016 1001000
HJ 1.0653 - - - 151906

Lab programming language and the numerical results were obtained with a In-
tel Core2 Duo CPU 1.8GHz with 2GB of memory. All parameter of HGPSAL
algorithm were kept constant for all the executions. The parameters of the aug-
mented Lagrangian used in the experiments are: λmin = −1012, λmax = 1012,
δmax = 1012, µmin = 10−12, τ = 0.5, θµ = 1, ν = 0.5, µ0 = 1, λ0i = 1,∀i,



Table 2. Obtained optimal values for the most important variables

Va GS As h COD TSS N

1168 100 94 4.7 40.6 35 15

δ0i = 1,∀i and jmax = 200. The Genetic algorithm parameters are: s = 200,
e = 20, pc = 0.9, ηc = 20, pm = 1/n, ηm = 20 and k∆ = 20. The initial step
length ∆0 in Algorithm 4 is set to the initial value, x0, provided by the GPS-
X simulator [12] with the real influent data. The chosen values for the upper
bounds of the Lagrange multipliers have no significant effect on the performance
of the algorithm as long as they are sufficiently large. The same is true for the
lower bounds set to the penalty parameter and multiplier vector λ. Several tests
were done in order to choose appropriate values for the other parameters. The
maximum number of allowed iterations kmax for Algorithms 3 and 4 is set to 100
iterations. We also solve the problem without hybridization, i.e., using the GA
and the HJ, separately. Due to the stochastic nature of the HGPSAL and GA
algorithms, we ran the problem 20 times. For the HJ solution, we only present
fbest, since the algorithm is deterministic. Table 1 shows the results in terms
of the best (fbest), the average (favg) and the worst (fworst) objective function
values obtained after the 20 runs, in millions of euros. The table also displays the
standard deviation of the function values and the average number of function
evaluations. The best solution is obtained by the HGPSAL algorithm, therefore,
this seems to highlight the advantages of using hybridization to explore more
efficiently the search space. Table 2 lists the optimal values for the most im-
portant decision variables of the best HGPSAL solution, namely, the aeration
tank volume, the air flow, the area and depth of the secondary settler, as well
as COD, TSS and N at the effluent. As to the effluent quality, the law limits
were accomplished, in particular, the COD at the effluent is below the law limit,
showing the robustness of the solution. The obtained physical dimensions of the
units (aeration tank and secondary settler) are as expected. Although the ob-
tained WWTP design is economically attractive, a multi-objective mixed-integer
programming approach will be proposed in future designs to get better effluents
quality and smaller investment and operation costs.
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